Risk analysis lab 2019. 10. 15. (CLT, Markov)

- 1. Let v_j denote the amount of deposit belongs to each client j = 1, ..., J with $p_j = P(X_j = v_j)$ and $X_j \in \{0; v_j\}$ probability of withdrawal. In a new notebook generate these vectors randomly as $v_j \sim U(1.5,3)$ and $p_j \sim U(0.35, 0.55)$. J = 75 (0.5 points)
- 2. Let $y_i \in \{0;1\}$ stands for the event when the *j*-th customer withdraws their deposit, while $\psi \in \{0,1\}$ denotes the event that the bank exceeds its cash *C*. As a function of C calculate $P\left(\sum_{j=1}^{J} X_j > C\right)$ using:
 - a. the Central Limit Theorem

$$P\left(\sum_{j=1}^{J} X_{j} > C\right) \approx 1 - \Phi\left(\frac{C - m}{\sigma}\right), \text{ where } \Phi \text{ is the cumulative distribution}$$

function of Normal distribution, $m = \sum_{j=1}^{J} p_j v_j$ and $\sigma = \sqrt{\sum_{j=1}^{J} p_j v_j^2 (1 - p_j)}$; (2 points)

b. Markov's inequality

$$P\left(\sum_{j=1}^{J} X_{j} > C\right) \leq \frac{m}{C} \text{, where } m = \sum_{j=1}^{J} p_{j} v_{j} \text{;}$$
(2 points)

3. Plot and compare the results on one figure for C = 20, ..., 200.

(0.5 points)