1. Create a new script (`lab1.m`) and define variable \(A \), \(b \), and \(c \):

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 1 \\
\end{bmatrix}, \quad b = \begin{bmatrix}
2 \\
5 \\
6 \\
\end{bmatrix}, \quad c = \frac{2}{3}.
\]

2. Solve the \(Ax = b \) linear equation system and print \(x \). (help)

3. Multiply the last row of \(A \) and the last element of \(b \) by \(c \). Solve the linear equation system again and print \(x \). What do you expect? Why?

4. Print the maximal eigenvalue and the corresponding eigenvector of matrix \(A \). (help)
 a. You can use the `diag` function to retrieve diagonal elements of a matrix.

5. Plot and save into variable \(xt \) the sine function over the domain \(-2\pi < t < 2\pi\).
 a. Use the colon (:) operator.
 b. The increment between the elements should be 0.01.
 c. Use the \pi constant.

6. Add Gaussian noise \(N(\mu, \sigma) \), \(\mu = 0 \) and \(\sigma = \frac{1}{3} \) to variable \(xt \) and plot again.
 a. Use `randn` to generate normally distributed random numbers

7. Given the vector \(s = [1 \ 8 \ 3 \ 9 \ 0 \ 1] \), create a short set of commands that will compute the running sum (for element \(j \), the running sum is the sum of the elements from 1 to \(j \), inclusive. Check with `cumsum`.)
 a. Use `for` loop

8. Write function \([\text{value}] = \text{calcPi}(K)\) that calculates the value of \(\pi \) using the following series:

\[
\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)
\]

9. Write a script or a function that finds how many terms are needed to obtain an accuracy of \(1e-12 \).
 a. Use the \pi constant as reference.