
Pr.11. Stochastic process having 4 realisations
in the range of (0,T) with given probabilities:

a) Stationarity?
b) Correlation function’s values?
c) Probability distribution function’s values?
d) Joint (2 dimensions) PDF values?
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Pr. 1. a) Stationarity
a1) Wide-sense stationarity?
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The process is nonstationary
in any sense!



b1) Let t1 and t2

Pr. 1. b) Correlation function
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b2) Let t1 and t3
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c1) Let t1

Pr. 1. c) Probability distribution function
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d1) Let t1 and t2

Pr. 1. d) Joint PDF (for 2 dimensions)
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Pr.2. Investigate the stationarity
of stochastic processes:

a) ξ t t= ⋅U  where   0 sin ,Ω Ω
is a uniformly distributed
random variable over (0.1 B , B)
and U0 is a constant

b) ξ η ηt t= ⋅cos ,F  where   
is a uniformly distributed
random variable over (0 , 2)
and F is a constant



Pr.13. Let a wide sense stationary
process, and Φ an independent random variable, 
uniformly distributed over (0, 2π]. Calculate the
correlation function of process ηt , if

{ , ( , )}ξ t t ∈ −∞ ∞

η ξ τξt t t R= ⋅ +cos( ), ( )Ω Φ and   is given.
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Let us calculate the mean:
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Pr.4. Let ξt a stochastic process given by
its sample functions:
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a) What probabilities of realizations can result in the
independence of random variables ξ1 and ξ2 ?



a) What conditions are needed for independence?

The two random variables ξ1
and ξ2 are binary, thus their
joint events have four values, 
namely: 00, 01, 10 and 11

The condition of independence:
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Calculate the probabilities occuring in these equations
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Substitutung into the equations:
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and a possible solution?



First we check mean values at
different times:

b) Check the stationarity of ξt !
(using p1=p2=p3=p4=1/4)
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eventually 
stationary?



To get an answer,
we should check the correlation 

function
0 T

t
ξt

(1)

1
p1

0 T
t

ξt
(2)

1 p2

0 T
t

ξt
(3) p3

0 T
t

ξt
(4)

1
p4

t1 t2 t3

taking the correlation, for 
example, over a time difference 
of less then T/3, five different 
ranges can be found:
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but for r3, r4 and r5
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Thus we can conlude: the process is nonstationary.
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Pr. 21. Calculate the spectral density of
“random data” signal, or random binary wave
• It is a stochastic process characterized by a

typical sample function:
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• The values U and -U correspond to 0 and 1 as a
series of independent random binary variables 
determined by tossing a fair coin

• The beginning of a starting point of T is delayed 
by δ that is a random variable, uniformly 
distributed over [0, T) 



• How can we calculate spectral density?
– first: we determine correlation function
– second: take the Fourier transform of it
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• The semi-result R

-T T

τ

• What about between -T and T ?
• If then
• Since δ is
uniformly distributed over [0, T) 
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• The final result
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• the process is named as band-limited with constant
spectral density

• correlation function

Pr. 22. Calculate the correlation function of
random process ξt if sξ(ω) is given:
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