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Abstract

A new queue, referred to here as the HetSigma queue, in the Markovian framework, is proposed in order to model nodes
in modern telecommunication networks. The queue has many of the necessary ingredients, such as joint (or individual) Markov
modulation of the arrival and service processes, superposition of K CPP (compound Poisson process) streams of (positive) customer
arrivals, and a CPP of negative customer arrival stream in each of the modulating phases, a multiserver with c non-identical (can
also be identical) servers, GE (generalised exponential) service times in each of the modulating phases and a buffer of finite or
infinite capacity. Thus, the model can accommodate correlations of the inter-arrival times (of batches), and geometric as well as
non-geometric batch size distributions of customers in both arrivals and services. The use of negative customers can facilitate
modelling server failures, packet losses, load balancing, channel impairment in wireless networks, and in many other applications.
An exact and computationally efficient solution of this new queue for steady state probabilities and performance measures is
developed and presented.

A non-trivial application of the new queue to the performance evaluation of a wireless communication system is presented,
along with numerical results, to illustrate the efficacy of the proposed method. The use of negative customers is also demonstrated.
The new queue, perhaps with further evolution, has the potential to emerge as a generalised Markovian node model.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modelling packet traffic and nodes in modern communication networks has become complicated because of the
existence of burstiness (time varying arrival or service rates, arrivals or services of packets in batches) and important
correlations among inter-arrival times [1]. The MMPP (Markov Modulated Poisson Process) [2] was an attempt to
model the correlations effectively. A number of important applications have used the MMPP in performance evaluation
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over the years [3–7]. Excellent literature also exists in model fitting and parameter estimation of the real traffic by
MMPP [7–10]. However, the MMPP cannot accommodate batch-arrivals and/or batch-services.

The MM CPP/GE/c queue [11] and the MM CPP/GE/c/L G-queue [12] have emerged as effective models,
in the Markovian framework, in order to accommodate inter-arrival time correlations, large or unbounded batch
sizes and burstiness. However, this was mostly limited to geometric batch size distributions [13], with only very
little flexibility towards non-geometric batch sizes. In these queues, the steady state balance equations are highly
complicated and hard to solve. The method of Successive Simultaneous weighted Subtractions (SSS) was used on
the steady state balance equations, transforming them to a computable form of the QBD-M (Quasi simultaneous-
bounded-multiple Births and simultaneous-bounded-multiple Deaths) type and then solved very efficiently by the
spectral expansion method [11,12]. The moments of the inter-batch departure interval and the departure burst
size distribution are derived in [12] and the sojourn time distribution in [14], for the MM CPP/GE/c/L G-
queue.

Recently, we have proposed and solved the MM
∑K

k= CPPk/GE/c/L G-queue with homogeneous servers (the
Sigma queue) [15,16], which is capable of modelling geometric as well as non-geometric batch size distributions,
to an extent. The effective arrival process in this queue is the MM

∑K
k=1 CPPk which is thus a much more

useful generalisation of the CPP, MMPP and the MMCPP. A procedure consisting of two steps of transformations
is used to transform the steady state balance equations to the QBD-M type computable form and efficient
computational procedure has been developed for the steady state probabilities [15–17]. This queue has been used
effectively for a non-trivial and novel application in the performance evaluation of optical communication nodes.
In that work [17], negative customers were applied to model the packet-loss due to certain technology constraint,
which is an additional contribution to the application of negative customers [18,19]. Negative customers were
used in the past to model server-failures in computing and communication systems [20] and in manufacturing
systems [21].

Queues with heterogeneous multiservers with possibly different characteristics do take into account many practical
aspects in modelling real systems. Models for many practical scenarios (e.g., servers formed with different types
of processors as a consequence of system updates, nodes in telecommunications network with links of different
capacities, nodes in wireless systems serving different mobile users, etc.) involve heterogeneous servers. In [22],
by the method of stochastic sample path comparisons, Lehtonen has proved that heterogeneous multiserver systems
are superior in performance (this result can be extended to reliability as well) to the homogeneous ones, with
the same total service time. This is also established by Stecke [23] in the context of manufacturing cells and
systems, and very recently by Trancoso [24]. Trancoso’s extensive simulation results in [24] do lead to the
conclusion that, when configuring a multiprocessor system, it is necessary to consider seriously a heterogeneous
configuration.

In this paper, we introduce and use a more powerful queueing model, the MM
∑K

k=1 CPPk/GE/c/L G-
queue with heterogeneous servers (the HetSigma model/queue). Steady state balance equations of this model are
further more complicated; therefore an efficient method is needed to obtain the steady state probabilities. We
present a transformational procedure consisting of three steps, to transform the balance equations into the QBM-
type computable form. We also present the resulting equations and expressions (which are of huge size), and the
computational procedure into a compact and neat form in order to achieve computational ease and efficiency. We also
demonstrate the use of the HetSigma queue to model a specific case in wireless communications.

The earlier published queueing models, the MM CPP/GE/c, the MM CPP/GE/c/L G-queues and the Sigma
queue, are thus special cases of this new queue, which, with possible further modifications, is capable of emerging as
a generalised Markovian node model for telecommunication applications.

The rest of this paper is organised as follows. Section 2 introduces the system/model. Section 3 develops the
steady state balance equations of the new queue. Section 4 presents the three steps of transforming the steady
state balance equations into an efficiently computable form. Section 5 describes the solution of the transformed
balance equations by the spectral expansion method and also the solution for the case of infinite queueing capacity.
Section 6 presents a non-trivial application of the HetSigma queue for the performance evaluation of a wireless
communication system, along with numerical results. The importance of the proposed queue, the efficacy of the
proposed methodology to find the steady state performance measures and the computational efficiency are illustrated.
Conclusions are drawn in Section 7. The Appendices present some theoretical and some practical proofs related to the
methodology.
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2. Model description

The system/model is a multi-server queue. It is described below, by illustrating the various components and their
interactions.

2.1. Modulation

Both the arrival and service processes are modulated by the same continuous time, irreducible Markov process,
called X , with N states (or phases of modulation). Let Q be the generator matrix of this modulating process (X). The
off-diagonal element, Q(i, k) = qi,k (i 6= k), is the instantaneous transition rate from phase i to phase k, and the i th
diagonal element Q(i, i) = −qi = −

∑i−1
l=1 qi,l −

∑N
l=i+1 qi,l .

Then, r = (r1, r2, . . . , rN ), the vector of equilibrium probabilities of the modulating phases, is uniquely determined
by the equations

rQ = 0; reN = 1,

where eN stands for the column vector with N elements, each of which is unity.
The assumption, that the arrival and service processes are modulated by the same continuous time, irreducible

Markov process with N modulating phases, does not limit the usage of the model. That is because the case of
different and independent modulating processes for the arrivals and the services can be traced back to our model:
i.e., if the number of the phases in the modulation of the arrival process is Na and that of the service process is Ns
independently, then we can convert this case into our model by considering an appropriate joint modulating Markov
process with N = Ns Na states.

2.2. Customer arrival process

The arrival process is inherently Markov modulated by X . The arrivals, in each of the modulating phase, are the
superposition of K independent CPP [25] arrival streams of positive customers (referred to as customers hereafter)
and an independent CPP of negative customers, the parameters of which can depend on the phase of modulation.
The customers (positive customers) of the K different arrival streams are not distinguishable. Strictly during the
modulating phase i , the parameters of the GE inter-arrival time distribution of the kth (k = 1, 2, . . . , K ) customer
arrival stream are (σi,k, θi,k), and (ρi , δi ) are those of the negative customer arrival stream. That is, the probability
distribution function of inter-arrival times (τi,k), strictly during phase i for the kth stream of customers, is governed
by Pr(τi,k = 0) = θi,k and Pr(0 < τi,k < t) = (1 − θi,k)(1 − e−σi,k t ). Similar two probabilities pertaining to the
case of the negative customers, strictly during phase i , are δi and (1− δi )(1− e−ρi t ) respectively. Thus, all the K + 1
arrival point-processes, strictly during a given modulating phase, can be seen as batch-Poisson, with batches arriving
at each point having geometric size distribution. Specifically, strictly during phase i , the probability that a batch is of
size s is (1− θi,k)θ

s−1
i,k , for the kth stream of customers, and (1− δi )δ

s−1
i for the negative customers.

Now, looking at the K + 1 arrival processes overall, each of them is an MMCPP, but with joint-modulation. Also,
the overall superposed arrival process of positive customers is an MM

∑K
k=1 CPPk which is a much more useful

generalisation of the CPP, MMPP and the MMCPP arrival processes.
Let σi,., σi,. be the average arrival rate of customer-batches and customers respectively, strictly during phase i . Let

σ, σ be the overall average arrival rate of batches and customers, respectively. Then,

σi,. =

K∑
k=1

σi,k; σi,. =

K∑
k=1

σi,k

(1− θi,k)
; σ =

N∑
i=1

σi,.ri ; σ =

N∑
i=1

σi,.ri (1)

2.3. Arrival batch size distribution

In a modulating phase, the arrivals are the superposition of many CPP’s with phase-dependent parameters. Hence,
the superposed arrivals of customers, strictly during phase i , are like bulk-Poisson (M [x]) with arrival rate σi,. and
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with a batch size distribution {πl/ i }, that is more general than mere geometric. The probability that this batch size is l
(strictly during phase i) is given by

πl/ i =

K∑
k=1

σi,k

σi,.
(1− θi,k)θ

l−1
i,k (2)

The overall batch size distribution is then given approximately by πl/. =
∑N

i=1 riπl/ i .
It is worth emphasising that our queue handles the case of the unbounded batch sizes in arrivals (also in services,

as we shall see later), for which, to our limited knowledge, there have never been any implemented solutions with
practical numerical results, only with the exception of the earlier works [11,12,15]. To our limited knowledge, until
now for the BMAP or the QBD-M process based models, practical numerical results exist only when the batch sizes
are limited, with computational complexity sharply increasing with the maximum batch size allowed.

2.4. The GE multi-server and the queueing capacity

The service facility has c heterogeneous servers in parallel. A number of scheduling policies can be thought of.
Though, in principle, a number of scheduling policies can indeed be modelled by following our methodology, the
one that we have adopted in this paper, for illustration and detailed study, is described below in the following three
paragraphs. It is assumed that a set of service priority assignments exists (or given/chosen) which identifies each server
by a unique service priority: 1 is the highest and c is the lowest. This set can be chosen from the c! different possible
ways. However, the impact of choosing service priorities can be very high on the performance measures, whose study
is not in the scope of this paper.

Each server is then numbered, without loss of generality, by its own service priority. The GE-distributed service
time parameters of the nth server (n = 1, 2, . . . , c), in phase i , are denoted by (µi,n, φi,n).

L is the queueing capacity, in all phases, including the customers in service, if any. L can be finite or infinite. We
assume, when the number of customers is j and the arriving batch size of customers is greater than L − j (assuming
finite L), then only L − j customers are taken in and the rest are rejected.

The service discipline is FCFS (First Come First Scheduled for service) and each server serves at most one positive
customer at any given time. Customers, on their completion of service, leave the system. When the number of
customers in the system, j , (including those in service if any) is ≥ c, then only c customers are served with the
remaining ( j − c) waiting for service. When j < c, only the first j servers, (i.e., servers numbered 1, 2, . . . , j), are
occupied and the rest are idle. This is made possible by what is known as customer switching. Thus, when server n
becomes idle, an awaiting customer would be taken up for service. If there is no awaiting customer, then a customer
that is being served by the lowest possible priority server (i.e., among servers c, c−1, . . . , n+1) switches to server n.
In such a switching, the service time is governed by either resume or repeat with resampling, thus preserving the
Markovian property. The switching is instantaneous and the switching time is treated as being negligible. Negative
customers neither wait in the queue, nor are served. Though this may not be a preferred scheduling discipline in
a number of situations, a variety of scheduling disciplines can indeed be modelled using our methodology, with
appropriate modifications (cf. Section 5.3).

In any modulating phase, the operation of the GE server is similar to that described for the CPP arrival processes
above. However, the batch size associated with a service completion is bounded by one more than the number of
customers waiting to commence service at the departure instant. When c ≤ j < L + 1, the maximum batch size at
a departure instant is j − c + 1, only one server being able to complete a service period at any one instant under the
assumption of exponentially distributed batch-service times. Thus, here the probability that a departing batch is of size

s is
∑c

n=1
µi,n(1−φi,n)φs−1

i,n
µi.

for 1 ≤ s ≤ j − c and
∑c

n=1
µi,nφ

j−c
i,n

µi.
for s = j − c+ 1, where µi. =

∑c
n=1 µi,n . However,

when 1 ≤ j ≤ c, the departing batch has size 1 since each customer is already engaged by a server and there are then
no customers waiting to commence service.

It is assumed that the first positive customer in a batch arriving at an instant when the queue length is less than c
(so that at least one server is free) never skips service (has non-zero service time) [12]. However, even without this
assumption the general methodology described in this paper is still applicable, with appropriate minor modifications.
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2.5. Negative customer semantics

The uses of negative customers with appropriate killing discipline are many, viz. for facilitating flow control studies,
load balancing studies, to model breakdowns and to model packet losses caused by the arrival of corrupted packets,
as explained in [12].

A negative customer removes a positive customer in the queue, according to a specified killing discipline. We
consider here a variant of the RCE killing discipline (removal of customers from the end of the queue), where the
most recent positive arrival is removed, but which does not allow a customer actually in service to be removed: a
negative customer that arrives when there are no positive customers waiting to start service has no effect. We may
say that customers in service are immune to negative customers or that the service itself is immune servicing. Such
a killing discipline is suitable for modelling of load balancing where work is transferred from overloaded queues but
never work that is actually in progress.

When a batch of negative customers of size l (1 ≤ l < j − c) arrives, any l positive customers, that are not being
served, are removed from the queue, leaving the remaining j − l positive customers in the system. If l ≥ j − c ≥ 1,
then j − c positive customers are removed, leaving none waiting to commence service (queue length equal to c). If
j ≤ c, the negative arrivals have no effect.

ρi , the average arrival rate of negative customers strictly during phase i , and ρ, the overall average arrival rate of
negative customers, are given by

ρi =
ρi

1− δi
; ρ =

N∑
i=1

riρi . (3)

2.6. Condition for stability

When L is finite, the system is ergodic since the representing Markov process is irreducible. Otherwise, i.e.,
when the queueing capacity is unbounded, the overall average departure rate increases with the queue length, and
its maximum (the overall average departure rate when the queue length tends to∞) can be determined as

µL→∞ =

c∑
n=1

N∑
i=1

riµi,n

1− φi,n
. (4)

Hence, we conjecture that the necessary and sufficient condition for the existence of steady state probabilities is

σ < ρ + µL→∞. (5)

A rigorous proof of the above condition may possibly be obtained by following the methodology in [26]; however,
this is an item for further research only.

3. The steady state balance equations

The state of the system at any time t can be specified completely by two integer-valued random variables, I (t) and
J (t). I (t) varies from 1 to N (known as operative states), representing the phase of the modulating Markov chain, and
0 ≤ J (t) < L + 1 represents the number of positive customers in the system at time t , including any in service. The
system is now modelled by a continuous time discrete state Markov process, Y (Y if L is infinite), on a rectangular
lattice strip. Let I (t), the operative state, vary in the horizontal direction and J (t), the queue length or the level, in the
vertical direction. We denote the steady state probabilities by {pi, j }, where pi, j = limt→∞ Pr(I (t) = i, J (t) = j),
and let v j = (p1, j , . . . , pN , j ).

The process Y evolves due to the following instantaneous transition rates:

(a) qi,k – purely lateral transition rate – from state (i, j) to state (k, j), for all j ≥ 0 and 1 ≤ i, k ≤ N (i 6= k),
caused by a phase transition in the modulating Markov process;

(b) Bi, j, j+s – s-step upward transition rate – from state (i, j) to state (i, j + s), ∀i , caused by a new batch arrival of
size s of positive customers. For a given j , s can be seen as bounded when L is finite and unbounded when L is
infinite;
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(c) Ci, j, j−s – s-step downward transition rate – from state (i, j) to state (i, j − s), ( j − s ≥ c + 1), ∀i , caused by
either a batch service completion of size s or a batch arrival of negative customers of size s;

(d) Ci,c+s,c – s-step downward transition rate – from state (i, c + s) to state (i, c), ∀i , caused by a batch arrival of
negative customers of size ≥ s or a batch service completion of size s, (1 ≤ s ≤ L − c);

(e) Ci,c−1+s,c−1 – s-step downward transition rate, from state (i, c − 1 + s) to state (i, c − 1), ∀i , caused by a batch
departure of size s (1 ≤ s ≤ L − c + 1);

(f) Ci, j+1, j – 1-step downward transition rate, from state (i, j +1) to state (i, j), (c ≥ 2 ; 0 ≤ j ≤ c−2), ∀i , caused
by a single departure.

We obtain

Bi, j−s, j =

K∑
k=1

(1− θi,k)θ
s−1
i,k σi,k (∀i; 0 ≤ j − s ≤ L − 2; j − s < j < L);

Bi, j,L =

K∑
k=1

∞∑
s=L− j

(1− θi,k)θ
s−1
i,k σi,k =

K∑
k=1

θ
L− j−1
i,k σi,k (∀i; j ≤ L − 1);

Ci, j+s, j =

c∑
n=1

µi,n(1− φi,n)φs−1
i,n + (1− δi )δ

s−1
i ρi (∀i; c + 1 ≤ j ≤ L − 1; 1 ≤ s ≤ L − j)

=

c∑
n=1

µi,n(1− φi,n)φs−1
i,n + δs−1

i ρi (∀i; j = c; 1 ≤ s ≤ L − c)

=

c∑
n=1

φs−1
i,n µi,n (∀i; j = c − 1; 1 ≤ s ≤ L − c + 1)

= 0 (∀i; c ≥ 2; 0 ≤ j ≤ c − 2; s ≥ 2)

=

j+1∑
n=1

µi,n (∀i; c ≥ 2; 0 ≤ j ≤ c − 2; s = 1).

Define

B j−s, j = Diag
[
B1, j−s, j , B2, j−s, j , . . . , BN , j−s, j

]
( j − s < j ≤ L);

Bs = B j−s, j ( j < L)

= Diag

[
K∑

k=1

σ1,k(1− θ1,k)θ
s−1
1,k , . . . ,

K∑
k=1

σN ,k(1− θN ,k)θ
s−1
N ,k

]
;

Σk = Diag
[
σ1,k, σ2,k, . . . , σN ,k

]
(k = 1, 2, . . . , K );

Θk = Diag
[
θ1,k, θ2,k, . . . , θN ,k

]
(k = 1, 2, . . . , K );

Σ =
K∑

k=1

Σk;

R = Diag [ρ1, ρ2, . . . , ρN ] ; ∆ = Diag [δ1, δ2, . . . , δN ] ;
Mn = Diag

[
µ1,n, µ2,n, . . . , µN ,n

]
(n = 1, 2, . . . , c);

Φn = Diag
[
φ1,n, φ2,n, . . . , φN ,n

]
(n = 1, 2, . . . , c);

C j =

j∑
n=1

Mn (1 ≤ j ≤ c);

=

c∑
n=1

Mn = C ( j ≥ c);

C j+s, j = Diag
[
C1, j+s, j , C2, j+s, j , . . . , CN , j+s, j

]
;

E = Diag(e′N ) .
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Then, we get

Bs =

K∑
k=1

Θ s−1
k (E −Θk)Σk; B1 = B =

K∑
k=1

(E −Θk)Σk;

BL−s,L =

K∑
k=1

Θ s−1
k Σk;

C j+s, j =

c∑
n=1

Mn(E − Φn)Φs−1
n + R(E −∆)∆s−1 (c + 1 ≤ j ≤ L − 1; s = 1, 2, . . . , L − j);

=

c∑
n=1

Mn(E − Φn)Φs−1
n + R∆s−1 ( j = c; s = 1, 2, . . . , L − c);

=

c∑
n=1

MnΦs−1
n ( j = c − 1; s = 1, 2, . . . , L − c + 1);

= 0 (c ≥ 2; 0 ≤ j ≤ c − 2; s ≥ 2);

= C j+1 (c ≥ 2; 0 ≤ j ≤ c − 2; s = 1).

The steady state balance equations are

(1) For the Lth row or level:

L∑
s=1

vL−s BL−s,L + vL [Q − C − R] = 0; (6)

(2) For the j th row or level:

j∑
s=1

v j−s Bs + v j
[
Q − Σ − C j − RI j>c

]
+

L− j∑
s=1

v j+sC j+s, j = 0 (0 ≤ j ≤ L − 1); (7)

(3) Normalisation

L∑
j=0

v j eN = 1; (8)

where I j>c = 1 if j > c else 0, and eN is a column vector of size N with all ones.
In Y or Y , the transitions from a level to any other level are possible, thus unbounded. These are, therefore, neither

QBD nor QBD-M type. We call them QBD-U (Quasi simultaneous-unbounded-multiple Births and simultaneous-
unbounded-multiple Deaths) processes.

For example, when L = ∞, it can be observed that (6) and (7) are an infinite number of equations in an infinite
number of unknowns, viz. v0, v1, . . .. Also, each of the balance equation is infinitely long containing all the infinite
number of unknowns, viz. v0, v1, . . .. The coefficient matrices of the unknown vectors are j-dependent. Therefore,
these original balance equations actually do not have QBD or QBD-M structure. Hence, either the spectral expansion
method or the other methods cannot be used directly to solve them.

In the next section we transform this system of equations to a QBD-M type computable form.

4. Transforming the balance equations

The method presented in this section is for sufficiently large L such that L ≥ 2c+ K + 3. When L < 2c+ K + 3,
then the Markov process Y can be solved by traditional methods [27].

Let us consider Eqs. (6)–(8). Each equation has all the unknown vectors vj’s. If L is unbounded, then these
are infinite number of equations in infinite number of unknowns, vj’s, and each equation is infinitely long
containing all the infinite number of unknowns. Also, the coefficient matrices of vj are j-dependent. It may
be noted that there has been neither a solution nor a solution methodology to solve these equations. In this
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paper a novel methodology is developed to solve these equations exactly and efficiently. First these complicated
equations are transformed to a computable form by using certain transformations. The resulting transformed
equations are of the QBD-M type and hence can be solved by one of the several available methods, viz. the
spectral expansion method, the Bini–Meini method [31] or the matrix–geometric method with folding or block size
enlargement [28].

Let the balance equations for level j be denoted by 〈 j〉. Hence, 〈 0〉, 〈 1〉, . . . , 〈 j〉, . . ., 〈L〉 are the balance equations
for the levels 0, 1, . . . , j, . . . , L respectively. Substituting BL−s,L =

∑K
k=1 Θ s−1

k Σk and Bs =
∑K

k=1 Θ s−1
.k (E −

Θk)Σk in (6), (7), we get the balance equations for level L and for all the other levels as

〈L〉 :
L∑

s=1

K∑
k=1

vL−sΘ s−1
k Σk + vL [Q − C − R] = 0 (9)

〈L− 1〉 :
L−1∑
s=1

K∑
k=1

vL−1−sΘ s−1
k (E −Θk)Σk + vL−1

[
Q − Σ − CL−1 − R

]
+ vLCL ,L−1 = 0 (10)

...

〈 j〉 :
j∑

s=1

K∑
k=1

v j−sΘ s−1
k (E −Θk)Σk + v j

[
Q − Σ − C j − R

]
+

L− j∑
s=1

v j+sC j+s, j = 0 ( j = L − 2, L − 3, . . . , c + K + 2) (11)

〈 c+K+ 1〉 :
c+K+1∑

s=1

K∑
k=1

vc+K+1−sΘ s−1
k (E −Θk)Σk

+ vc+K+1[Q − Σ − Cc+K+1 − R] +
L−c−K−1∑

s=1

vc+K+1+sCc+K+1+s,c+K+1 = 0 (12)

...

〈 j〉 :
j∑

s=1

K∑
k=1

v j−sΘ s−1
k (E −Θk)Σk + v j

[
Q − Σ − C j − RI j>c

]
+

L− j∑
s=1

v j+sC j+s, j = 0 ( j = c + K , c + K − 1, . . . , 0). (13)

Define the functions, FK ,l (l = 1, 2, . . . , K ) and Hc,n (n = 1, 2, . . . , c) as

FK ,l =
∑

1≤k1<k2<...<kl≤K

Θk1Θk2 . . .Θkl (l = 1, 2, . . . , K )

= E if l = 0
= 0 if l ≤ −1 or l > K (14)

Hc,n =
∑

1≤k1<k2<...<kn≤c

Φk1Φk2 . . .Φkn (n = 1, 2, . . . , c)

= E if n = 0
= 0 if n ≤ −1 or n > c (15)

These functions have the following alternate definitions, properties and recursion by which they can be conceived and
computed quite easily.

Fk,0 = E, Fk,k =

k∏
i=1

Θi (k = 1, 2, . . . , K );
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Fk,l = 0 (k = 1, 2, . . . , K ; l < 0); Fk,l = 0 (k = 1, 2, . . . , K ; l > k) (16)

Hm,0 = E, Hm,m =

m∏
i=1

Φi (m = 1, 2, . . . , c);

Hm,n = 0 (m = 1, 2, . . . , c; n < 0);

Hm,n = 0 (m = 1, 2, . . . , c; n > m). (17)

The recursion, then, is

F1,0 = E; F1,1 = Θ1;

Fk,l = Fk−1,l +Θk Fk−1,l−1 (2 ≤ k ≤ K , 1 ≤ l ≤ k − 1); (18)
H1,0 = E; H1,1 = Φ1;

Hm,n = Hm−1,n + Φm Hm−1,n−1 (2 ≤ m ≤ c, 1 ≤ n ≤ m − 1). (19)

Transformation 1. Modify simultaneously the balance equations for levels j (L − 2− c ≥ j ≥ c + K + 1), by the
transformation

〈j〉(1)
←− 〈 j〉 +

K∑
l=1

(−1)l
〈j− l〉FK ,l (c + K + 1 ≤ j ≤ L − 2− c)

〈j〉(1)
←− 〈 j〉 ( j > L − 2− c or j < c + K + 1).

Transformation 1 essentially replaces the balance equation for row j by a weighted linear sum of the balance equations
of rows j, j − 1, . . . , j − K . This is done simultaneously to rows (c + K + 1 ≤ j ≤ L − 2− c).

Apply the second transformation to the resulting equations.

Transformation 2. Modify simultaneously the balance equations for levels j (L − 2− c ≥ j ≥ c + K + 1), by the
transformation

〈 j〉(2)
←− 〈 j〉(1)

+

c∑
n=1

(−1)n
〈 j+ n〉(1) Hc,n (c + K + 1 ≤ j ≤ L − 2− c)

〈 j〉(2)
←− 〈 j〉(1) ( j > L − 2− c or j < c + K + 1).

Apply the third and final transformation to the resulting equations.

Transformation 3. Modify simultaneously the balance equations for levels j (L − 2− c ≥ j ≥ c + K + 1), by the
transformation

〈 j〉(3)
←− 〈 j〉(2)

− 〈 j+ 1〉(2)∆ (c + K + 1 ≤ j ≤ L − 2− c)

〈 j〉(3)
←− 〈 j〉(2) ( j > L − 2− c or j < c + K + 1).

With these above three transformations, the transformed balance equation, 〈 j〉(3)’s, for the rows (c + K + 1 ≤ j ≤
L − 2− c), will be of the form

v j−K Q0 + v j−K+1 Q1 + · · · + v j+c+1 QK+c+1 = 0 ( j = L − 2− c, L − 1− c, . . . , c + K + 1) (20)

where Q0, Q1, . . . , QK+c+1 are K+c+2 number of j-independent matrices which can be easily derived algebraically
from the system parameters by following the above-mentioned transformation procedures. The computational
procedures and the theoretical as well as the practical proofs concerning this are dealt with, in Appendix, separately.

Thus, the resulting Eq. (20) corresponding to the rows from c+K+1 to L−2−c are of the same form as those of the
QBD-M processes [16] and hence have an efficient solution by several methods such as the spectral expansion method
[29,30], the Bini–Meini method [31], the matrix–geometric method with folding or block size enlargement [28,32,33].
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5. Spectral expansion solution of the balance equations

The set of Eq. (20) concerning the levels c+K +1 to L−2−c have the coefficient matrices Q0, Q1, . . . , QK+c+1
that are independent of j and hence have an efficient solution by the spectral expansion method [30,29,34]. These
Ql ’s (l = 0, 1, . . . , K + c + 1) can be obtained quite easily following the computational procedure in Appendix A.

Define the matrix polynomials Z(λ) and Z(ξ) as

Z(λ) = Q0 + Q1λ+ Q2λ
2
+ · · · + QK+c+1λ

K+c+1, (21)

Z(ξ) = QK+c+1 + QK+cξ + QK+c−1ξ
2
+ · · · + Q0ξ

K+c+1. (22)

Then, the spectral expansion solution for v j (c + 1 ≤ j ≤ L − 1) is given by

v j =

K N∑
l=1

alψ lλ
j−c−1
l +

(c+1)N∑
l=1

blγ lξ
L−1− j
l (c + 1 ≤ j ≤ L − 1) (23)

where λl (l = 1, 2, . . . , K N ) are the K N eigenvalues of least absolute value of the matrix polynomial Z(λ) and
ξl (l = 1, 2, . . . , (c + 1)N ) are the (c + 1)N eigenvalues of least absolute value of the matrix polynomial Z(ξ). ψ l
and γ l are the left-eigenvectors of Z(λ) and Z(ξ) respectively, corresponding to the eigenvalues λl and ξl respectively.
al ’s and bl ’s are arbitrary constants to be determined later.

It is shown in Appendix B that the matrix
∑K+c+1

l=0 Ql is singular, so λ = 1 is an eigenvalue on the unit-circle
for both Z(λ) and Z(ξ). If (5) is satisfied, the number of eigenvalues of Z(λ) that are strictly within the unit circle
is K N . If (5) is not satisfied, that number is K N − 1. These and also certain other properties of these eigenvalues,
eigenvectors, also the relevant spectral analysis are dealt with (some of them are proved, others explained in detail) in
[29,30]. Some of them are summarised below. Let the rank of Q0 be N − n0 and that of QK+c+1 be N − nK+c+1.

Then,

(a) Z(λ) would have d = (K + c + 1)N − nK+c+1 eigenvalues of which n0 are zero eigenvalues (also referred to as
null eigenvalues), whereas Z(ξ) would have nK+c+1 zero eigenvalues and (K + c+1)N −n0−nK+c+1 non-zero
eigenvalues.

(b) If (λ 6= 0,ψ) is a non-zero eigenvalue-eigenvector pair of Z(λ), then there exists a corresponding non-zero
eigenvalue-eigenvector pair, (ξ = 1

λ
, γ = ψ) for Z(ξ). Thus, the non-zero eigenvalues of these two matrix

polynomials are mutually reciprocal.
(c) The K N eigenvalues of least absolute value of Z(λ) and the (c+ 1)N eigenvalues of least absolute value of Z(ξ)

lie either strictly inside, or on, their respective unit-circles, but not outside.
(d) There is no problem posed by multiple eigenvalues, i.e., independent eigenvectors having coincident eigenvalues,

since each pair (λ,ψ) is distinct.

If the unknowns al ’s and bl ’s are determined in such a way that all the balance equations are satisfied,
then the vectors v j (c + 1 ≤ j ≤ L − 1) can be computed from the steady state solution (23). Hence, the
unknowns are the scalars, a1, a2, . . . , aK ·N , b1, b2, . . . , b(c+1)N , and the vectors v0, v1, . . . , vc, vL . These are totally
K N + (c + 1)N + (c + 2)N = (2c + K + 3)N scalar unknowns. In order to solve for them, we still have the
transformed balance equations concerning the levels 0, 1, . . . , c+ K , L − 1− c, L − c, . . . , L and also Eq. (8). These
are (c+ K + 1+ c+ 2)N + 1 linear simultaneous equations in the above (2c+ K + 3)N scalar unknowns. Of these
equations only (2c+K +3)N equations (including Eq. (8)) are independent. Hence, all these unknowns can be solved
for. However, a substantial simplification of this task of finding the unknowns, leading to a substantial reduction to
the number of equations to be solved, can be achieved by following the procedures in [29] given for similar situations.

5.1. System with infinite queueing capacity

So far the analysis has been for the case of finite L . A corresponding analysis for the case of infinite queueing
capacity, when the stability condition is satisfied, yields the solution

v j =

K N∑
l=1

alψ lλ
j−c
l ( j = c + 1, c + 2, . . .). (24)
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Here, we need only the K N relevant eigenvalues-eigenvectors of Z(λ) and the K N ak’s (which exist as real or
complex conjugate pairs) are to be computed. Notice that Eq. (24) is the same as (23) when the limit L →∞ is taken.
Also notice that the computation time for this case would be much less than that for finite L .

5.2. The case of c identical servers

In this case the flexibility to accommodate given non-geometric batch size distributions in services is reduced.
However, the transformations can be simpler and the computation can be more efficient, as shown in [16].

5.3. No customer switching between servers

An efficient solution is possible for this case too, in which switching of customers from one server to another is
prohibited. Here, when j = 0 or c ≤ j < L + 1, the representation of the states of the system is just as before,
that is (i, j) (i = 1, 2, . . . , N ). However, when 1 < j < c, the operative state should represent both the modulating
phase and also the state of servers-occupation. The number of servers-occupation states is

(
c
j

)
, which is the number

of combinations of choosing j objects from c distinguishable objects. Hence, the number of operative states is N
(

c
j

)
.

Also, it is to be noted that, when j < c − 1, there is more than one server available for the arriving customer and
hence in such situations a scheduling policy has to be defined.

In this case, too, we are confident that appropriate transformations and a spectral expansion solution can be worked
out for v j ( j ≥ c + 1), and hence an exact and efficient computational solution. However, this is beyond the scope of
this paper, and remains an open problem for further research.

6. Application, numerical study and validation

In this section we present a brief performance study of wireless channels based on the application of the HetSigma
queue. The aims of this study are to demonstrate (i) that the HetSigma queue can be used effectively to model certain
situations in telecommunication systems involving several heterogeneous serving facilities, (ii) the correctness of
the algorithm by comparing the numerical results with those obtained by directly solving of all the original balance
Eqs. (6) and (7) along with the normalisation Eq. (8) (direct solution method), and (iii) the viability, applicability
and the computational efficiency of the proposed method. Note that a much more detailed study of the wireless
communication system presented below is beyond the scope of this paper, and may be pursued as an important item
for further research.

6.1. Wireless communication scenario

In wireless broadband networks (for example, IEEE 802.11 WiFi, IEEE 802.16 WiMaX), APs (Access Points) are
applied to control the channel assignment (in frequency and in time) and distribute traffic to mobile stations. APs may
apply different adaptive mechanisms such as adaptive modulation and channel coding. The wireless channel quality is
characterised by the received signal-to-noise ratio (SNR). As a result, before the transmission of the concrete physical
symbol frame, the wireless channel is assigned with a burst profile (adaptive modulation and coding1) depending on
the current received SNR.

We consider a scenario where an AP serves two wireless stations through two channels in the same frequency (that
is, TDMA, Time Division Multiple Access, is used). Each wireless station initiates one traffic session (for example,
download from servers in the Internet). Note that these two channels are shared by two wireless stations (for example,
when there are waiting packets to be transferred to one station, the AP may utilise both timesharing slots to send
packets to that station). Since the channels are in the same frequency, the fading behavior of the two channels can be
assumed to be the same.

1 Packets arriving from several flows are stored in the buffer of the AP, they are then coded and modulated before getting embedded into physical
layer symbol frames and transmitted.
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Table 1
Parameters used for the numerical study

N = 5, K = 2, c = 2

Q =


−6.12443 4.11368 1.27748 0.530042 0.203223
4.11368 −10.7775 5.10993 1.1926 0.361286
1.27748 5.10993 −11.9707 4.77038 0.812893

0.530042 1.1926 4.77038 −9.74459 3.25157
0.203223 0.361286 0.812893 3.25157 −4.62897



[σi,k ]5×2 =


215.23 286.70
215.23 286.70
215.23 286.70
215.23 286.70
215.23 286.70

, [θi,k ]5×2 =


0.59332 0.06286
0.59332 0.06286
0.59332 0.06286
0.59332 0.06286
0.59332 0.06286

, [µi,k ]5×2 =


235.78 176.79
353.68 265.18
424.41 318.22
565.88 424.28
707.36 530.36


φi,k = 0.12 (∀i, k), ρ1 = 30, ρ2 = 50, ρ3 = 10, ρ4 = 20, ρ5 = 10, δi = 0.1

6.2. Performance model

We assume that the degradations of a wireless channel can be described by Nakagami-m fading channel. That is,
the SNR follows the Nakagami distribution [35]. We use the approach in [36] to divide the range of the SNR into five
intervals and use a continuous time first-order Markov chain of five states to characterise fading channels. We model
traffic generated by two sessions as two heterogeneous CPPs (i.e., K = 2). The generated packets are independent
from the channel conditions and are to be transmitted by two channels which correspond to two heterogeneous servers
(c = 2) in our case. This model is quite appropriate considering switching from server 2 to server 1 takes place
rather very rarely, under the used load conditions, and it almost amounts to the case of “no customer-switching”. As
a consequence, the proposed queueing model based on the HetSigma queue is inherently modulated by the Markov
chain characterising the fading channels. That is, the modulating process has five states (N = 5). Based on the method
proposed in [37] the infinitesimal matrix Q can be determined.

There may be some cases when packets (being transmitted) are lost due to the Quality of Service (QoS) degradation
of the wireless channels (in such cases the wireless stations cannot reconstruct packets correctly despite the fact that it
applies the advanced coding and modulation algorithm). To account for such packet losses, one can use an appropriate
negative customer arrival stream.

The parameters of the customer CPPs and those of the GE service times, in different phases, can be easily obtained
from the traces, using the first two moments of inter-arrival times, as was done in [15]. The CPP parameters of the
negative customer stream, just required to account for the packet-losses, can also be obtained from the trace describing
the channel behaviors. Note that the parameters of the GE distribution are determined by the first two moments of
the samples from the realisation of the stochastic process described by the GE process [25,38]. The GE distribution
is, in fact, the only distribution that is of least bias [25], if only the mean and variance are reliably computed from
the samples. Since the study of the wireless system with real traces is not in the scope of the present paper, we have
chosen the numerical values of the parameters (σi,k , θi,k , ρi , δi , µi,n , φi,n) of the model, rather artificially, only in order
to demonstrate the applicability of our method to the case explained above, along with its efficacy, computational
efficiency, correctness and usefulness. Once these are demonstrated, the methodology can easily be applied to real
traces in order to get practical solutions in real case studies.

The parameter values used in the numerical study are given in Table 1. For numerical results, we have implemented
the proposed method in Mathematica (http://www.wolfram.com). The program, containing a procedure for the steady
state solution of this system by on our method (i.e., transformations + spectral expansion), has a Mathematica source
code of approximately 300 lines. The results are obtained on a Fujitsu-Siemens T4010 notebook with 1.8 GHz Intel
Centrino processor and 1 Gbyte memory.

The numerical results obtained by our approach (transformations + spectral expansion) are in excellent agreement
with those obtained by the direct solution method.

In Fig. 1 we plot several curves of the runtimes (on log-scale) versus L (the queueing capacity of the system on
log-scale). From the results one can make the following observations concerning the computational efficiency of the

http://www.wolfram.com
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Fig. 1. Comparison of runtimes.

Fig. 2. Packet loss probabilities (y-axis on the linear and log scales respectively).

proposed method:

• The time needed to calculate the eigensystem for the spectral expansion method and the time needed to solve the
resulting linear simultaneous equations for the unknowns by our method (see Section 5) are constant and do not
depend on L .
• However, we have to set up the simultaneous equations to find the unknowns. The time needed to set up the

simultaneous equations based on our method does not depend on L either.
• The runtime needed to compute the steady state probabilities and performance measures by the direct solution

method is also illustrated in the figure. For example, the runtime required by our method is 1.38 s, practically
independent of L . The runtimes by the direct solution are L-dependent, for example, 817 s for L = 100, and
1200 s for L = 200. For L > 300, the direct solution method was not able to produce results because there is
not enough memory. When L is infinite, it is impossible to get results using the direct solution method, while our
approach needs even less than 1.3 s (i.e., we need a similar amount of time as before to calculate the eigensystem
and, in fact, less time to determine the unknowns since the number of unknowns is halved).

We also present the packet loss probability, in the considered scenario, versus L , in Fig. 2. Note that the curve
can be used to determine the appropriate buffer size required in order to achieve the desired Quality of Service (QoS)
level. As expected, the loss probability is asymptotic to zero. The relationship of large buffer and very small packet
loss probability can also be observed (i.e., the curve of packet loss probability has different slopes).
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7. Conclusions

One of the research aims in the performance evaluation of telecommunication networks is to find analytically and
computationally tractable queueing models with the capability of capturing the burstiness and auto-correlations of the
traffic. In this context, the first contribution of this paper is the introduction and the exact and efficient solution for
the steady state probabilities of the MM

∑K
k=1 CPPk/GE/c/L G-queue with heterogeneous servers (the HetSigma

queue). This queue is capable of capturing the burstiness and auto-correlations of the traffic, and accommodating
large or unbounded batch-sizes while also taking into account environmentally sensitive service times. In fact, we
generalise significantly the previous works related to the arrival process (i.e., MMPP, CPP, MMCPP) and the service
time distribution (i.e., GE service times). Moreover, the inclusion of negative customers in the model provides a
flexible platform or framework for studies related to modelling packet-losses, unreliable servers and load-balancing.
Further research may involve (i) possible extensions to this model with alternate scheduling or killing disciplines to
suit different applications, (ii) further evolution of the model towards much more generalised Markovian node models
for Advanced Computing Systems (ACS) and Next Generation Networks (NGN).

Secondly, we also illustrate the application of this queue to the performance evaluation of a wireless communication
system. Numerical study is presented to illustrate the efficacy and computational efficiency of the proposed
method.
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Appendix A. Obtaining the Ql matrices

Consider any row j where c + K + 1 ≤ j ≤ L − 2− c. With Transformation 1, we get

〈 j〉(1)
←− 〈 j〉 +

K∑
l=1

(−1)l
〈 j− l〉FK ,l . (A.1)

Applying Transformation 2 to the j th row, from the above (A.1), we get

〈 j〉(2)
←− 〈 j〉(1)

+

c∑
n=1

(−1)n
〈 j+ n〉(1) Hc,n . (A.2)

Expanding the terms, Eq. (A.2) can be written as

〈 j〉(2)
←− 〈 j〉 +

K∑
l=1

(−1)l
〈 j− l〉FK ,l

+

c∑
n=1

(−1)n

[
〈 j+ n〉 +

K∑
l=1

(−1)l
〈 j− l+ n〉FK ,l

]
Hc,n . (A.3)

Applying Transformation 3 to the j th row, and substituting from the above (A.3), for 〈 j+ 1〉(2),

〈 j〉(3)
←− 〈 j〉 +

K∑
l=1

(−1)l
〈 j− l〉FK ,l

+

c∑
n=1

(−1)n

[
〈 j+ n〉 +

K∑
l=1

(−1)l
〈 j− l+ n〉FK ,l

]
Hc,n

−

[
〈 j+ 1〉 +

K∑
l=1

(−1)l
〈 j+ 1− l〉FK ,l

]
∆
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−

c∑
n=1

(−1)n

[
〈 j+ 1+ n〉 +

K∑
l=1

(−1)l
〈 j+ 1− l+ n〉FK ,l

]
Hc,n∆ (A.4)

Expanding and grouping the terms together, Eq. (A.4) can be written as

〈 j〉(3)
←−

K∑
m=−c−1

〈 j−m〉G K ,c,m (A.5)

where

G K ,c,m =
∑

l−n=m
l=−1,...,K

n=0,...,c

(−1)l+n
[FK ,l Hc,n + FK ,l+1 Hc,n∆]

=

c∑
n=0

(−1)m+2n
[FK ,m+n + FK ,m+n+1∆]Hc,n

= (−1)m
c∑

n=0

[FK ,m+n + FK ,m+n+1∆]Hc,n (m = −1− c, . . . , K ). (A.6)

The balance equations 〈 j+ c+ 1〉, . . . , 〈 j〉, . . ., 〈 j− l〉, . . ., 〈 j−K〉, respectively are given by

j+c+1∑
s=1

K∑
k=1

v j+c+1−sΘ s−1
k (E −Θk)Σk + v j+c+1

[
Q − Σ − C j+c − R

]
+

L− j−c−1∑
s=1

v j+c+1+sC j+c+1+s, j+c+1 = 0;

...
j∑

s=1

K∑
k=1

v j−sΘ s−1
k (E −Θk)Σk + v j [Q − Σ − C j − R] +

L− j∑
s=1

v j+sC j+s, j = 0;

...
j−l∑
s=1

K∑
k=1

v j−l−sΘ s−1
k (E −Θk)Σk + v j−l

[
Q − Σ − C j−l − R

]
+

L− j+l∑
s=1

v j−l+sC j−l+s, j−l = 0;

...
j−K∑
s=1

K∑
k=1

v j−K−sΘ s−1
k (E −Θk)Σk + v j−K [Q − Σ − C j−K − R] +

L− j+K∑
s=1

v j−K+sC j−K+s, j−K = 0;

Substituting or applying the above to (A.5), for the coefficients (QK−m) of v j−m in 〈 j〉(3), we get

QK−m =

m−1∑
l=−1−c

[
K∑

n=1

Θm−l−1
n (E −Θn)Σn

]
G K ,c,l + [Q − Σ − C j−m − R]G K ,c,m

+

K∑
l=m+1

[C j−m, j−l ]G K ,c,l (m = j − L , . . . ,−2,−1, 0, . . . , K , . . . , j). (A.7)

Also, for m = −1 − c, . . . , 0, . . . , K , substituting C j−m = C and C j−m, j−l = C j−l+l−m, j−l =
∑c

n=1 Mn(E −
Φn)Φl−m−1

n + R(E −∆)∆l−m−1 in (A.7), we get

QK−m =

m−1∑
l=−1−c

[
K∑

n=1

Θm−l−1
n (E −Θn)Σn

]
G K ,c,l + [Q − Σ − C − R]G K ,c,m
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Table B.1
Mathematica code to symbolically verify that the Ql (l < 0 or l > K + c + 1) are zero

This program works for any values of N , K and c (N N is used because N is a reserved keyword in Mathematica).

+

K∑
l=m+1

[
c∑

n=1

Mn(E − Φn)Φl−m−1
n + R(E −∆)∆l−m−1

]
G K ,c,l (m = −1− c, . . . , 0, . . . , K ).

(A.8)

Using the above, the required Ql ’s can be computed easily as described in the subsection below. Notice that the
above Ql ’s in Eq. (A.8) are j-independent.

The other coefficients, i.e., those of v j−K−1, v j−K−2, . . . , v0 and of v j+c+2, v j+c+3, . . ., can be shown to be zero.
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Table B.2

Mathematica code to automatically and symbolically verify that
∑k

m=−1−c Q(k)
k−m is singular

Note that is valid for any values of N , K and c.

Computation

After obtaining FK ,l ’s and Hc,n’s thus, G K ,c,m, (m = −1 − c, . . . , K ) can be computed from (A.6). Then, using
them directly in (A.8), the required Ql (l = 0, 1, . . . , K + c + 1) can be computed.

Appendix B. Automatic validation of equations

In this section we present some theorems with empirical validation, using Mathematica. Rigorous proof can be done
as in [16], but they are not presented here because of page limitation. The theorems can be symbolically validated for
any values of N , K and c by Mathematica.

Since, K , c are themselves arbitrary in this section, let the Ql ’s be designated differently to take that into account.
Let Q(k,h)

k−m (m = j − L , j − L + 1, . . . , j) be the Ql ’s of 〈 j〉(3) when only the first k customer arrival streams and the
first h servers are present and others are absent.

Theorem 1. Referring to Eq. (A.7) for the row j (c+ K + 1 ≤ j ≤ L − 2− c), for all K , Q(K ,c)
K−m = 0 ( j − L ≤ m ≤

−2− c).

Theorem 2. Referring to Eq. (A.7) for the row j (K + 1 ≤ j ≤ L − 2− c), for all K , Q(K ,c)
K−m = 0 (K + 1 ≤ m ≤ j).

The Mathematica code for the validation of Theorems 1 and 2 is illustrated in Table B.1.

Theorem 3. Referring to Eq. (A.7) for the row j (K +1 ≤ j ≤ L−2−c), for all K , Q(K ,c)
K−m (m = −1−c, 0, . . . , K )

are j-independent.

Proof. Q(K ,c)
K−m for m = −1 − c, 0, . . . , K are separately derived in (A.8). From the R.H.S. of (A.8), it is clear that

Q(K )
K−m (m = −1− c, . . . , K ) are j-independent

Theorem 4. Referring to Eq. (A.7) for the row j (K + 1 ≤ j ≤ L − 2− c), for all K , c, SK ,c =
∑K

m=−1−c Q(K ,c)
K−m is

singular.

The Mathematica code for the validation of Theorem 4 is presented in Table B.2. It can be seen that the determinant
of

∑K
m=−1−c Q(K ,c)

K−m is zero.
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