A framework for supporting the bandwidth
enforcement of reading from HDF'S

Tien Van Do', Nam H. Do!, and Binh T. Vu?

I Analysis, Design and Development of ICT systems (AddICT)
Laboratory, Budapest University of Technology and
Economics, Hungary

July 13, 2015

1 Introduction

This document introduces the implementation of the HdfsTrafficControl frame-
work, which was introduced in [1].

2 HdfsTrafficControl

2.1 Terminology

e Container: an object represented by a triple {containerlId, rate, pid},
where

— containerld: is an unique name of the given container. A valid
containerld has only ‘- and word characters ([a —zA — Z_0 —9]).
It must be started with an alphabetic character and ended with a
word character. Its length is not longer than 100,

— pid: is the id of the process spawned by the external framework
when starting the given container. This process can be the one
spawned by the container executor or its only child process. Only
processes with pid > 1 are considered,

1

— rate: is a read bandwidth limit in mbps. It is a positive float
number.

— Examples of containers: YARN containers with containerld is the
container’s name and the pid is an id of the process spawned by
the container executor. Another example is a “virtual” container
for the copyToLocal operation using HDF'S shell. In this case the
containerld is any unique name and the pid is the pid of the copy
process.

e Connection: a TCP connection identified by the port and address of
a source and destination machine.

e NMContainerConnections: a container seen by ConnectionHan-
dler. It is extended by a list of considered connections from the given
container. These connections are grouped by the destination hosts.
Note that tt is just a snapshot of connections from this container at
the collected time.

e DNContainerConnections: a container seen by TrafficController.
It is extended by a list of considered connections from the given host
to the given container. Therefore one NMContainerConnections can
consists of many DNContainerConnections.

e TrafficControlEvent: an event generated based on the retrieved con-
nection data. Possible type of events are: ADD CLASS, DEL_ CLASS,
CHANGE_CLASS, ADD_FILTER and DEL_FILTFER. One Traf-

ficControlEvent belongs to only one container.

2.2 The framework architecture

The Fig. 1 shows the design of the framework, which is introduced in [1].

2.2.1 ConnectionHandler component

Fig. 2 shows the components of ProcBasedConnectionHandler which imple-
ments the ConnectionHandler block in Fig. 1.
The components of ProcBasedConnectionHandler are following:

o
T
(]

Persistent storage (HDFS, epet, ...)

/ 3)
for

e

N
o
o
A

Collect actual Traffic Control settings
DataNode on this node

/

(2) Write Traffic Control
settings to the persistent
storage

[ConnectionHandIer} [TrafficControIIer}

(1) Observe estabilished
connections, collect (4) Set packet filters
host:port information

% Container (TCP/IP) i DataNode‘?’. ’

Node Y

Node X

Figure 1: The design of the framework.

e ConnectionCollector: Collect the TCP connections and inodes of the
processes from the /proc file system and the output of the ss program
(shipped with iproute2)

e ContainerRegister: Manage containers received from the external
frameworks through the plugins like P1, P2. One or more such plugins
can be registered, which implements the AbstractContainerService in-
terface. The external frameworks can add /remove containers or register
the PID of containers. Note that the external frameworks are respon-
sible for providing valid rates and PIDs. The containers with invalid
rate or PID will be removed by ContainerRegister. Furthermore, it also
removes a container which doesn’t report the PID within 10 minutes
after registering. One demo plugin called FileBasedContainerService is
provided in the current implementation.

e ProcBasedConnectionMonitor: Use the container data (containerld,
rate, pid) received from ContainerRegister and the collected connec-

ProcBasedConnectionHandler

ProcBasedConnection
Monitor HDFS, ZooKeeper,
etc.

ConnectionCollector

Framework 1

ContainerRegister

Framework 2

§> AbstractContainerService

<§ AbstractTCDataSubmitter

/proc, ss

Linux machine

Figure 2: The components of ProcBasedConnectionHandler

tions, inodes from ConnectionCollector to build the list of NMContain-
erConnections, collect the data to be persisted (data related to all hosts
that have changes since last submit) and pass them to the submitter.

e submitter: Pluggable component to persist data into the given back-
end storage. These plugins must implement the AbstractTCDataSub-
matter interface. ConnectionHandler keeps track of all collected connec-
tions, so it can detect the list of hosts have updates and pass them and
their connection data to the submitter. These data will be persisted to
the back-end storage by the submitter. Note that the connection data
to store for each host contains all connections to that host.

2.2.2 TrafficController component

Fig. 3 shows the components of the TrafficController, which implements the
TrafficController block in Fig. 1.

The components of TrafficController are followings:

e ConnectionCollector: Collect connections of the monitoring service
using /proc file system and the output of ss program. It is used only
in some first rounds after starting for the synchronization.

e collector: Pluggable component to retrieve data from the given back-
end storage. it must implement the AbstractTCDataCollector interface.

4

TrafficController

HDFS, ZooKeeper,

LTCEventBuilder
etc.

. 2

TrafficControlDeviceExecutor

TcClassExecutor TcFilterExecutor
T | ||
|
A4

§> AbstractTCDataCollector)
Linux

machine /proc, -

Figure 3: Traffic Controller

o
o
=1
=
o
e}
=3
o
3
)
o
o
(2]
Q
o
S

In each round it should only retrieve the connection data from those
hosts which are updated since the last collection.

LTCEventBuilder: This component use connection data reported
by the collector and ConnectionCollector to construct a list of LTC
settings to be executed and pass them to a corresponding TrafficCon-
trolDevice Executor.

TrafficControlDeviceExecutor: One or more TrafficControlDevice-
Executor may be available. Each of them is correspond with one NIC
device. This component handles all LTC settings for the given device
(adding/changing/deleting LTC classes, adding/deleting LTC filters).
It also collects and handles the old LTC settings in the setup phase.
Note that the user starting TrafficController must be able to exetue the
“tc” program as root without password.

TcClassExecutor: A sub-component of TrafficControlDevice Execu-
tor, and is responsible for executing LTC class settings using the “tc”
program. It maintains an own index system in order to reuse LTC
handles/classifiers.

TcFilterExecutor: A sub-component of TrafficControlDevice Execu-
tor, and is responsible for executing LTC filter settings using the “tc”
program. It maintains an own index system in order to reuse LTC
handles/classifiers.

2.3 Important interfaces

In this section some important interfaces are introduced.

2.3.1 AbstractService

This interface consists of 3 methods and is implemented by all services/components
of HdfsTrafficControl.

e initialize(String hostld): Post initialization before starting,
e start(): Start the service/component,

e stop(): Stop the service/component, release all occupied resources.

2.3.2 ConnectionMonitor
It is implemented by ProcBasedConnectionMonitor (see Fig. 2).
e collect(): Collect connections data to all DataNodes, where changes
are detected. The connections are grouped by the DataNodes.
2.3.3 TrafficControlDataSubmitter

It is implemented by the submitter plugins (see Fig. 4).

e submit(String dnHost, List <DNContainerConnections> connections):
Persist data (list of DNContainerConnections) related to one DataNode
into the back-end storage.

2.3.4 TrafficControlDataCollector

It is implemented by the collector plugins (see Fig. 5).

e collectData(Map<String, List<DNContainerConnections>>): Col-
lect the updated remote hosts (from the previous collection) and their
corresponding list of DNContainerConnections from the back-end stor-
age.

2.3.5 LTCEventBuilder
It is implemented by TrafficController (see Fig. 3).

e buildTCEvents(Map<String, List <DNContainerConnections>>): Con-
struct the list of LTC settings to be executed based on the list of the
updated remote hosts and their corresponding list of DNContainerCon-
nections.

2.3.6 TrafficControlExecutor
It is implemented by TrafficController (see Fig. 3).
e execute(List<TrafficControlEvent>): Execute the constructed LTC
settings on the corresponding NIC device.

2.3.7 ContainerService

This interface consists of 4 methods to provide functionalities for managing
containers.

e addMonitoringContainer(String containerld, float rateInMbps): Add
new container to monitor. The rate must be specified and cannot be
Z€ero,

e registerPid(String containerld, String pid): Register the id of the first
process spawned by the container,

e updateContainerRate(String containerld, float rateInMbps): Set
new rate for the container.

e stopMonitoringContainer(String containerld): Stop monitoring the
container with given id.

3 Collecting TCP connections

The connections between containers and DataNode are TCP connections [1],
with source or destination port is a monitoring port (with default value is
50010). In Linux, the TCP network connections can be collected by reading
/proc/net/tcp and /proc/net/tcp6 files or parsing output of some Linux utili-
ties like “netstat”, “Isof”, “ss”, etc. Note that using these tools we can obtain

7

2 important data: the TCP connections and their corresponding socket in-
odes.

It is known problem that sometimes established connections disappear
from /proc/net/tcp and /proc/net/tep6 files, hence in our implementation 2-
round capture is used (with reading from /proc in the first round, and parsing
the output of ss in the second round after small delay), and the connections
will be collected accumulatively.

It is important to note that Hadoop only works with IPv4. Therefore
we only need to take care of IPv6 in the ConnectionHandler side and it
is expected that we can always convert to IPv4 in this case. Hence first
the IP data will be retreived from the /proc/net/tcp, /proc/net/tcp6 and
the output of ss (may contain both forms of IPv4 and IPv6), and will be
converted to a valid Java InetAddress object, then the address will be ob-
tained in the IPv4 form. For example “10.10.0.116” can be represented as
::f£:10.10.0.116 (IPv4 mapped format), or ::10.10.0.116 (IPv4 compatible for-
mat) or 2002:0a0a:0074:: (6to4 format).

On TrafficController side, only the list of connections from the monitoring
port are needed for synchronizing LTC settings after the setup phase. Hence
it is enough to using the above procedure. In this case, the used ss command
is “ss -noept state established src *:50010”

On the other side, ConnectionHandler must group connections by the
containers. In order to archive this task, the list of processes of each container
is needed. First the /proc file system is walked and the tree of the processes
will be constructed by parsing the stat file of the processes to collect the
process id of their parent. Then the socket inodes of these processes can be
determined (This data can be obtained by listing the folder “fd” of the given
process in the /proc file system, only socket symlinks are considered). Based
on these data we can classify the connections of each container, if the pid of
the container is specified (Connections of the container are the connections
belong to the processes of the given container, in other word they are the
descendants of the container process and itself).

In Linux only the owner of processes can access their fd folder. In this
case we cannot rely on /proc system to retrieve data of inodes. However it
is a good news that “ss” program with sudo right can provide the process
id for each connection. Hence to deal with this problem, the user starting
ConnectionHandler must be able to execute “ss” program as root without
password in case of multiple users are supported (i.e. users starting Con-
nectionHandler are different with users executing containers). The used ss

8

command is “[sudo] ss -noept state established dst *:50010”

4 Recovery strategy

As HdfsTrafficControl can run as a standalone application, it may be failed
or restarted during the its life cycle. Furthermore, the ConnectionHandler
and TrafficController can be started separately. Hence it must be able to
synchronize the data from all available sources in the initialization phase
before starting the normal operation. The synchronization shouldn’t depend
on the results of the shutdown phase. In other word in case of the failures,
HdfsTrafficControl should be able to go back to the normal operation with
a minimal loss.

The following process is implemented in order to provide the reliable
operation of HdfsTrafficControl:

4.1 On ConnectionHandler side

In the initialization phase, HdfsTrafficControl will try to obtain the previ-
ously active containers and submit them again:

e Plugins implemented AbstractContainerService interface should be able
to recover as much as possible the active containers reported by them
and report them again (they should use own backup approaches for
this purpose as the implementation of FileBasedContainerService).

e Note that the framework does not rely on the above consumption. It
will collect the list of all previously connected hosts from the given
backup file (/tmp/connected_dn_nodes.dat). The list of actively con-
nected hosts is persisted in the end of each submit() operation.

As a result, the connections collected in the first time will be grouped
by the destination hosts and containers. Some remote destinations will have
empty list of containers, and the submitter will reset their corresponding
data on the back-end storage. This step is important as some containers may
finish during the downtime of HdfsTrafficControl and we may not be able
to detect them, and the ralated LTC settings generated by TrafficController
will remain forever.

4.2 On TrafficController side

As HdfsTrafficControl can stop suddenly due to failures, LTC settings gen-
erated previously may still exist. In order to deal with this problem:

e All LTC classes and filters are considered as generated by HdfsTraffic-
Control if the decimal value of their identifiers are at least 1000 (It is
needed in order to cooperate with other possible applications/components
using LTC). All such LTC classes and filters will be collected in the ini-
tialization phase.

e The existing LTC settings will be reseted after the first collecting data
collection from the back-end storage. The old LTC classes and filters
will be deleted and new LTC settings generated from the collected
data are applied (as sometimes it is impossible to retrieve the id of
containers from these classes and filters). Hence the effect of shutdown
is minimal as the deleting old LTC classes and filters are delayed till
the first collection. Furthermore, we can clean the invalid LTC settings
thanks to the recovery actions on the ConnectionHandler side.

e For the purpose of cleaning data, in some first rounds after the ini-
tialization, the connections are also collected for constructing LTC set-
tings (i.e: Only active connections will be taken into account in these
rounds). It is needed to deal with a situation when ConnectionHandler
of a submitter node is still shutdown and some of its containers are
already complete.

5 Inter-process communication (IPC) in Hdf-
sTrafficControl

5.1 IPC between the submitter and the collector

The data submitted by ConnectionHandler (see Fig. 2) must be passed to the
remote TrafficController (see Fig. 3). There are many methods to archive this
communication. However the application should be able to recover in case of
any errors. Therefore it is recommended to use a back-end storage to store
the submitted data and the collector should retrieve data from this storage as

10

illustrated in Fig. 1. The communication of between ConnectionHandler and
TrafficController is realized by a pluggable submitter and collector plugins.

The submitter plugins must implement the AbstractTCDataSubmitter
class as shown in Fig. 4. Two such plugins are provided in HdfsTraffic-
Control using HDFS and ZooKeeper as back-end storage. We recommend
the use of ZooKeeper back-end storage as HDFS doesn’t work well with the
rapid changes of many small files. However it is simple to use ino order to
validate the application.

ProcBasedConnectionHandler RIIEYLS<ED sinterfaces

Rt e TrafficControlDataSubmitter
— —I ¢ initialize (localNodeld : String)
start ()
stop () Q
|
1
3 |
| |
| |
| I
| |
| |
|

submit (remoteHost : String, connections: List) : boolsan

submitter

|
Abstract TCDataSubmitter
start()
stop()
AbstractTCDataSubmitter (conf : Configuration) : AbstractTCDataSubmitter

1

HdfsTCDataSubmitter

ZKTCDataSubmitter
f5: FileSystem

configRectPath: String = "* ZClient; CuraterFramewark
tcCanfighame: String tcConfighame: String
connectedDatanodes: String = new HashSet<String>() [1.%] start() e

initialize { localNodeld : String) stop () .
HelfsTCDataSubmitter { conf : Configuration) : HdfsTCDataSubmitter initialize (localNodeld : String) «..>

ZKTCDataSubmitter (conf : Configuration) : ZKTCDataSubmitter
submit (remoteHost ; String, hostConnections: List) : boolean .o

submit (remoteHost : String, hostConnections: List] : boolean

Figure 4: Simplified UML diagram of interfaces/classes for submitting data
into the back-end storages

There are two types of collector plugins: asynchronous and synchronous
version. The synchronous collectors must implement the AbstractTCData-
Collector class (see Fig. 5). In this case TrafficController will periodically
check and retrieve the update data from the storage. On the contrary, the
asynchronous collectors will notify TrafficController about the changes. They
must implement the class AbstractAsyncTCDataCollector. Note that in this
case AbstractAsyncTCDataCollector will make sure that only one data col-
lection is carried out at time and only minimal number of data collections will

11

be called. It means that if there are many notifications occurred during one
data collection, then it is enough to call one more data collection at the end
of the current one as it is requirement that the data collection must return
the data of all updated hosts since the previous collection (This requirement
is very important for the initialization of TrafficController). HdfsTrafficCon-

trol also provides the collector plugins for the HDFS and ZooKeeper back-end
storages (see Fig. 5).

ainterfaces

ainterfaces
TrafficController —~ — — — — — — — —— = AbstractService TrafficControlDataCollector
initialize (localNodeld : String] collectData ()1 Map .o
start () A
stop () T
I |
-
! dataCollector | = & !
1| tcController | |
| |
“ an | |
AbstractTCDataCollector
NodeStatusUpdaterlmpl o)
stop ()

isReady () : boolean

AbstractTCDataCollector (conf : Configuration) : AbstractTCDataCollector

‘F

HdfsTCDataCollector

AbstractAsyncTCDataCollector

tcController: AbstractTrafficController fs: FileSystem

stop() wos parser: JSONParser
notifyUpdate ()

registerCallback (callBack : AbstractTrafficController)
AbstractAsyncTCDataCollector (cont : Configuration): AbstractAsyncTCDatsCollector

initialize (nodeld : String)
isReady (): boolean«..»
collectData (): Map ..
43 HdfsTCDataCollector conf : Configuration) : HafsTCDatsCallector
ZkAsyncTCDataCollector

ZkTCDataCollector
zkClient: CuratorFramework

cache: PathChildrenCache = null zkClient: CuratorFramewark
parser: JSOMParser cache: PathChildrenCache = null
parser: JSONParser
initialize (nodeld : String) «...
isReady (] : boolean c.» initialize (nodeld : String) =.»
start() woon start() w.s
stop () = stop () e
collectData () : Map .= isReady ()¢ boolean ..»
ZkAsyncTCDataCollector (conf : Configuration) : ZkAsyncTCDataCollector collectData () : Map s..»
processsEventData (data: ChildData, isRemoved : boolean) ZKTCDataCollector (conf : Configuration) : ZKTCDataCollector

processsEventData (data : ChildData, isRemeved : boolean)

Figure 5: Simplified UML diagram of interfaces/classes for retrieving data
from the back-end storages

5.2 IPC between HdfsTrafficControl and external sched-
uler frameworks

The external frameworks can cooperate with HdfsTrafficControl through the
pluggable services as illustrated in Fig. 2. One or more such plugins can

12

be registered with ContainerRegister component. These plugins must im-
plement the AbstractContainerService as shown in Fig. 6. One such plugin
is FileBasedContainerService, which watches a dedicated folder to handling
incoming container requests. These plugins must handle the following oper-

ations:

e Register a new monitoring container with a specific id and none-zero
rate. Note that the external frameworks are responsible for determining
the limit rate. However this rate can be normalized by the plugin. The
containers with invalid rate are ignored,

e Report the pid of the first process spawned for the monitoring con-

tainer,

e Remove a monitoring container. It is optional as the ConnectionHan-
dler will remove a monitoring container if its pid is not existed anymore
or a newly registered container doesn’t have a pid within 10 minutes.

ProcBasedConnectionHandler

B
connectionHandler

4

ContainersMonitorimp!

1s
containerSeniceList

1 [
L resr

1
yamContainerRegister

einterfaces
AbstractService
********** T ¢ initialize (localNodeld : String)
start()
stop ()

AbstractContainerService

validateContainerld (containerld String) boolean
nomalize (rate - float) - float

addMonitoringContainer (containerld : String , ratelnblbps : float): boolean «..»

registerPid(containerid: String ,pid *int): boolean «..»
stopllonitoringContainer (containerld : String) «...»

deleteCachedData (containerld - String)
getUnblodifablelapOiContainers () Map «..»
AbstractContainerSenice (conf : Configuration): AbstractContainerService

UpdateContainerRate (containerld Sting ratelnhbps - float) : boolean «.»

1

YamContainerService

isClienthlode (): boolean
nomalize (rate :float) : float «..»

initialize (localNodeld: String) «.»

start() «.»

stop() «.»

YamContainerService (conf: Configuration ,isClientilode - boolean): YamContainerService
stopMonitoringContainer (con : Containerid

addMonitoringContainer (con : Containerid , ratelnhbps : float)

registerPid(containerid: Containerid, pld: String)

FileBasedContainerService
monitoringDir: Path

normalize (rate :float): float «..»

initialize (IocalNodeld String) «..»

stat() «.»

stop() «.»

init()

process () «.»

«nterfaces
ContainerService

addMonitoringContainer (containerld : String ,ratelnblbps : float): boolean

registerPid(containerid: String , pid int): boolean

stoplonitoringContainer (containerld : String)

updateContainerRate (containerld : Sting , ratelnhops :float) : boolean

B
callBack

AbstractYamContainerReporService

7 3 AbstractYamCantainerR eportSenvice (cont : Configuration) : AbstractyarContainerReportsenvice

FileBasedYamContaine rReporter
storagePath: Path

addMonitoringContainer (containerld - String ,ratelnklbps - float): boolean «..»
registerPid(containerid: String , pid it): boolean «..»
stopllonitoringContainer (containerld : String) «...»

initialize (localNodeld String) «..»

start() «..»

stop() s

FileBasedContainerSenice (cont: Configuration) : FileBasedC
apply (containerFile : Path, clsid : String)

(cont: Configuration) : FileBasedYamContainerReporter
UpdateContainerRate (containerld Sting ratelnhbps :float) : boolean «.»

Figure 6: Simplified UML diagram of interfaces/classes of container plugins

13

6 HdfsTrafficControl and Apache Hadoop Yarn
framework
Beside the standalone mode, HdfsTrafficControl can work as a component of

Yarn’s NodeManager as illustrated in Fig. 7. Originally it was implemented
as a prototype for our concept in [1].

ProcBasedConnectionHandler

ProcBasedCFannection HDFS, ZooKeeper,
Monitor etc.

ConnectionCollector .

§> AbstractContainerService
Linux

) /proc, ss <§ AbstractTCDataSubmitter
machine !

YarnContainer)
Service

<
X
o
<]
3
o
=
o
fr

ContainerRegister

M

NodeManager/ContainersMonitorlmpl

Figure 7: Connection Handler integrated into Yarn

In this mode, ProcBasedConnectionHandler is managed by the Contain-
ersMonitorImpl component of YARN NodeManager. As it is embedded in
NodeManager, the IPC between NodeManager and HdfsTrafficControl be-
comes inter-thread communication. Hence the new internal YarnContain-
erService plugin was introduced, and acts as a direct handler for Yarn con-
tainers. YarnContainerService is responsible for adding/removing Yarn con-
tainers, normalizing limit rates and reporting the pid of each monitoring
container.

When Yarn acts as an external framework, instead of registering with
ContainerRegister, YarnContainerService will try to load the report plugin
implemented Abstract YarnContainerReportService as illustrated in Figs. 8.
This plugin must be compatible one external plugin registered with Contain-
erRegister. For example, the current implementation also provides a Flile-
BasedYarnContainerReporter plugin which can cooperate with the external

14

NodeManager/ContainersMonitorimpl

{clsld, rate, pid}

YarnContainerService 2

<§ AbstractYarnContainerReportService - pIUgm

Figure 8: Yarn as a client of HdfsTrafficControl

FileBasedContainerService plugin as shown in Fig. 6.
TrafficController can be started in NodeManager as well. In this case it
will be handled by NodeStatusUpdaterImpl.

7 Application and Experimental Results

7.1 Application scope

One important aspect can be considered is the application scope of the tool.
Some possible use-cases:

e Yarn (with both modes), Mesos, Spark, etc.

e Any frameworks run on Mesos. As the “container” term here is just
an object with a triple of {id, pid, rate} so very tools can take a role of
“external frameworks” if they are able to report these data. It is very
useful in Mesos in a private/hybrid cluster as it may be enough that
the framework run on Mesos to do this task. It is easier than patching
Mesos.

e Control read bandwidth of external applications like HDF'S native shell.

7.2 Experimental Results

Fig. 9 shows the captured TCP throughput of Test DFSIO read with/without
rate control. Note that the limiting rate setting in LTC is for the IP layer.

15

The benchmark was run with one split to read one file of 10GB with 1GB
block size. The throughput was captured by the modified “nethogs” program.

Captured throughput of TestDFSIO

400 T T T — T T
no limit —
rate=80mbps ~ ---------
350 .
300 .
2 250 .
oa)
>3
2 200 .
<
[o)
> i
) E
£ 150 I .
100 _
50 f .
O 1 1 1 1 1 1
0 20 40 60 80 100 120

time (s)
Figure 9: Capture throughput of Test DFSIO

For demonstration of controlling external programs/frameworks, a small
Java program was written to scan /proc file system periodically and find the
pattern of HDFS native shell copy command (‘hdfs dfs -copyToLocal’). If the
command is detected, it reports the pid of the copy process, the predefined
rate and an unique container id to HdfsTrafficControl.

Fig. 10 depicts the captured TCP throughput with/without rate control
when one file of 10GB with 1GB block size was copied to the local disk using
‘hdfs dfs -copyToLocal’ command.

It can be seen that the HDFS read rates are controlled in both cases of
TestDFSIO and HDFS native shell copy command.

16

Captured throughput of * hdfs fs -copyToL ocal’

300

Throughput (MBps)

no limit —
rate=50mbps -

rate=80mbps -

100 150 200
time (s)

250 300

Figure 10: Capture throughput of command ’hdfs dfs -copyToLocal’

17

Appendix: Configuration settings

A script with following content can be used for starting HdfsTrafficControl
as a standalone application:

export CLASSPATH=‘yarn classpath'
java -cp $CLASSPATH PREFIX.HdfsTrafficControl

where PREFIX denote “org.apache.hadoop.yarn.server.nodemanager.trafficcontrol”.
Only TrafficControler can be started by adding the option “-onlyEzecutor”

The code and test of the implementation of HdfsTrafficControl is found
in org.apache.hadoop.yarn.server.nodemanager.trafficcontrol and underlying
packages of Yarn nodemanager sub-project.

Regarding the integration with Yarn NodeManager some other classes of
Yarn were modified in order to specify the HDFS limit rate in the request of
jobs beside ContainersMonitorImpl and NodeStatusUpdaterImpl.

The following configurations are available:

7.3 Global configurations

¢ yarn.nodemanager.hdfs-bandwidth-enforcement.port

— The monitoring port
— Default value: 50010

— Location: yarn-site.xml
¢ yarn.nodemanager.hdfs-bandwidth-enforcement.devices

— The comma separated list of NIC devices to apply TC settings
— Default value: lo

— Location: yarn-site.xml

e yarn.nodemanager.hdfs-bandwidth-enforcement.check-tc-config-
interval

— The time interval in ms for monitoring/collecting connections

— Default value: 1000

18

— Location: yarn-site.xml
yarn.nodemanager.hdfs-bandwidth-enforcement.container-plugins
— The comma separated list of custom filters for reporting external
containers. One possible plugin is PREFIX.impl.FileBasedContainerService
— Default value: empty
— Location: yarn-site.xml

yarn.nodemanager.hdfs-bandwidth-enforcement.execute-sudo-
Ss

— Whether the user run nodemanager can execute sudo ss’ without
password
— Default value: false

— Location: yarn-site.xml
yarn.nodemanager.hdfs-bandwidth-enforcement.submitter.class

— The name of submitter class for back-end storages. The pos-
sible values are PREFIX.impl. HdfsTCDataSubmitter and PRE-
FIX.impl.ZkTCDataSubmitter

— Default value: PREFIX.impl.HdfsTcDataSubmitter

— Location: yarn-site.xml
yarn.nodemanager.hdfs-bandwidth-enforcement.collector.class

— The name of collector class for back-end storages. The possi-
ble values are PREFIX.impl.HdfsTCDataCollector and PREFIX
impl.ZkTCDataCollector/Zk AsyncTCDataCollector

— Default value: PREFIX.impl.HdfsTCDataCollector

— Location: yarn-site.xml
yarn.nodemanager.hdfs-bandwidth-enforcement.zk-server.address

— The address of the ZooKeeper server, required for ZooKeeper
back-end storage

— Default value: empty

19

— Location: yarn-site.xml
¢ yarn.nodemanager.hdfs-bandwidth-enforcement.config-root.path
— The root directory to store HDFS connection data in the case of
HDFS back-end storage. It is required in case of multiple users.
— Default value: /user/user_start_yarn/hdf s—bandwidth—en forcement
— Location: yarn-site.xml
e yarn.nodemanager.hdfs-bandwidth-enforcement.container-local-
data.path
— The monitoring folder in case of PREFIX.impl.FileBasedContainerService
— Default value: /tmp/monitoring_containers

— Location: yarn-site.xml

7.4 Configurations for Yarn NodeManager

e yarn.nodemanager.hdfs-bandwidth-enforcement.enable

— Whether we can active this feature in the NodeManager.
— Default value: false

— Location: yarn-site.xml
¢ yarn.nodemanager.hdfs-bandwidth-enforcement.client_mode

— Whether it is started in the client mode as an external framework.
— Default value:false
— Location: yarn-site.xml

e yarn.nodemanager.hdfs-bandwidth-enforcement.enable-submitter-
only

— When it is not in the client mode then it indicates whether we
should start the TrafficController component in the embedded
mode.

— Default value: false

20

— Location: yarn-site.xml
yarn.nodemanager.hdfs-bandwidth-enforcement.container_report_service.class

— The plugin to be loaded to report Yarn containers to the stan-
dalone HdfsTrafficControl. One possible plugin is
PREFIX. impl.FileBased YarnContainerReporter

— Default value: empty

— Location: yarn-site.xml

yarn.nodemanager.hdfs-bandwidth-enforcement.minimum-rate-
mbps

— Minimum HDFS read rate
— Default value: 0

— Location: yarn-site.xml

yarn.nodemanager.hdfs-bandwidth-enforcement.maximum-rate-
mbps

— Maximum HDFS read rate
— Default value: 0

— Location: yarn-site.xml
mapreduce.map.bandwithlimit.mbps

— The limit rate for the map tasks
— Default value: 0

— Location: mapred-site.xml
mapreduce.reduce.bandwithlimit.mbps

— The limit rate for the reduce tasks
— Default value: 0

— Location: mapred-site.xml

21

References

[1] T. V. Do, B. T. Vu, H. N. Do, L. Farkas, C. Rotter, and T. Tarjanyi.
Building block components to control a data rate in the Apache Hadoop
compute platform. In Intelligence in Next Generation Networks (ICIN),
2015 18th International Conference on, pages 23-29, Feb 2015.

22

