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Abstract. Context-aware computing can play a major role to improve the services of mobile 
networking systems. In this paper, we focus on optimizing handover decisions in 
heterogeneous environments, where the user has a choice among different mobile networks 
and access points. In our approach, the decision is not only based on the signal quality, but 
also on the knowledge about the context of mobile devices and networks. Since context 
information and context processing evolves fast, we propose a flexible, integrated approach 
for context management, which can adapt in several ways. Our architecture encompasses 
programmable platforms and distributed context management components in network nodes 
and mobile devices, as well as a service deployment scheme for network services. This 
flexible architecture is able to actively deploy different handover services. It manages 
dynamic context information and allows mobile devices to be always connected to the most 
suitable access network. Our architecture is validated in a prototype implementation and 
performance results are discussed. 

Keywords: Context-aware handover, programmable platform, service 
deployment 

1 Introduction  

Mobile networks are more and more widespread in our daily life, so offering better support for 
wireless services becomes an important issue. Context-awareness is essential for the 
optimization of services in this heterogeneous environment in order to fulfil various user needs. 
In this paper, we focus on optimizing handover decisions in heterogeneous networks, where the 
user has a choice among different mobile networks with different capabilities. 

The concept of context-aware handover can be defined as follows: a handover procedure 
that selects a target Access Point (AP), based not only on the signal quality or explicit 
advertisements sent by the access point, but also on the knowledge of the context information 
of the Mobile Node (MN) and the networks, in order to take intelligent and better decisions. The 
level of Quality of Service (QoS) delivered to the mobile device depends on different kinds of 
context information such as the bandwidth available in the access point, modulation scheme, 
speed and direction of the MN, etc. Meanwhile, different applications require different QoS level. 
It is the combination of all these facts that makes context-aware handover necessary.  

Moreover, in future networks, scanning for access points of different radio technologies can 
be expensive (concerning computation power and battery) or even impossible for devices which 
only support one mode at a time. In this case, context-aware assistance of the network to avoid 
unnecessary search for access points can be very valuable. 

However, implementing context-aware handover poses some challenges. First, the context 
information used to decide an optimal decision point will be much more diverse in future mobile 
networks: 

• There will be more diverse radio access networks, e.g. wireless LAN, 2nd and 3rd 
generations of cellular networks, their variations and other upcoming technologies like 
ad-hoc networks. 
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• There will be many more options of network services in regard to quality of service, 
security, charging, roaming etc. 

• Applications and user preferences evolve fast and will require optimal support from 
network services. 

• Advanced location information and group mobility information (e.g., users travelling in a 
car) will be available to support the handover. 

Second, the specific context information, which is relevant to handover is distributed on several 
nodes of the network (e.g., location server, user profile database, access points) and the mobile 
node, including the user’s applications. However, they must be collected and provided to the 
right nodes for handover decision at the right time. For this, the context information should be 
provided proactively to the mobile node, i.e., before the handover takes place and when the 
mobile node has good radio connectivity.  

Third, the type of context information may change over time, and new services are emerging 
continuously. This requires algorithms that collect and process the context information to evolve 
accordingly. And finally, fragile and/or low-bandwidth wireless links constrain the exchange of 
context information. 

 This paper will examine how the specific context information, which is relevant to handover, 
can be collected, how to cope with the complexity and profusion of information available to the 
mobile node and how to cope with the changing nature of context information.  

We propose a framework to manage diverse, dynamic and distributed context information for 
supporting context-aware services. This framework is built based on flexible software 
technology, i.e., active networking [1], in order to cope with the changing nature of context 
information. It consists of two parts: a programmable platform installed on network and mobile 
nodes, which allows the flexible installation and use of software modules; and a service 
deployment framework capable of deploying different modules, each of which implements 
different context-aware handover services.  

The main contribution of this paper is a novel integrated architecture for context-aware 
handover and its evaluation. It uses two main concepts to enhance flexibility and performance. 
First, customized modules for different situations are used for efficient context exchange and 
context-aware handover decisions. Second, a service deployment framework is used to support 
the flexible update of the customized modules on the active nodes when needed. Furthermore, 
we show practical evaluation results by using a prototype that includes all the components of 
our architecture. The evaluation of the proposed architecture is based on a prototype scenario 
that considers as context information the mobile node’s location and the traffic load of access 
networks as well as the signal strength. Both the functionality and efficiency of context-aware 
handover are evaluated in the prototype.  We show that our architecture can help the mobile 
node to make an optimal handover decision in different situations. However, both the signalling 
overhead and handover latency raised by dynamic service deployment and context processing 
are not significant for handover services.  

The remainder of the paper is organized as follows. Section 2 provides an analysis of the 
requirements of flexible and active architecture for context-services. In Section 3, we describe 
the proposed context-aware handover architecture based on active networking technology. The 
functionality of the architecture is illustrated by a prototype for a selected scenario in Section 4 
and evaluated in Section 5. In Section 6, we take a look at prior work related to context-services 
and service deployment, and Section 7 concludes the paper.  

2 Requirements of Context-aware Handover Service 

Our work aims to allow mobile nodes to execute handover decisions in an optimal way 
depending on the context. This requires a mechanism to efficiently collect and manage context 
information and an appropriate platform to use that information for an optimal handover 
decision. 

Context information may be classified as static or dynamic, depending on the frequency and 
cause of changes. It can be classified also based on where such information is maintained. 
Table 1 explains our classification of context information. It is clearly just a snapshot, and mainly 
focuses on layer 3 and above. Novel kinds of context information may also appear. For 
instance, in future networks, new kinds of context information like the groups a user belongs to 
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may be relevant for handover decisions. Some pieces of information, such as the user’s profile, 
appear twice, as the information is often spread over the user’s device, the operator’s network 
and possibly over several service providers. As an example, the user’s profile may include 
subscribed services and service preferences, e.g., which services have to be downgraded or 
dropped if available resources are not sufficient. The potential next AP, nearby APs, user 
history, and user mobility can be used for location prediction and limit the options for selecting 
the next AP. It will help simplifying the selection of the best AP. The user’s settings for 
applications and the types of the ongoing applications indicate the preferable QoS level, etc. 

 

 Context Information on Mobile Devices Context Information in The Network 

Static 

User’s settings and profile 
Settings of applications 
 

User’s profile and history 
Network location (location of APs) 
Capacities and services of the network 
Charging models 
Network policies 

Static within a Cell Reachable APs Potential next AP, nearby APs 

Dynamic 

Type of ongoing application 
Requirements of applications 
Status of devices (battery, interface status, 
etc.) 

Location information and location 
prediction 
Status and load of the network  

Table 1 Classification of Context Information 

However, context information is not available immediately to the entities involved in a handover 
for several reasons. First, context information is distributed. For instance, some context 
information may be available in the user’s home network, some may be available in the network 
to be visited and some resides on the terminal. Second, dynamic context information may 
change frequently or lose accuracy over time. For instance, the MN is tempting to convey 
information about the load of the current AP, yet its relevance decreases quickly over time. 
Third, the type of relevant context information and the methods to interpret it may evolve over 
time. Hence, algorithms for interpreting context data need to be adapted to the new 
requirements.  

Therefore, we need a context management framework, which assures that the context 
information needed for handover decisions is available in time (before the handover decision 
needs to be made). Moreover, exchange of information between the network and the MNs 
should be minimized to save wireless resources. Furthermore, a context-aware handover 
requires an appropriate execution platform, which is flexible enough to adapt to the changing 
requirements of this service. It should be able to cope with dynamic context and automatically 
alter the handover decision policy or the algorithm in use. It should support continuous 
exchange of context information between the nodes involved in the handover service in an 
efficient way. It should also enable the mobility manager of the mobile node to take the right 
handover decision. 

3 An Integrated Approach for Context Management  

Our approach integrates a context management framework, a programmable platform and a 
service deployment scheme to provide the functionality needed for context-aware handover. 
The context management framework is in charge of collecting the relevant context information 
for different services and managing the context information. The programmable platform is used 
to download and install the suitable modules for context exchange and processing. The service 
deployment scheme is used to synchronize and manage the work of the involved active nodes. 

In this section, first we show the overall architecture, then introduce the context management 
framework for this architecture as well as the properties of active programmable nodes and 
service deployment mechanisms. And finally, we explain the different phases of the context-
aware handover service as it is realized in our design. 
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Fig. 1 Architecture for Context-aware Handover using Active Networking Technology 

In our architecture, as shown in Fig. 1, context information is stored in context information 
repositories, such as the Location Information Server (LIS), Network Traffic Monitor (NTM) and 
the user’s profile repository. The LIS is responsible to track the position of each mobile device in 
the provider’s network and has the knowledge of nearby APs, while the user’s profile repository 
stores user’s profiles as seen by the network service providers. The NTM is used to monitor the 
available bandwidth of different APs. These are just examples of context information 
repositories, other types of these repositories can exist, as well. Moreover, we introduce a 
Handover Manager (HM), which controls handovers carried out in some part of an access 
network. The HM is responsible for filtering and processing handover-related context 
information. At the same time, the HM acts as a Context-collection Point which collects the 
needed context information from various context repositories. Finally, a Service Deployment 
Server (SDS) is used to manage and install the service modules needed on the network nodes 
and mobile nodes. 

3.1 Context Management Framework 

Our context management framework is in charge of context collection, compilation, exchange 
and evaluation. A detailed discussion on this framework can be found in [10]. It defines the 
following main entities:  

− Context-collection Point on the network side, which collects and compiles the relevant context 
information from different sources. In our scenario, the context collection point is placed on 
the Handover Manager as shown in Fig. 1; 

− Handover Decision Point that decides which AP is to be selected for the handover. In our 
design, the Handover Decision Point is the MN, as shown in Fig. 1. Of course, it is also 
possible to place it in the network. We use the MN because:  

1. It is more scalable to have each MN maintain one Handover Decision Point by itself.  
2. In the current mobile systems, the signal strength based handover decision 

mechanism is implemented in the MN. It is beneficial to be compatible with the 
existing handover mechanism.  

3. We can easily change the existing handover decision procedure to our context-aware 
decision mechanism in the MN by extending it.   

The Handover Decision Point uses specific algorithms (e.g., rule-based logic) for interpreting 
the data delivered by the context management framework. It is the task of the service 
deployment to assure that both, the Handover Decision Point, and the Context-collection Point 
are proactively supplied with the appropriate algorithms. 

It is difficult to have a generic algorithm for making handover decisions based on any network 
topology, configuration, architecture, or type of mobile device. Even if we can build such an 
algorithm, it cannot be optimized for all the cases and might be quite complex. Therefore, we 
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use flexible, programmable platform to install different algorithms for different cases without 
interrupting the proper working of the node. These algorithms need to be changed if there are 
structural changes in the context information, e.g., when the context format, user’s profile or 
context processing algorithm change. Notice that software updates can be applied in different 
ways. For instance, update the software each time when the user’s profile changes (e.g., when 
entering a car, new software modules that consider the changed context regarding higher speed 
and different applications are installed). The context information will be exchanged when 
needed using the context exchange protocol. This way, up-to-date context information is used 
for handover decision. The detailed steps for context-aware handover are the following:  

1. Prepare the Handover Decision Point and the Context-collection Point proactively with the 
suitable context processing and exchange protocol. Besides this, the Handover Decision 
Point is updated proactively with the suitable handover decision algorithm.  

2. The Handover Decision Point requests network context relevant to the Handover Decision 
Point from the Context-collection Point with some filtering parameters (e.g., ID, types of 
needed context information, etc.). The collection of related context information can be 
realized by some simple procedure such as a server-client based communication. However, 
such procedure is not elaborated here because of space limitation. The required software 
may be taken from a library of modules for specific situations. 

3. The Context-collection Point gets the network context relevant to the Handover Decision 
Point and compiles it as far as possible (i.e., integrates some static context). 

4. The Context-collection Point sends the compiled information to the Handover Decision Point. 
The dynamic context from the network can be sent separately and be updated using the 
context exchange protocol when needed. 

5. The handover decision algorithm is parameterized with the information from the Context-
collection Point and with the static information from the mobile node.  

6. The handover decision algorithm is invoked at handover time and completed with the 
dynamic context of the terminal (e.g., reachable access points, application requests and 
sessions) before the decision is made. 

From these steps, we can see that some static context information is compiled before being 
sent out. In this way, the context information to be exchanged is minimized. Furthermore, this 
procedure ensures that the most up-to-date context information is used for handover decision.  

3.2 Active Node Platform and Service Deployment 

In this subsection, we describe the node platform for our architecture. We use active networking 
technology [1] to meet the requirements as outlined in Section 2. Since the algorithms executed 
for determining the best AP for handover are context-dependent, the network elements and the 
mobile nodes involved in this process need to be programmable. Active networking technology 
is a good candidate to fulfil this requirement. Our active node consists of the basic processing 
hardware, a node operating system and several execution environments, in which active 
applications will execute handover algorithms. The node has to support the dynamic installation 
of the handover modules at run-time, without interrupting the proper working of the node. The 
architecture and implementation that we chose for the active nodes in our prototype system is 
PromethOS [8]. PromethOS is a generic platform for running active applications in a Linux 
environment, allowing for on-demand installation of user space or kernel space modules.  

While PromethOS provides a basic active node platform, in our architecture design we also 
need a framework capable of handling the selection, installation, configuration, and 
management of the service components. The Chameleon service deployment framework [7] 
provides node level service deployment functions suitable for our prototype. We complemented 
it with a simple, centralized network level service deployment scheme, which we called 
Octopus, to provide functions to identify service participants, explore network resources and 
synchronize among Chameleon instances. In the rest of this subsection, we give a brief 
overview about our use of Chameleon and the new Octopus scheme.  
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3.2.1 Chameleon, a Node Level Service Deployment Framework 

Node level service deployment comprises selecting, downloading, installing and configuring 
implementations of service components on an active node, such that these components jointly 
provide the specified service. Chameleon uses an XML service specification – to be generated 
by the network-level service deployment scheme – and a description of the intrinsic properties 
of the active node to determine which implementations of service components need to be 
installed on the active node.  

The service specification contains general information about the service; details about 
connections (ports) to enable modular service decomposition; the additional sub-services 
required together with the connections among them; information about the service code 
together with the resource demands for code execution; as well as other service specific things. 
Fig. 2 depicts the structure of the XML document type definition used for service specifications 
in Chameleon. In this figure, XML elements are graphically represented as ellipses and their 
attributes are encircled by a hexagon. Elements surrounded by double ellipses may appear 
more than once. Dashed arrows point to optional XML elements, while solid arrows mark 
elements as mandatory. Note that here we disregard the detailed discussion of all the elements 
due to the lack of space and its reduced relevance to understanding the main idea. 

 

 
Fig. 2 XML Service Specification Graph 

Chameleon resolves the service specification (Fig. 3 shows an XML code snippet of our 
context-aware handover service) against the description of the node properties, thereby 
creating a tree-like structure representing all possible implementations of a service. Then it 
selects an implementation to install, configure and run the service based on predefined criteria. 
In our application of Chameleon, such service specifications are generated by Octopus, our 
network-level service deployment scheme. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<SERVICE_LIST xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation="C:\Chameleon\XML\chameleon.xsd"> 
<SERVICE xsi:type="IMPLEMENTATION"> 
 <DESCRIPTION xsi:servicename="HDM" xsi:option="normal">         

 <PROVIDER>DoCoMo</PROVIDER> 
  <VERSION>0.1</VERSION>  
 </DESCRIPTION> 
 <ENVIRONMENT> 
  <OS> 
   <NAME>Linux</NAME> 
   <VERSION>2.4.20</VERSION> 
  </OS> 
  <EE> 
   <NAME>PROMETHOS</NAME> 
   <VERSION>1</VERSION> 
  </EE> 
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 </ENVIRONMENT> 
 <PORTS> 
  <IN_PORT xsi:type="push_in"/> 
  <OUT_PORT xsi:type="push_out"/> 
 </PORTS> 
 <CODE_LOCATION>handover.o</CODE_LOCATION> 
</SERVICE> 
</SERVICE_LIST> 

 
Fig. 3 XML Code Snippet of the Context-aware Handover Service 

 

3.2.2 Octopus, a Network Level Service Deployment Scheme 
 
The core of Octopus is a central management entity, called Service Deployment Server (SDS), 
as illustrated in Fig 4. The SDS contains a Service Deployment Manager (SDM) module, which 
controls the network-wide signalling and all related synchronization functions needed during 
service deployment. Moreover, it contains a Service Server (SS), which stores the descriptors of 
the services available in the network and a Code Server (CS), which stores the implementations 
(code modules) of the service components. These servers are managed by the SDM, and they 
can be located anywhere in the network. 

 

Service Deployment
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Code ServerCode Server
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Fig. 4 Communications Between the Service Deployment Server and a Chameleon Instance 

Fig. 4 shows how Octopus and Chameleon communicate. Three signalling channels are used: 
(1) Service deployment signalling for requesting and/or sending the proper service specification 
to the Chameleon instance on the active node; (2) Service descriptor download signalling for 
retrieving refined service descriptions, to which the service specification (1) refers. The 
download is initiated by Chameleon after the service specification is resolved; and (3) Code 
download signalling, which is used by Chameleon to retrieve the implementation modules from 
the CS needed for service execution. This retrieval, again, is initiated by Chameleon. 
The specific operation of Octopus varies depending on where Chameleon is executed: 

− If the node is a network node such as the HM in our context-aware handover service, then 
the SDM module of the SDS establishes a connection to the Chameleon instance running on 
the node (which is just waiting for incoming connections in this case) on the signalling 
channel and requests the installation of the given service. Subsequently, the Chameleon 
instance on the HM downloads and autonomously resolves the service specification, then 
downloads and installs the component implementations. 

− If the node is a user’s node as the MN in our context-aware handover service, then this 
node’s Chameleon initiates the service deployment by requesting a list of available services 
and selecting a service from this list. Then the MN’s Chameleon downloads the requested 
service specification and proceeds as in the previous case. 

Fundamentally, there can be two kinds of service deployment: provider-initiated or user-
initiated. In the former case, the service is deployed in the network in advance, before the arrival 
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of any service user. On the contrary, in the latter case the deployment is on demand, the arrival 
of the first service user initiates the installation of the service even in the network. Chameleon 
extended with Octopus can cope with both of the policies and the active nodes can act either as 
network node or end user node by setting the right parameters of Chameleon. 

3.3 Phases of Context-aware Handover Service 

The realization of our context-aware handover service can be divided into five phases, which 
are explained in the message sequence diagrams shown in Fig. 5 and Fig. 6. Phases A-C are 
referring to the service deployment mechanism. During Phase D relevant context information is 
collected. In Phase E, the context information is evaluated and handover decisions are made.  

 

 

Fig. 5 Sequence of Signalling for Service Deployment 

The service deployment phases include: fetching the right service components; installing them 
on the appropriate network node; and confirming the successful installation of all the 
components for that service. For example, to use a context-aware handover service, we need to 
install a context exchange protocol, the Handover Support Module (HSM), and a handover 
decision mechanism, the Handover Decision Module (HDM), on the related nodes. The HDM is 
installed on the MN, and the HSM is installed on both the MN and the HM. More specifically, 
here we need to install appropriate versions of both the HSM and HDM on the programmable 
platforms of the MN and HM. This is realized by the service deployment mechanism in Phase A, 
B and C (see Fig. 5).  

We assume that the SDS will trigger the module installation in the HM using the concept of 
service broadcast, since the location and role of the HM are “fixed” comparing to the mobile 
node. On the other hand, the modules in the MN are very dependent on the terminal and the 
user. The terminal can move frequently from one network to another, or change its service. 
Therefore, it is better to have the MN initiating the module download with its requested service. 
Whenever the conditions change in the MN, new requests will be sent to the SDS for new 
services.  
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Fig. 6 Sequence of Signalling and Processing for Context-aware Handover 

The signalling used by the HDM to request the needed context information is detailed in Phase 
D. Context information needed for handover decision is requested using server-client based 
mechanism. The HDM is the client of the HM, since the HM is the client of the Context 
repositories.  After the HDM makes the decision on the target AP based on the collected context 
information, in Phase E the decision is sent to the Mobility Management Component (MMC) of 
the mobile node to execute the handover (see Fig. 6). 

The details of the message sequence diagrams are described in Section 5. 

4 Application Scenario and the Prototype Implementation 

In this section, we introduce our application scenario and the prototype implementation that 
reproduces the environment illustrated in Fig. 7. This scenario demonstrates a situation in which 
context-aware handover, based on active networking technology, improves the efficiency of a 
mobile system by always trying to choose the best AP. This figure shows a provider's network 
with three Universal Mobile Telecommunications System (UMTS) and one Wireless LAN 
(WLAN) access networks. The user is assumed to walk or travel along a trajectory leading 
through an area where all three cells intersect. Without context-awareness capability, the 
handover of the user in network UMTS1, using Mobile IP version 6 (MIPv6) [16] would be driven 
by route advertisements and is therefore difficult to control: the mobile node could register with 
any of the three networks. However, if active networking is used, the user's MN can request the 
utilization of a handover service based on context information. 

UMTS1

UMTS3

UMTS2

Walking direction

Train track

WLAN

 

Fig. 7 Context-aware Handover in a Real Situation 

To illustrate the behaviour of the proposed architecture, two types of context information are 
considered: the user’s location, speed and trajectory, which depend on how the user moves 
(walk/travel by train); and the Quality of Service (QoS) required by the application. Considering 
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the user’s context information, the handover may be made to a network that has a better 
coverage along a train track or to a network with small range, but high QoS if the user is 
walking. Another criterion could be the network traffic load, which normally would have an effect 
on the QoS perceived by the user. 

The prototype implementation of context-aware handover service is depicted in Fig. 8. In our 
prototype, one HM controls the three access networks. The prototype encompasses ten 
elements: one MN, one Home Agent (HA), two Foreign APs (FAP1 and FAP2), one HM that 
also emulates the functionality of one LIS and one NTM, one machine providing the SDS and 
Correspondent Node1 (CN), and one Traffic Generator2 (TG). All these elements, except the 
MN, have an Ethernet 100 Mb/s interface. The HA, FAP1 and FAP2 use a WLAN 802.11b 
interface with 11 Mb/s to communicate with the MN. The SDS and HM are equipped with Linux 
kernel version 2.4.20 and they use 2.4 GHz Pentium 4 processors with 256 MB DDR-SDRAM. 
The MN uses Linux kernel version 2.4.20 as well, but it is equipped with a 1.2 GHz Celeron 
processor and 128 MB SDRAM. The service deployment part is implemented in Java using 
Java Virtual Machine and Software Development Kit version 1.4.1, and the context 
management framework and the decision mechanism are implemented in C. 

 

Traffic 
Generator

Service Deployment Server
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Handover Manager
Location Information Server
Network Traffic Monitor

Wireless Interface
(802.11b)

Ethernet

Internet
Backbone
Internet

Backbone

Home Agent
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(Foreign Access

Point 2)

Mobile Node

 

Fig. 8 Prototype for Context-aware Handover 

To reduce the complexity of the prototype, the behaviours of the LIS and the NTM are emulated 
with static information located on the HM, and only one wireless interface type is used. In our 
experiments, we emulate the use of UMTS to reproduce the handover situation shown in Fig. 7. 
This is done by setting different ranges to different WLAN networks, i.e., a hypothetic UMTS 
network is set up as a WLAN network with a wider range. We also emulated overloaded 
networks, in order to incorporate the QoS requirements, by generating more traffic to specific 
networks, using the MGEN tool-set [17] installed on the TG. 

Fig. 9 shows the execution platform of the nodes used in our prototype implementation, which 
gives the execution environments of active modules. These active modules are in our case the 
HSM located on the mobile node and the handover manager, and the HDM installed on the 
mobile node, respectively. As described in section 3.2, the PromethOS platform running on 
Linux was used in our prototype.  

 

                                                           
1 The CN sends video streams in some of our experimental scenarios, see later. 
2 The TG generates traffic to introduce different load levels of the network. 
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Fig. 9 Execution Platform and Active Modules for Context-aware Handover 

In our prototype implementation, mobility management is carried out by mobile IP [9]. The 
traditional implementation of mobile IP is in charge of handover decision based on the received 
signal strength. We implemented the HDM as an extension to the traditional mobile IP, and 
replaced the old handover decision function with our advanced one. Since the traditional mobile 
IP module is implemented in the kernel space in the Linux environment, we placed the HDM in 
the kernel space as well to make the communication between the original mobile IP module and 
our module easier and more efficient. On the other hand, we placed the HSM in the user space 
to make its implementation easier. 

5 Evaluation 

In this section, we evaluate the proposed architecture. The goal of this evaluation is twofold: 
first, to exemplify the behaviour of the proposed architecture, as a proof of concept, by showing 
the feasibility of doing handovers with the support of context information. The second goal is to 
evaluate the impact that the proposed architecture has on the network, namely, the signalling 
overhead, and to understand how much time is required to deploy context-aware services and 
to collect customized handover data. The dynamic deployment of different type of handover 
services will introduce additional overhead (i.e., code transmission, signalling for service 
deployment, etc.) and latency (i.e., code retrieving, code installation, signal exchange, etc.). We 
need to prove that it does not significantly affect the usage of context-aware handover services. 
Moreover, the context exchange and processing bring additional traffic and handover latency in 
the network. These side-effects should be also minimized.  

5.1 Functionality of the Implementation 

Four test scenarios are used in the prototype to show the benefits of context-aware handover as 
depicted in Table 2. Scenario 1 is based on standard Mobile IP version 6 (MIPv6) [16] handover 
and it is used as a benchmark to evaluate the efficiency of our context-aware handover 
scenarios. The remaining three scenarios aim at showing the advantages of using context 
information and active networking to choose the right AP, while the hypothetical user travels on 
a train. Scenario 2 uses a service based on the user’s location-context (LoA handover). 
Scenario 3 also considers the user’s location-context, but in this case the user is receiving a 
streamed video sent by the CN. In the fourth scenario, the user is also receiving a streamed 
video, but in addition to the user’s location-context we also consider the QoS requirements of 
this application (LoA+QoS handover). In each scenario, a context-specific HSM and HDM, able 
to process information about the user’s location-context and/or QoS-context, are downloaded, 
installed and used by the HM and MN, respectively.  
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 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Types of 
Handover 

Standard 
mobile IP 

Location 
aware (LoA) 

handover 

Location 
aware (LoA) 

handover 

Location + QoS 
aware 

(LoA+QoS) 
handover 

Demo 
Service    Video 

stream Video stream 

Table 2 The Four Test Scenarios Used in the Prototype 

In the experiments, the MN starts from the home network, which is placed out of range of FAP1 
and FAP2. This allows the execution of handover to be triggered by a low signal to noise value, 
when the MN moves away from the HA. To map the context-aware service scenarios to the real 
situation illustrated in Fig. 7 the home network in our prototype corresponds to UMTS1, FAP1 to 
UMTS3, and FAP2 to UMTS2. For scenario three and four, FAP1 is first unloaded and then is 
heavily loaded. In any scenario, the home network and FAP2 are always unloaded.  

Concerning the behaviour of the proposed architecture, scenarios 1 and 2 show that MNs 
have higher control over their handovers with context information, by avoiding the random 
handover behaviour of standard MIPv63. In scenario 1, the MN registers with the FAP from 
which it gets the first route advertisement. Therefore, the experiment result is not repeatable 
under the same experiment environment. The MN sometimes registers to FAP1 and sometimes 
registers to FAP2.  However, in scenario 2, the MN always registers with FAP1, independently 
of the order of router advertisements received from any FAP. This corresponds to the 
assumption that the MN is on a train, which means that the MN is moving fast, and FAP1 
(UMTS3) has a better coverage along the train track than FAP2 (UMTS2).  

The comparison between scenario 1 and 2 proves that handovers are more efficient when 
context information is also considered. The results of the experiments done with scenario 3 and 
4 demonstrate the importance of using the right active modules in the presence of different 
context information. In these scenarios, the MN first decides to handover4 to FAP1 according to 
the context. After FAP1 becoming heavily loaded, MN stays with FAP1 in scenario 3, while it 
handovers to FAP2 in scenario 4. In scenario 3, the MN registers with FAP1 at second 70, since 
this is the network with wider coverage near the train track. This ends up in the deterioration of 
the perceived video quality, since FAP1 is loaded afterwards and the used context-aware 
service modules do not consider the load of networks, as shown in Fig. 10. In scenario 3, the 
video remains with low quality, since the MN is only aware of the user’s location, which does not 
change. In scenario 4, the MN also registers with FAP1 as in scenario 3, because FAP1 and 
FAP2 are both unloaded in the beginning. The handover decision only depends on the location 
context. After FAP1 is loaded at second 90, the MN with location-context plus QoS-context 
modules can react properly to significant changes in the load of networks. So we can see the 
resume of video throughput after a short decrease, because MN handovers to FAP2 after it 
receives the updated network load5. 

                                                           
3  By random, we mean that with MIPv6 an MN handovers to the network that corresponds to the first route 

advertisement received after the MN detects that the current AP is no longer bi-directionally reachable. 
4 Handover happens because the signal strength in the home network decreases below a pre-defined threshold. 
5 The duration of decreased video throughput depends on the frequency the HM is configured to check the load of the 

networks. 
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Fig. 10 Throughput of the Video Stream on Scenarios 3 and 4 

5.2 Evaluation of Efficiency 

We also analyze the efficiency of the proposed architecture to evaluate the impact that it has on 
the network. The evaluation focuses on analyzing the trade-offs between flexibility and 
additional processing. The processing here consists of two parts: pre-processing (service 
deployment – Phase A, B, C) and runtime processing (context collection and usage – Phase D, 
E). The evaluation consists of the communication overhead (bandwidth consumption) and 
latency (time introduced during service deployment). All the time measurement values are 
averaged over more than 50 repeated runs. 

 

Module Code Size (bytes) Signalling Overhead 
(bytes) 

HM MN HM MN 
 

HSM HSM HDM 

LoA Handover 18650 19297 11652 

LoA+QoS 
Handover 17924 20286 14459 

799 697 

Table 3 Service Deployment Overhead – Size Measurement Results 

Comparing the size of data exchanged during the signalling to deploy the service and the size 
of customized modules downloaded to run the service, it can be observed, as Table 3 also 
shows, that most of the bandwidth consumption comes from the module downloads. In our 
prototype, the downloaded code size is around 18 Kbytes for HM and 32 Kbytes for MN, 
respectively. These values are similar for both LoA and LoA+QoS handovers. The module code 
sizes seem big for the small functionality, but the modules integrate additional functions. 
Specifically, they are executable files implemented in C, which include the library to retrieve 
signal strength from the wireless LAN card, the Linux device driver library to exchange the 
information between kernel and user space, as well as some libraries needed by standard 
MIPv66. Using other execution environments and programming languages, e.g. Java, may result 
in smaller code size. Meanwhile, data exchange for service deployment in the network can be 
omitted. This is because: 

 
1. Service module installation in the network is rare, e.g., only once during the initiation of 

the network and once per year when the service is updated. 

                                                           
6 Our code is implemented as an extension to the standardized MIPv6. 
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2. The network can use wired connections to deploy the services, which is very cheap 
compared to using wireless links. 

 
In regard to service deployment on the mobile node, the amount of data exchange and 

frequency of service deployment should be minimized. However, we assume the frequency of 
service deployment on the MN is much less (e.g., every half a year for service update from the 
service provider, once every two months when the user registers for a new service) than the 
frequency of handover (e.g, once per hour). 

The time to deploy a new service can be very different based on the service, the handling of 
the service descriptors and service modules, and the role of the node. To deploy a service the 
node’s Chameleon instance has to complete the following tasks: (1) connect to the SDM to 
select a service; (2) connect to the SS to download the service descriptor; (3) connect to the CS 
to download the required code modules to the selected service (using local repositories or 
caching can accelerate the latter two procedures). The installation of the downloaded code 
modules requires some time depending on the used execution environments, as well. 
Furthermore, the role of the node can also influence the required installation time, for instance, 
a mobile node with poor network connection requiring manual intervention to select the service 
can substantially increase the deployment time. In our evaluation, we measured: (1) the time to 
fetch the module codes from the code server for both LoA handover and LoA+QoS handover 
services; (2) the time to install the modules on the MN and HM; (3) the time of the additional 
signalling steps during the deployment of these services. 
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Fig. 11  Average Service Deployment Overhead of Both LoA Handover and LoA+QoS Handover Services 
on the HM and the MN (ms) 

The measurements of the time to deploy LoA handover and LoA + QoS handover gave similar 
results which are depicted on Fig. 11. We can see that the biggest part of the service 
deployment overhead is the additional signalling time, and this value is almost doubled in case 
of MN. The difference can be derived from the divergent behaviours of the wired and wireless 
connections and the various amount of signalling exchange required to download different 
number of modules. The code fetching time for both MN and HM is around 15 % of the whole 
overhead. This value is closely related to the size of the code and the available bandwidth. Fig. 
11 also indicates that the module installation time is a very small portion of the service 
deployment overhead. On the other hand, this installation time is smaller in case of HM than in 
case of MN. The reason is that the HM has to install only one module, the HSM, in the user 
space of Linux, while the MN has to additionally install one more module, the HDM, into the 
Linux kernel space. Our measurements show that the time to install the module in the kernel 
space is around 50 % longer than installing the module in the user space. The total time for 
service deployment is around 1 s for HM and 2 s for MN. This relatively long latency can be 
explained by the complex signalling exchange between the SDS and Chameleon, as shown in 
Fig. 4, and the selected programming language to implement the service deployment 
framework, which was Java in our prototype. However, this service deployment delay is not so 
critical, because services can either be deployed proactively or the older version of the service 
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can be kept on using before the new one is deployed. The realization of such a “soft switching” 
from one service module to another one will be one topic of our further investigations.    
     

Time (µsec) 

 Time to Collect  
Context from the 

Network 

Time to Send the 
Network Update 

Processing Time for 
Handover Decision 

Standard Mobile IPv6   46 

LoA Handover 36816   74 

LoA+QoS Handover 39693  1358 78 

Table 4 Processing Overhead 

In the phase of context collection and context usage (Phase D and E as indicated in Fig. 6), the 
following steps are involved: 
 
1. MN inquires the context info from the HM/Context-collection Point by supplying the HM with 

the user context, such as “Video, in Train” and “Audio, not in Train”. The inquiry comes from 
the HDM on the MN (D.1) and is passed to the HSM on the HM by the HSM on the MN (D.2). 

2. The HM/Context-collection Point processes the incoming query and decides which type of 
information needs to be collected (D.3). Afterwards, the context collection requests are sent 
out to the context repositories (LIS and NTM in our prototype) (D.4). In case of LoA handover, 
only the IP address and location preference of different APs need to be collected. While in 
case of LoA+QoS handover, the available bandwidth on different APs needs to be collected, 
as well.  

3. The LIS or the NTM prepares the needed context information in step D.5, and answers back 
to the HM/Context-collection Point in step D.6. 

4. The HM/Context-collection Point compiles the received context information into a context 
table (D.7) and sends it back to the HSM running on the MN (D.8).   

5. The HDM on the MN receives the context table in step D.9 and makes an optimal handover 
decision accordingly in step E.1. 

6. The optimal handover decision is sent to the Mobility Management Component in step E.2.  
7. The MN handovers to the selected AP, if it is different than the current AP. 

Especially, in case of LoA+QoS handover, the updated context table is sent to the MN when 
changes of available bandwidth on different APs are detected.  

Concerning these two phases, we measured the time to fetch context from the network 
(Phase D) as well as the time to use, process the context and make handover decision 
accordingly (Phase E). The time to fetch the context refers to the round-trip time from the MN 
inquires the context from the network by sending the context of the MN (e.g., “Audio, in Train”, 
“Video, not in Train”), until the moment when the MN gets the context table from the network. 
Our measurements show that it takes around 37 to 40 ms from the moment the HDM on the MN 
requests handover information until the moment it gets it. This time includes round-trip time 
between the MN and HM and the time to collect relevant context information from various 
context sources. However, the context exchange over the wireless link only needs about 1.3 ms 
in one way in our tests. Therefore, the process of relevant context collection from the network is 
the bottleneck of latency caused by context-awareness in our evaluation. There are some trade-
offs between the efficiency of context collection and context transport. If we want to minimize 
the context exchange over the wireless link, we have to collect only the relevant context and do 
some pre-processing. This type of pre-processing is time consuming. On the other hand, pre-
processed context will simplify the handover process. Vice-versa, less context pre-processing 
induces higher efforts for context exchange and handover process. However, these 
measurements also depend on different context-aware handover algorithms. Considering that 
we pro-actively collect context information and that the time required retrieving it is very small, 
the probability that handovers need to be done without context information, i.e., using only the 
MIPv6 functionality, is very low. Meanwhile, our context exchange protocol described in Section 
3.1 ensures that the context information to be exchanged is minimized. Sometimes only the 
context updates need to be retrieved from the network. In case, when there is no context 
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change, context exchange can be even skipped. Moreover, the pro-active characteristics of the 
proposed architecture ensures that the time required to perform a MIPv6 handover is not 
increased. 

The processing time for handover decision is 46 µs for standard MIPv6, 74 µs for LoA and 78 
µs for LoA+QoS, as shown in Table 4. The increase of the handover processing time is mainly 
caused by the context exchange from the user space to kernel space. The reason is that, in our 
prototype, context information is collected in the user space of the MN, and used in the kernel 
space. However, this overhead can be leveraged by better module structure in the future.  

We also conducted an analysis about the communication overhead involved in collecting 
context information. Here we discuss the worst case overhead for one AP when network load 
update occurs frequently. The length of the packet sent by the MN to request context 
information is 64 bytes: 60 bytes of TCP/IPv6 headers and four bytes to indicate the current 
user’s context. As a reply, the HM sends the MN information about each access network. With 
LoA modules, such information occupies 20 bytes per access network: 16 bytes for the IPv6 
address of the AP and four bytes indicating the priority of the network. With LoA+QoS modules, 
4 bytes corresponding to the load of the network are added to the information sent to the MN. 
While in case of network load update, the location preference does not need to be sent again, 
this decreases 4 bytes from the updating context. Considering a scenario with 10 nearby APs, 
where the user is requesting LoA+QoS modules and the Maximum Transfer Unit (MTU) is 1500 
bytes, then the context information is of 0.29 KB. Considering a worst-case situation where the 
load of any AP changes every 1 s, and the HM is configured to check the load of the networks 
also every 1 s, the control information overhead is of 2.4 Kb/s for one MN. Suppose 50 MNs7 
are using LoA+QoS handover service simultaneously in the area of one AP, and all of them get 
the network update in the same time. The bandwidth overhead for context exchange is around 
1.1 % of a WLAN link (11 Mb/s) and 6 % of an UMTS link (2 Mb/s). As we can see from above, 
most of the overhead is not introduced by context information itself but by the TCP/IP headers. 
There can be possibilities to save the communication overhead, e.g., by header compression. 
Furthermore, security mechanisms can introduce additional overhead on the bandwidth. For 
instance, the message from the network should be authenticated before being used by the MN. 
In the same time, the integration check should be performed in both sides for the received 
information, as well. To simplify the implementation, we did not consider security issues in our 
prototype.  

From the evaluation above, we can see that the deployment of context-aware handover can 
be done proactively with little overhead. The update of the modules is easy and fast. Context-
aware handover only introduces very minor bandwidth overhead and latency. We have however 
seen that the communication needed with the service deployment infrastructure is considerable 
and must be considered for system design. 

6 Related Work  

In the following, we survey prior work in related areas. First, we consider other work on 
handover optimization and context management. Then we discuss other approaches regarding 
service deployment. 

In [12][13], sophisticated handover procedures have been considered. However, the 
parameters, which have been used for the handover decision, are confined to the type of the 
radio access technology plus the signal strength. In [14], different handover policies for 
heterogeneous networks are used, considering as handover parameters mainly the air-interface 
type and the available bandwidth at the access router.  However, the management of dynamic 
and diverse context information and programmable decision mechanisms are not discussed. 
There are several approaches aiming at a more programmable handover in heterogeneous 
access network (e.g., [15]). Yet none of them implements a fully programmable and context 
aware handover system. In the same time, many studies have analysed context-aware 
applications. Examples of such studies are the Xerox Parc’s project that distributes information 
about the user’s location to different applications based on the user’s profile [18], [19]; the HP’s 
cooltown project, which adds Web context to the environment by allowing mobile users to 

                                                           
7 This is the maximum number of users which one AP can support in WLAN, UMTS, GSM, supposing all these users 

are mostly idle and using the minimum data rate. 
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receive Universal Resource Locators (URLs) sent by ubiquitous beacons [20]; and the 
Microsoft’s Easyliving focusing on a smart space that is aware of the user’s presence and 
adjusts settings to suit its needs [21]. However, none of these studies analyses how context-
awareness can improve the performance of network services. 

In the area of active service deployment several proposals have been made, but often these 
are restricted to the needs of a specific platform (e.g., the Active Networks Daemon [2] of 
ABone [3]). Other proposals have the potential to be used as a generic service deployment 
scheme such as ASCP [4], ASDP [5], pattern based service deployment [6], or Chameleon [7]. 
In our work, we selected Chameleon as the node level service deployment tool because it fits 
best with our design. Chameleon uses XML for describing services. The concept of capturing 
the blueprint of a network service in a formal description stems from the work on the Genesis 
Kernel at Columbia University [22], and XML was proposed first as a scripting language for 
describing network service composition information in [23]. Besides using XML descriptions 
Chameleon provides an automatic way to parse, check the XML documents and build a 
dependency tree for the service modules. However, Chameleon doesn’t deal with the network 
level deployment functions. Thus, we complemented Chameleon with a simple, centralized 
network level service deployment scheme called Octopus. Octopus provides functions to 
identify service participants, explore and allocate network resources and synchronize among 
Chameleon instances. 

7 Conclusions  

This paper describes an architecture that aims at optimizing mobile network services based on 
context information. We have shown that intelligent handover decisions are important in future, 
heterogeneous mobile networks with different capabilities. The proposed architecture is able to 
gather information from different network elements and to use this information on mobile nodes 
for local context-awareness and better handover decisions. This architecture allows for a 
flexible use of different protocols to exchange different types of context information, as well as a 
flexible use of different context-aware decision algorithms on mobile nodes. Our solution 
ensures that the correct context information is available at the right place at the right time, and 
handles diverse, dynamic and distributed context information.  

Our solution integrates three main parts: first, we use a programmable platform installed on 
network nodes and mobile nodes. Second, we combine this platform with a framework capable 
of performing network-wide and node-local deployment of various context-aware services. 
Third, we use an efficient and flexible context management to handle diverse, dynamic and 
distributed context information. 

The programmable platform and the service deployment framework are not specific to the 
context-aware handover service rather they are more generic and can be used in case of other 
network services. The deployment framework is scalable in two dimensions, concerning the 
number of services and the size of network (number of involved nodes in a service).  

The evaluation of the proposed architecture, based on a prototype, has shown the feasibility 
and utility of this approach. Specifically, we showed that context-awareness increased the 
efficiency of handovers. In our experiments, we gathered valuable experience to deploy 
services over wireless links. The evaluation results showed that the service deployment was 
fast in the network and relatively slow over the wireless link depending on the link status. But 
this phase is needed only when the context processing or exchange formats change and then 
the modules have to be updated. Furthermore, services can be deployed proactively in the 
networks. Hence, the deployment is less time critical with respect to handover. Compared to 
service deployment, context exchange and processing occur much more often. However, only 
the information of nearby access points needs to be exchanged in order to support context-
aware handover. This introduces only a minor bandwidth overhead. The procedures to 
exchange, process context information and make an optimal decision are very fast. The 
bottleneck exists in the context collection. Therefore, in order to realize efficient context-aware 
handover, it is very important to collect the related context information proactively.  
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