

I. INTRODUCTION AND MOTIVATION

For nearly seven years Web traffic has been a majority of
traffic on the Internet. Virtually all implementations of
HTTP use TCP as the transport layer. During the evolution
of the HTTP/1.1 version of the protocol, several of the
performance problems related to the Web were traced to
HTTP’s reliance on TCP. TCP was optimized for long
transfers but most Web responses consists of an average of
8 Kilobytes that fit in a handful of packets. The setting up
and tearing down cost of TCP could dominate the overall
cost of a HTTP transfer. Rather than requiring a separate
TCP connection for each of the resources requested by a
browser, persistent connections were introduced in
HTTP/1.1 to reduce overhead and latency and this has been
borne out by studies (e.g., [1]).

Given the variety of TCP variants in use (NewReno, Reno,
Tahoe, etc.), it is a natural question to examine which
specific aspects of TCP affect Web performance and if
certain variants help provide better Web performance. By
Web performance, we mean the end-to-end latency
experienced by Web clients and the impact on the Web
server in handling the requests.

There are four phases to our work:

1. We first provide a taxonomy of what impacts Web
performance from the viewpoint of TCP and HTTP.
Towards this end, we identify the key TCP as well as
HTTP parameters that need to be studied.

2. We then create an experimental methodology to study
the various key facets identified above.

3. An ns based simulation that uses a reasonable workload
to examine precisely how the various parameters
actually affect Web transfers is carried out.

4. A live measurement on typical downloading of Web
traffic is then carried out using a modified user-level
TCP stack in conjunction with an actual Web server to
ensure coverage not often available via simulation.

Ideally, our goal is to tell a Web proxy or a server that
given their traffic mix, how performance would vary if their
TCP stack or the parameter choices varied.

The rest of the paper is divided as follows: We examine the
set of TCP and HTTP parameters, as well as the interaction
between the two layers in Section II. Section III describes

 1ETH Zürich, {farkas, huang}@tik.ee.ethz.ch; 2AT&T Labs-Research,
{bala, yzhang}@research.att.com; 3ACIRI, padhye@aciri.org

the simulation environment, the software used as well as the
results of the simulation carried out. Next, Section IV
describes the live experiment carried out. Section V
summarizes the different results in the simulation and the
live experiment, and we conclude with a look at the work
that remains to be done.

II. TCP AND HTTP PARAMETERS THAT INFLUENCE WEB
PERFORMANCE

In this section we sketch the design space of the pertinent
TCP and HTTP parameters that affect Web performance.

We start with the TCP-only parameters, then examine the
HTTP-specific parameters, and finally examine how the
two layers interact. The design space guides the simulation
and the live experiments.

A. TCP Parameters that Influence Web Performance
Several variants of the basic TCP algorithm have been
developed. Each variant contains several parameters. Here,
we enumerate various TCP parameters that influence the
performance of a Web connection.

TCP variants: There are several variants of the basic TCP
congestion control algorithm. In this paper we consider
three main variants: Tahoe [2], Reno [2] and NewReno [2].
Many TCP stacks also offer the use of Selective
Acknowledgment (SACK) option, which helps to speed up
a Web transfer. We examined the impact of SACK as well.

Maximum segment size: The maximum segment size
(MSS) of a TCP connection is the maximum amount of data
the server may send in a TCP packet. With larger MSS,
there is less per-packet overhead of administrative
information. However, the average value of congestion
window of the sender will decrease, given a larger MSS.
This increases the probability that packet losses will lead to
timeout, thereby reducing the throughput of the TCP
connection.

Delayed Acknowledgment: When a TCP receiver uses
delayed acknowledgment, it usually sends one
acknowledgment for every two data packets it receives.
This strategy reduces the number of packets sent into the
network. However, this also slows down the rate of growth
of the congestion window of the sender and reduces the
sender throughput.

Initial Retransmission Timeout: A TCP sender maintains
an estimate of the round trip time (RTT) to the receiver.
This estimate is used to set the retransmission timer. A
smaller value is better for the throughput of the connection,

Impact of TCP Variants on HTTP Performance
K. Farkas1, P. Huang1, B. Krishnamurthy2, Y. Zhang2, J. Padhye3

but may inject some extra packets in the network. A high
RTO implies that lost packets will not be detected quickly.

Timer granularity: TCP uses an internal timer to calculate
RTT and RTO. The granularity of the timer determines the
accuracy with which RTT and RTO are calculated, and may
affect the throughput of a TCP (and thus HTTP)
connection.

Initial congestion window size: The initial congestion
window (ICW) size of a TCP sender is the amount of data
the sender is allowed to send at the beginning of the
connection. A large ICW can reduce the user-perceived
latency. On the other hand, large ICW results in more
bursty network traffic, resulting in increased loss and delay.

Receiver buffer sizes: The amount of data a TCP
connection may have outstanding in the network is limited
by the receiver’s advertised window size, which is the
amount of buffer the receiver has allotted for this TCP
connection.

Timestamp: Use of timestamps may increase the accuracy
of RTO calculations and so we examined the overall role
played by the timestamp option on Web performance.

B. HTTP Parameters that Influence Web Performance
Web performance consists of three key issues: user
perceived latency, server load, and network load.
Accordingly, we enumerated the various HTTP parameters,
sorted them in decreasing order of their contribution to Web
performance and selected those that were likely to interact
with the transport layer.

We thus focus on connection management. In connection
management we consider parallel connections, persistent
connections, and pipelining. In the earlier versions of the
HTTP protocol, a separate TCP connection was required to
download each resource. Even before the introduction of
persistent connections it was common for Web browsers to
establish multiple parallel connections to the server and
fetch the images in parallel.

A HTTP persistent connection allows the already
established connection to stay open beyond a single
request-response exchange. Persistent connections reduce
the need for multiple TCP connections to be set up and torn
down, avoiding the high overhead for the typically short
Web transfers. If multiple requests were sent on the same
persistent connection without waiting for individual
responses from the server, latency could be further reduced.
Such pipelining avoids the roundtrip delay of waiting for
each of the response before sending additional requests.

Overall, these connection management schemes can
improve Web performance by reducing page download
time, avoiding connection setup time, and avoiding request
time. They can also have negative impact when interacting
with TCP. Next we discuss how the connection
management schemes interact with TCP and where negative
and additional positive impact can arise from the
interactions.

C. TCP and HTTP Interaction
HTTP and TCP interact in a number of ways. We focus our
attention on the critical parameters of TCP and HTTP.

Network condition: Depending on the network condition,
the use of parallel connections, persistent connections with
or without pipelining, could result in the underlying TCP
experiencing a different degree or distribution of packet
drops. Since the different TCP variants (Reno, NewReno,
and SACK, etc.) react differently to packet drops, the
overall Web performance could vary.

Persistent Connections: The use of persistent connections
avoids establishing TCP connections for each Web resource
downloaded. Its effect is likely depending on the initial
RTO and timer granularity.

Parallel Connections: The use of parallel connections and
persistent connections (with or without pipelining) could
result in a larger aggregated window size. In case of packet
drops, the aggregated transfer could experience a more
aggressive backoff. This effect is expected to differ with the
initial window size and drop handling variant.

TCP Implementations: HTTP connection management
schemes enable more and longer TCP connections
outstanding at the same time at the Web server. More
memory and computation resources could thus be taken up
and for longer durations, with effect varying depending on
the implementation and the TCP variant.

The HTTP and TCP parameters discussed above could
interact with each other. However, it is not clear which
parameters are more dominant and to what degree. To
obtain a more rigorous understanding of the interaction
between HTTP and TCP, we systematically study the
impact of these parameters on a number of Web
performance metrics such as time for first response, page
download, and embedded object download, and server load.
We seek to identify the parameters or combinations of
parameters that matter the most and provide guidelines for a
cost-efficient tuning of the Web interaction.

III. SIMULATION EXPERIMENTS

A. Simulation software
We use the ns-2 (Network Simulator version 2) [3] for our
simulations. This discrete event simulator provides a rich
library of modules including the different flavors of TCP
and HTTP we investigate in this study. We made some
changes in the simulator’s code to fit it to our requirements,
thus we extended the workload generation part to include
the exact hybrid Web object size model in SURGE [4].

B. Simulation scenario
We use a simple dumbbell topology for our simulations.
Two clouds of Web client and server nodes are on the edge
of the topology. They are connected through a bottleneck
link in the center. The edge links are configured to
reasonably emulate the effective delay and bandwidth from

an end host to the backbone. The center link is configured
to emulate the effective delay and bandwidth across the
Internet backbone.

For comparison, we create one Web session between a
Client and a Server nodes, vary the TCP and HTTP
parameter values, and observe the performance changes.
For Web session we use a combination of Pareto-based [5]
and SURGE-based model for realistic inter-request time,
number of embedded objects, and size of embedded object
distributions.

To capture the effect of Web sessions interacting and
interfering with each other, we generate a number of
sessions in both directions. To incur different levels of
traffic load or loss rate, we increase or decrease the amount
of the cross traffic. Varying amounts of cross traffic drive
loss rate into three different levels, approximately 0.1%
(low-loss), 1% (medium-loss), and 3% (high-loss). We
repeat the simulations with different random seeds to make
sure that the loss rate remains in a reasonable range.

C. Parameter space
In Section II we discussed TCP and HTTP parameters of
interest. For TCP parameters, we base our choice of the
most common values and the realistic ranges from [6]. For
HTTP parameters, we take those reported in [1]. For ease of
comparison, we further define the base case being the one
with the most commonly used parameter values (TCP
variant: NewReno; MSS: 536 Byte; Delayed ACK: on;
RTO: 3s; Timer granularity: 100ms; Initial Window Size: 2;
Timestamp Option: on; HTTP connection style: serial-
HTTP/1.1 (persistent); Nr. of parallel connections: 2).

D. Performance metrics
We examine four metrics: time for page download, first
response, and object download, and server load. Page
download time is difference between the time of issuing of
a page request and the end of the page download. Object
download time is the time difference between the request of
an object and the end of the object download. First response
time is defined as time between issuing of a page request
and receiving of the index page header. By server load we
mean the number of outstanding TCP connections on a
server indicating the level of resources a server needs to
allocate to keep these outstanding connections.

E. Results
We completed 30-mintue long simulations for all possible
combinations. Each combination was repeated 10 times
with different seeds. For the sake of simplicity, we compare
cases of only one varying TCP parameter and fix other
parameters to their base values. Additionally, we examine
all possible combinations of HTTP parameters with TCP
parameters set to the base values.

Page download time: Increasing maximum segment size
clearly has positive impact while turning off delayed ACKs
tends to have positive impact. We do not observe a clear

trend of TCP variants improving or degrading Web
performance. TCP SACK tends to be worst flavor in the
high-loss case. Turning off persistency tends to have
negative impact. Adding parallel connections helps in the
low- and medium-loss cases.

First response time: Increasing segment size tends to have
negative impact, but the effect is relatively smaller
compared to the effect of disabling persistency. Other TCP
parameters have very little influence on the first response
time. Turning off persistent connections has clear negative
impact. Pipelining does not improve the first response time.
Increasing number of parallel connections does not reduce
the first response time either.

Object download time: Increasing segment size has
positive influence. Other TCP parameters do not have
significant impact. Turning on pipelining however degrades
overall object download time. Varying number of parallel
connections has almost no effect on the object download
time.

Server load: TCP parameters either do not have significant
impact or do not have clear positive or negative impact.
Turning on pipelining, turning off persistency, and reducing
the number of parallel connections have clear positive
impact.

IV. LIVE EXPERIMENT

Basically we have used extensive simulations to investigate
the impact of various TCP flavors and control parameters
on the performance of HTTP. To validate our simulation
results we ran live measurements, as well.

A. Measurement Software
A key requirement of the measurement software is to be
able to easily switch among different TCP flavors and to
modify a range of TCP and HTTP options and parameters
without any human intervention. Unfortunately, TCP is
implemented as part of the kernel network stack in most
modern operating systems. To bypass this problem we used
a user-level network library called Alpine [7] in conjunction
with a real Web server and a HTTP client.

The Alpine User-Level Networking Stack: Alpine is a
user-level library that supports an unmodified FreeBSD
networking stack on top of UNIX and can be configured
directly at the user-level without having to recompile or
reboot the kernel.

HTTP Client Software: We use httperf [8] as the
basic engine for making all retrievals in our study. The
httperf software is attractive because it allows a set of
objects to be retrieved from a Web server using the variety
of HTTP/1.0 and HTTP/1.1 protocol options of interest to
our study.

HTTP Server Software: Our choice of the server software
is limited by Alpine’s inability to support fork(), which
excludes popular servers like Apache from our candidate
list. Thus, we used the boa [9] Web server in our study.

B. Test Environment
To avoid sending too much measurement traffic into the
Internet, we decided to first explore the entire parameter
space in a local environment. Our next goal is to use wide-
area measurements to validate the major findings of our
simulations and the local experiments. For the local
environment we used dummynet [10] to simulate a range
of delays and packet drops.

C. Experimental Results
For a given HTTP connection option and loss category we
examined what combination of parameters are good from a
performance viewpoint.

The best TCP flavor is Tahoe if the amount of data to be
sent is limited and when the congestion window cannot
grow too large. On the other end, SACK works well only
when a large amount of data is to be sent on a connection.
In the presence of loss and small congestion window,
unnecessary retransmission can actually help since the flow
of data and ACKs is maintained. However, since SACK
generally attempts to lower unnecessary retransmissions,
we found that it tended to perform not as well as other
flavors in the scenarios we tested. Improving MSS provided
the best performance. A good value for initial window size
is 4 in most cases. Turning off delayed ACKs is clearly an
improvement. The RTO and timer granularity parameter
values are generally of less consequence. The timestamp
option is generally useful.

V. ANALYSIS AND CONCLUSION

A. Impact of TCP Parameters
The results regarding impact of TCP parameters on
performance of Web servers are generally in line with our
expectations. We found that increasing MSS, and turning
off delayed ACK result in better overall performance. Other
TCP parameters do not have any significant impact on the
performance. One interesting, if not unexpected, result was
that the particular variant of TCP (i.e., Reno, NewReno,
etc.) in use does not have much impact on the overall
performance of the Web server. This is a surprising result.
It is indeed known that Tahoe offers performance benefits
over Reno in some cases [11]. Similarly, use of selective
acknowledgment (SACK) option did little to improve
performance. Since we are only talking about average
performance, it is still possible that under a specific loss
pattern, individual HTTP transfers may see performance
benefits from using options like SACK.

B. Impact of HTTP Parameters
We examined different connection methodologies in both
HTTP/1.0 and HTTP/1.1. We examined the use of 1 or
more serial HTTP/1.0 connections, serial HTTP/1.1
connections, as well as pipelining requests over the
persistent connections. We ratified the fact that pipelining
over persistent connections offers the best performance and

serial HTTP/1.0 offers the worst performance. The fact that
serial HTTP/1.0 is the worst and burst HTTP/1.1 is the best
is not entirely novel [1] but it is still useful to verify the full
ordering via simulation and live experiments.

C. Combined Impact of TCP and HTTP Parameters
The overall impact of TCP is much smaller than HTTP and
thus improving the HTTP connection mechanisms can
provide better Web performance. However, there are
several subtle interactions between TCP and HTTP as we
have seen in our experiments. Under high loss rate, for
flows of short or medium durations created by serial
HTTP/1.1 connections, trying to save a few unnecessary
retransmissions can worsen the performance. For short
transfers, all variants of TCP under high loss behave
similarly. But for larger transfers, SACK may prove to be
more useful. With serial HTTP/1.1, we see some
application-limited thin and long flows. Here,
“unnecessary” retransmissions turn out to be beneficial,
making Tahoe often to be the best performer, and SACK
not so well.

Summarizing our investigations we can say that some of
our results confirm the common settings in modern Web
servers while others indicate that closer attention needs to
be paid to some parameters. Tuning HTTP parameters has
much more impact than tuning TCP parameters. Our further
goals are to validate the major findings of our simulations
and the local experiments in a wide area and to see if
examination of other parameters or combinations might be
warranted.

VI. REFERENCES

[1] B. Krishnamurthy, C. E. Wills, “Analyzing Factors that influence
end-to-end Web performance”, In Proc. World Wide Web
Conference, pages 17–32, May 2000.

[2] K. Fall, S. Floyd, “Simulation-based Comparisons of Tahoe,
Reno, and SACK TCP”, Computer Communication Review, 26(3),
Jul. 1996.

[3] L. Breslau et al., “Advances in Network Simulation”, IEEE
Computer, May 2000.

[4] P. Barford, M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation”, In
Proc. ACM SIGMETRICS, June 1998.

[5] A. Feldmann, A. C. Gilbert, P. Huang, W.Willinger, “Dynamics
of IP traffic: A study of the role of variability and the impact of
control”, In Proceedings of the ACM SIGCOMM, Cambridge, MA,
August 1999.

[6] J. Padhye, S. Floyd, “On Inferring TCP Behavior”, In Proc. ACM
SIGCOMM ’2001, Aug. 2001.

[7] D. Ely, S. Savage, D. Wetheral, “Alpine: A User-Level
Infrastructure for Network Protocol Development”, In Proc. USITS
’01, Mar. 2001.

[8] D. Mosberger, T. Jin, “httperf - A Tool for Measuring Web
Server Performance”, In Workshop on Internet Server Performance,
June 1998.

[9] L. Doolittle, J. Nelson, “The BOA Web server”, available at
http://www.boa.org/

[10] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of
Network Protocols”, Computer Communication Review, 27(2), Feb.
1997.

[11] A. Kumar, “Comparative Performance Analysis of Versions of
TCP in local network with a lossy link”, IEEE/ACM Transactions on
Networking, 6(4), Aug 1998.

