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Abstract. Let n and k be integers such that n ≥ 2 and 1 ≤ k ≤ n. In
this paper, we consider the problem of finding an ordered list of the k
best players out of n participants by organizing a tournament of rounds
of pairwise matches (comparisons). Assuming that (i) in each match there
is a winner (no ties) (ii) the relative strength of the players is constant
throughout the tournament and (iii) the players’ strengths are transitive,
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1 Introduction

Sorting, that is ranking of objects using pairwise comparisons, is a common
practical problem with application in different fields. Many authors describe
different applications, e.g., Landau [51] biological, Hakimi [33] chemical, Kim
et al. [46] and Newman et al. [57] network modelling, Bozóki, Csató, Fülöp,
Kéri, Poesz, Rónyai and Temesi economical [6, 13, 14, 18, 19, 45], Liljeros et al.
human relation modelling [52], while Csató, Iványi, Lucz, Móri, Pirzada, Reid,
and Sótér [18, 30, 37, 38, 39, 41, 40, 43, 44, 62, 64, 65, 69] sport applications.

Partial sorting is a relaxed variant of the sorting problem in which the
task is to return a list of the k largest (or k smallest) elements in order. A
common practical example of partial sorting is computing the “Top 100” of
some list. Martinez [56] has optimized the Quicksort algorithm for partial
sorting. After unsuccessful attempts by Schreier [67] and Slupecki [68], in
1964 Kislitsyn [49] determined the number of necessary comparisons for k = 2.
Aigner [1] has proposed a general solution for k = 3 but this has been improved
by Eusterbrock [24] and Kirkpatrick [47, 48] and upper bounds have been
established and proven for the required number of comparisons for k = 3 by
Hadian and Sodel [32] and Kirkpatrick [48].

Related problems are unordered partial sorting that is choosing the k largest
elements in any order and selection which is choosing the kth largest element
of a given list. The selection problem has been extensively studied. There
are many results on the lower and upper bounds of the number of necessary
comparisons [10, 47, 71], near-optimal algorithms such as Ford-Johnson [28]
and its improvements [7, 15, 53, 54, 55], and brute-force results [59, 60]. Finding
both the largest and smallest elements at the same time has also been studied
extensively [2, 3, 63, 70]. Of particular importance is the selection of the median
element, for example in order to apply it as a pivot strategy for Quicksort.
[22, 66, 21, 66]. The minimal and average number of necessary comparisons
have been examined for median selection [32, 72, 20]. Knuth [50] remains an
excellent survey of these problems and results.

With the advent of parallel computing devices, a natural direction for re-
search is the parallelisation of sorting algorithms. Following the treatment of
Pippenger [61], there are two different modes of parallelism for these problems:
the case of a number of parallel comparisons equal to the number of elements
which is called balanced case; and the case of a number of parallel comparisons
large enough to allow the solution to be found in a fixed number of rounds:
asking a fixed number of questions in the first round, processing the informa-
tion then repeating this for a fixed number of rounds. This is called the highly
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parallel case. For sorting n elements, it has long been known that, in the non-
parallel case, Θ(n logn) steps are needed. This implies that Θ(logn) steps are
needed in the balanced case, but Ajtai et al [4] showed that O(logn) steps
are sufficient. For the highly parallel case, Haggkvist and Hell [34] showed

that Ω(n1+
1
k ) comparisons are needed to sort in k rounds which Alon et al

[5] improved to a tighter bound. Bollobás and Thomason [11] showed that

O(n
3
2
logn) comparisons are sufficient to sort in 2 rounds which was improved

by Alon et al. [5] and generalized by Bollobás and Hell [12] to O(n1+
1
k
logn)

comparisons for k rounds.
In this paper, we study the problem of partially sorting n distinct elements,

in order to find the top k, in rounds, where only one pairwise comparison of
each element to another is allowed in each round. We will call this a restricted
round and is similar to sport tournaments where in each round, each team or
individual can only play against one opposing team or individual. If we use
the analogy of sports, we need to make the following three assumptions:

(i) in each match there is a winner (no ties)

(ii) the relative strengths of the players is constant throughout the tourna-
ment and

(iii) the players’ strengths are transitive (i.e., if A beats B and B beats C
then A beats C)

The task then is to come up with an optimal pairing algorithm which guar-
antees that the top k players can be found in a fixed number of rounds. Aziz et
al. [8] study the related problem of determining possible and necessary winners
for partially completed tournaments, Beasley et al. [9] also consider different
ways of extending partial tournaments.

The structure of the paper is as follows: In section 2, formal definitions and
notation are introduced, whilst in section 3 we review existing algorithms and
present some related problems. In section 4, we propose some new algorithms
and present some results, whilst in section 5 we draw conclusions and present
directions for future research.

2 Definitions and notation

Throughout the paper, we will use the terminology of sports: the compared
objects are called players, the comparisons matches and the comparisons in
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each round the pairing of round i and corresponding ordering the results of
round i. Let n ≥ 2 be an integer denoting the total number of players and
1 ≤ k ≤ n the desired number of top players the pairing algorithm should find.
In each match, the winner gets 1 point and the loser 0, so the set of permitted
results is R = {0 : 1, 1 : 0}. At the beginning of a tournament, each player is
assigned an index which is an integer label i ∈ {1, . . . , n}, while the rank of
a player is the position of the player in the final ordering once the required
comparisons have been made, which is equivalent to the value of the integer
if we consider the equivalent problem of sorting integers {1, . . . , n} by pairwise
comparisons.

A natural tool for the representation of the results of tournaments with
n players is a directed graph G on n vertices (T1, . . . , Tn) or an n × n
sized point matrix M, where if player i gets x ∈ {0, 1} points against player
j then G contains x edges directed from Ti to Tj and Mij = x. As such,
the results of tournaments can be represented by loopless directed graphs.
Let Π = {Π1, . . . , Πn!} be the set of n! possible permutations of the n players
and RA (n, k,Πi) denote the minimum required number of rounds needed for
a given deterministic pairing algorithm A to rank the top k players out of
n, under permutation Πi. Our task is to find the algorithm with the least
number of required rounds in the worst case, over all player permutations and
the necessary number of rounds and games, i.e.,

R(n, k) := min
A∈A

max
i
RA(n, k,Πi) , (1)

where A is the class of all deterministic pairing algorithms which perform
pairwise comparisons in rounds, pairing each player at most once in each
round.

3 Existing algorithms and related problems

The two most commonly used tournament formats in sport tournaments are
round-robin (all-play-all) and knock-out (elimination). Round-robin tourna-
ments provide an upper bound for determining the full ordering, i.e., R(n, 1) ≤
R(n, 2) ≤ . . . ≤ R(n,n) ≤ n − 1. Knock-out tournaments are efficient in de-
termining the strongest player and illustrate the result that R(n, 1) = dlog2 ne
[50]. Observing that the second best player must have been knocked out
by the winner directly in one of the log2 n rounds yields the result that
R(n, 2) = dlog2 ne + dlog2dlog2 nee. R(n, 3) was first investigated by Carroll
[16] who argued against the knock-out system for giving out multiple prizes
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and proposed a novel algorithm to find the top three in a lawn tournament of
32 players.

A pairing algorithm which is widely used for chess tournaments with many
participants (e.g., Chess Olympiad, large Open tournaments) is the Swiss pair-
ing system (see [25, 26, 27]). This was first used in 1903 in the Swiss national
tournament [58] although there are claims [35] that it was used in Zurich as
early as in 1895. It was first formalized as an algorithm and programmed by
Olafsson [58]. By construction, the Swiss pairing system has three main goals:

(i) Minimize the difference in the score of players paired against each other.

(ii) Each player should play against a new opponent in each round (unless
a “bye” is requested in advance).

(iii) The same player cannot have the same colour (black or white) in three
successive rounds (i.e., alternate the playing colour of each player as
much as possible).

There are many variations to the original algorithm (e.g., FIDE Dubov,
FIDE Dutch, FIDE Lim, FIDE Burstein, Amalfi etc. [29]) to address various
shortcomings, for example the inability of the algorithm to determine the top
k ≥ 2 players and the lack of clear and widely accepted tie-breaking system for
players with the same score at the end of the tournament [19, 36]. Despite this
problem, to this day, the Swiss pairing system is used to give out significant
monetary prizes in Open tournaments worldwide and determine the official
Chess Olympiad results and medals.

Although there is a heuristic rule of thumb proposed in [35] for the required

number of rounds to reliably determine the top k players out of n: R = (n+7k)
5 ,

in 1972 Haág and Meleghegyi [31] argued in the context of a failed Hungarian
National chess tournament that this is not fool-proof due to the negative
incentives placed on players and the possibility of draws in chess.

Because the Swiss pairing system has different goals than the algorithm
we seek, it is clear that it will not be optimal as is. However, it provides a
very useful starting point and raises a number of questions which any pairing
algorithm should address, such as how to pair players in the first round, or
more generally large groups of players with the same score (score group)?
How to move a player from a score group with odd number of participants to
another (floaters)? In what order should score groups be paired?

Before we present and analyze concrete pairing algorithms, we would like to
point out some related/modified pairing problems which could be analyzed. In
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our current formalism, we allow up to bn2 c matches in each restricted round.
However, we could impose further restrictions to allow only a maximum of
m ≤ bn2 c matches per round up to the serial case of m = 1. A different
generalization of the problem is if a single match does not just order 2 players,
but up to j of them (e.g., a horse race or swimming competition). Another
complexity we may introduce to the model is that of draws in a single match
which will result in the possibility of ties in the final ordering of objects.
Finally, we may introduce the restrictions (ii) or (iii) from the Swiss system
pairing objectives above which would make the formulation more complex,
but the resulting algorithm practically more viable.

4 Newly proposed algorithms and results

4.1 Definitions and preliminary observations

At the beginning of the tournament, we assume to have no information about
the relative strengths of the players, so any of them could be among the top
k, thus they are all active. If the rank of a player is definitively determined,
the player becomes inactive. Below, we restate some results from [42] which
we will use in the construction of the proposed algorithms.

Lemma 1 If a player has played all matches and has l losses then his rank is
l+ 1 for any l ∈ {0, 1, . . . , n− 1}.

Lemma 2 If a player has w wins at any point in the tournament then his
rank is at most n−w.

Lemma 3 (Carroll [16]) If a player has k losses at any point in the tourna-
ment then his rank is at least k+ 1 and will not be among the top k players.

4.2 Combined algorithm and enhancements

Based on the above results, Iványi [42] proposes an algorithm which works
on the principle of the Swiss pairing algorithm (i.e., in each round it pairs
players with the same or similar scores who have not yet played) and with the
following two enhancements:

(i) Transitivity rule: At the completion of each round, once the results
have been recorded in score matrix M, all of the additional results which
can be deduced using the transitivity assumption are recorded.
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(ii) Deletion rule: If the rank of a player is unambiguously determined
then we delete the player and all their results from the score matrix and
make them inactive.

Further enhancements can be made to the Combined algorithm by clarify-
ing the following set of algorithm attributes:

1. Ordering of score groups. When preparing the pairings for the next
round, we may begin from the top score group and move the odd player of
a score group down to a lower score group (float down). Alternatively, we
may start from the bottom score group and float up. In formally defining
the Swiss pairing algorithm, Olafsson [58] argues for a bi-directional score
group order: in the top half of the tournament, the odd player floats
down, in the bottom half, they float up and conflicts are iteratively
resolved around the middle.

2. Ordering within a score group. When determining the “standings”
within a score group, for players of the same score, we may decide to
simply apply the original indexing of players. (In chess tournaments this
is usually based on the ELO rating of the players [23] and represents a
pre-conceived strength order). Alternatively, the Buchholz score (sum of
the scores of previous opponents) or other tie-breaking score [36] may
be computed to determine an ordering within a score group.

3. Group pairing. Hollosi and Pahle [35] enlist four different ways in
which 2m players with a given ordering within a score group may be
paired: Fold pairing (1 vs. 2m, 2 vs. 2m − 1, . . . ,m vs. m + 1), Slide
pairing (1 vs. m+ 1, 2 vs. m+ 2, . . . ,m vs. 2m), Adjacent pairing (1 vs.
2, 3 vs. 4, . . . , 2m − 1 vs. 2m) or random. In particular, this method is
used to determine the first round pairings for the tournament. For Swiss
system chess tournaments, Slide pairing is usually applied.

4. Handling of unpaired players. A strict requirement of the Swiss pair-
ing system is that all players must be paired in each round against a new
opponent (unless a “bye” has been requested). However, in an optimal
partial sorting algorithm this is not a necessary condition. Indeed, when
players are deleted, they are omitted from further rounds. There may be
pairing situations where active players must remain unpaired, otherwise
existing pairings and paired score groups are disrupted. An attribute of
any pairing algorithm is how it handles such situations, it may leave
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players unpaired or maximize the number of paired players within a
score group or combine a score group with another score group in order
to maximize the number of paired players [58].

4.3 Top-Down pairing algorithm

Starting from the Combined algorithm of Iványi [42] and considering the
algorithm attributes of the previous section, we propose the following Top-
Down pairing algorithm. At the beginning of each round, players are sorted
as follows:

(i) In increasing order by the number of losses.

(ii) If the number of losses is equal then in decreasing order by their total
score.

(iii) If the total score is also equal then in decreasing order by their Buchholz
score.

(iv) If all of the above are equal then in increasing order by the initial index.

Once players are sorted, we iterate in a top-down fashion, scanning down
the list, trying to find an opponent for the highest ranked unpaired player. If
an opponent cannot be found for a player, we leave them unpaired and move
to the next unpaired player on the list. At the end of each round, we record
the results in the score matrix, fill in the results implied by the transitive rule,
update the Buchholz scores and determine if any player can be made inactive
and possibly added to the top k players. The formal pseudocode for Top-
Down, recorded in the conventions described in Cormen et al. [17] is given
below.

Input. n: the total number of players; k: the number of top players to rank;
V = [V1, V2, . . . , Vn]: the relative strengths of players, a permutation of the
numbers 1 to n.

Output. r: the required number of rounds;m: the required number of matches,
res = [res1, . . . .resk]: ordered list of the index of the top k elements in V.

Work variables. i, j: cycle variables; c: counter for res; M: match matrix,
augmented with 7 helping metrics for each player
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Top-Down(n, k, V)

01 c = 1 // lines 01–02: initialization of working variables
02 m = 0
03 for i = 1 to n // lines 03–12: initialization of M
04 for j = 1 to n
05 Mi,j =null
06 Mi,n+1 = 0 // total score for player i
07 Mi,n+2 = 0 //number of losses for player i
08 Mi,n+3 = 0 // Buchholz score for player i
09 Mi,n+4 = 0 // flag for having been paired this round for player i
10 Mi,n+5 = 1 // active flag for player i
11 Mi,n+6 = V [i] // rank for player i
12 Mi,n+7 = i // original index for player i
13 for r = 1 to n− 1 // maximum of n− 1 rounds to be paired
14 for i = 1 to n− 1
15 if (Mi,n+4 == 0 and Mi,n+5 == 1) //active and not yet paired
16 for j = i+ 1 to n
17 if (Mj,n+4 == 0 and Mj,n+5 == 1 and Mi,j == null)
18 m = m+ 1
19 Mj,n+4 = 1
20 M =RecordResult(i, j,M)
21 break
22 M =UpdateTrans(M) // lines 22-38 tasks at the end of each round
23 M =UpdateBuchholz(M)
24 for i = 1 to n
25 Mi,n+4 = 0 // reset paired flag
26 M =SortMatrix(M) // sort by losses, total score, Buchholz
27 for i = 1 to n− 1 // lines 27-35 deactivate right players
28 if Mi,n+5 == 1
29 if Mi,n+2 < Mi+1,n+2

30 res[c] =Mi,n+7

31 Mi,n+5 = 0
32 c = c+ 1
33 if k == c− 1
34 return r,m, res
35 else break
36 if c == n // special case for last player
37 res[c] =Mn,n+7

38 return r,m, res
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Note that helper functions RecordResult, UpdateTrans, UpdateBuchhlz and
SortMatrix are used in Top-Down, but their pseudocode are not listed here
for the sake of brevity. They are constructed in a straightforward way as
explained at the beginning of this section.
Top-Down is simple in that it does not consider score groups separately

and thus it avoids the problem of floating the odd player in a score group.
It is also intuitive, in that it aims to pair the strongest players against the
strongest available opponent in a greedy fashion. In order to demonstrate how
the algorithm works, we will present a simple example for n = 4. Using the
notation of [42], let Pi,j denote the player with index i and rank j. We will
consdier the following permutation of four players: π1 = {P1,1, P2,4, P3,2, P4,3} =
{1, 4, 2, 3} and assume we are interested in finding the full ordering, so k = 4.

The basic principle of Top-Down is that once the players are sorted (be-
fore the first round, this is done by index), the top player is paired with the
highest available opponent, so P1,1 is paired against P2,4 and the remaining
two players are paired against each other. Once the results are recorded, the
stylized match matrix including relevant tournament result columns and with
the round number in the index of the result is shown in Table 1.

Player P1,1 P2,4 P3,2 P4,3 Score Losses Buchholz Active

P1,1 X 11 1 0 0 1

P2,4 01 X 0 1 0 1

P3,2 X 11 1 0 0 1

P4,3 01 X 0 1 0 1

Table 1: Stylized match matrix M after the first round.

Since there are no transitive results to record, the players are then sorted in
increasing order of losses, keeping the index order between tied players, yield-
ing the ordering P1,1, P3,2, P2,4, P4,3. Since sorting by total score and Buchholz
does not modify this order, the second round top-down pairing will be per-
formed on this ordering. P1,1 is now paired against P3,2 and P2,4 is paired
against P4,3. Table 2 shows the stylized match matrix with pre-round sorting,
after the second round results are recorded, but before the application of the
transitivity rule.

Applying the transitivity rule, the results of the matches P1,1 vs. P4,3 and
P3,2 vs. P2,4 can be deduced and the newly sorted result matrix is shown in
Table 3 with results obtained by the transitivity rule shown in bold.
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Player P1,1 P3,2 P2,4 P4,3 Score Losses Buchholz Active

P1,1 X 12 11 2 0 1 1

P3,2 02 X 11 1 1 1 1

P2,4 01 X 02 0 2 0 1

P4,3 01 12 X 1 1 0 1

Table 2: Stylized match matrix M after the second round.

Player P1,1 P3,2 P2,4 P4,3 Score Losses Buchholz Active

P1,1 X 12 11 12 3 0 3 1

P3,2 02 X 12 11 2 1 1 1

P4,3 02 01 X 12 1 2 0 1

P2,4 01 02 02 X 0 3 0 1

Table 3: Stylized match matrix M after two full rounds and the transitivity
rule applied.

Applying the de-activation rules of the algorithm, we can see that the full
ordering has been determined in 2 rounds. Working through the same algo-
rithm for the other 23 permutations, we observe that in one third of the cases,
Top-Down finds the full ranking in 2 rounds, while in two thirds of the cases,
3 rounds are necessary, yielding an average of 2.66667 rounds to be necesesary.
Some more results associated with the Top-Down algorithm for small values
of n and k are presented in Table 4.

It is trivial that the cases n = k and n = k− 1 are equivalent, so the former
is not even shown in the table. However, further examining the table of results,
we observe that there is no difference, on average, between finding the top 2
or 3 amongst 4 players and similarly the top 6 or 7 amongst 8 players. This
implies that finding the 2nd best player automatically implies the 3rd best
out of 4 and similarly, the same round that determines the 6th best always
determines the 7th best out of 8 players. Why these are true, but the same
relationship does not hold for n = 6 and k = 4 and 5 can be the subject of
future research.

Conjecture 4 The Top-Down algorithm is optimal amongst deterministic
algorithms in terms of the worst case number of rounds required, that is

R(n, k) = max
i

Top-Down(n, k,Πi) , (2)

where R(n, k) is as defined in equation (1).
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n k min max average

2 1 1 1 2/2 = 1

4 1 2 2 48/24 = 2

4 2 2 3 64/24 = 2.66667

4 3 2 3 64/24 = 2.66667

6 1 2 3 2040/720 = 2.83333

6 2 2 4 2552/720 = 3.54444

6 3 2 5 2808/720 = 3.9

6 4 2 5 2960/720 = 4.11111

6 5 2 5 2992/720 = 4.15556

8 1 3 3 120960/40320 = 3

8 2 3 5 160128/40320 = 3.97143

8 3 3 6 183296/40320 = 4.54603

8 4 3 6 192512/40320 = 4.77460

8 5 3 6 200576/40320 = 4.97460

8 6 3 6 206464/40320 = 5.12063

8 7 3 6 206464/40320 = 5.12063

Table 4: Minimal, maximal and average number of rounds required for Top-
Down for small values of n and k.

Note that we do not conjecture optimality for the number of matches, as Top-
Down pairs all the players it can in each round even though in the last round
this may not be necessary for the determination of the k best players.

4.4 Exhaustive pairing algorithm

In this subsection, we will assume that n is even and consider all possible,
unique pairings of n elements. In the case that n is odd, we can make it even
by adding a dummy element which is smaller than all other elements. Now,
consider all possible pairings for the first round. After any pairing in the first
round, there will be exactly n

2 winners and n
2 losers. We could then consider

all possible pairings for the second round and evaluate the standings after
applying the transitive and deletion rules. We could continue this in a brute-
force exhaustive way and for a given input permutation of elements, find the
best possible pairing which determines the top k elements most quickly.
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For the trivial case of n = 2, a single round with the one possible pairing
completes the full ranking. The following result gives a constructive solution
to the exhaustive approach for all even n ≥ 4.

Theorem 5 For any even n ≥ 4 there exists a pairing which, utilizing the
transitivity rule, determines the full ordering of n players in exactly 2 rounds.

Proof. Let Pi be the index of the player with rank i for all i ∈ {1, . . . , n}.
We first observe that the match between Pi and Pi+1 must be played for all
i, 1 ≤ i ≤ k − 1 because these results cannot be deduced by transitivity.
Therefore, at least k − 1 matches will be necessary to determine the top k
players, or n − 1 matches in the case k = n. Since at most n

2 matches can be
played in one round, at least 2 rounds are needed to construct full ordering.

Now, consider the following pairing which shows that this lower bound is
tight:
Round 1: {P1 − P2, P3 − P4, . . . , Pn−1 − Pn}. The player listed first wins each
match.
Round 2: {P2−P3, P4−P5, . . . , Pn−2−Pn−1}. The player listed first again wins
each match.
Applying the transitivity rule, we can reconstruct the full ordering and deter-
mine the top k players {P1, . . . , Pk} for any k. �

The above result demonstrates that pairing players with different scores
can be efficient, if the player with the lower score wins. This observation could
inspire randomly introducing such pairings into the algorithm, which would
lead to stochastic pairing algorithms, but this is beyond the scope of this
paper.

5 Conclusions and directions for future research

In this paper, we introduced the problem of partial sorting in restricted rounds,
where in each round, each element can only be compared with at most one
other element. We examined various algorithms for minimizing the number
of rounds required to select the top k elements and made a conjecture about
Top-Down being optimal among the class of deterministic algorithms. Fur-
ther computer simulations and comparison against various benchmarks and
ultimately proving this conjecture mathematically is a fertile area of future
research.

We also considered exhaustively finding the best possible pairing among all
possible pairings and proved that for any n and any permutation, there exists



30 A. Iványi, N. Fogarasi

a pairing which determines the top k elements in just 2 rounds for any k. This
approach shows that pairing players with the same score is not necessarily
optimal and points towards considering stochastic pairing algorithms. Sadly,
professor Iványi could not complete this, his last project, so this paper is
dedicated to his memory.
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and Ervin Haág for useful consultations and discussions.

References

[1] M. Aigner, Selecting the top three elements, Discrete Appl. Math., 4 (1982) 242–
262. ⇒18

[2] M. Aigner, The double selection problem, Discrete Math., 73 (1989) 3–12. ⇒18
[3] M. Aigner, Finding the maximum and minimum, Discrete Appl. Math., 97 (1997)

1–12. ⇒18
[4] M. Ajtai, J. Komlos, E. Szemeredi, Sorting in O(logn) steps, Combinatorica, 3,

1 (1983) 1–19. ⇒19
[5] N. Alon, Y. Azar, U. Vishkin, Tight complexity bounds for parallel comparison

sorting, IEEE Symp. Found. Comp. Sci., 27 (1986) 502–510. ⇒19
[6] M. Anholcer, V. Babiy, S. Bozóki, W. W. Koczkodaj, A simplified implementation

of the least squares solution for pairwise comparisons matrices. CEJOR Cent. Eur.
J. Oper. Res. 19, 4 (2011) 439–444. ⇒18

[7] M. Ayala-Rincón, B. T. de Abreu, J. de Sequira, A variant of the Ford-Johnson
algorithm that is more space efficient. Inf. Proc. Letters, 102, 5 (2007) 201–207.⇒18

[8] H. Aziz, M. Brill, F. Fischer, P. Harrenstein, J. Lang, H. G. Seedig, Possible and
necessary winners of partial tournaments, in: V. Conitzer and M. Winikoff (eds.),
Proc. of 11th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS), IFAAMAS, 2012. 8 pages. ⇒19

[9] L. B. Beasley, D. E. Brown, K. B. Reid, Extending partial tournaments, Math.
Comput. Modelling 50, 1 (2009) 287–291. ⇒19

[10] M. Blum, R. W. Floyd, W. Pratt, R. L. Rivest, R. E. Tarjan, Time bounds for
selection, J. Computer System Sci., 7 (1973) 464–471. ⇒18

[11] B. Bollobás, A. Thomason, Parallel sorting, Discrete Appl. Math., 6, 1 (1983)
1–11 ⇒19

[12] B. Bollobás, P. Hell, Sorting and graphs, in: Graphs and Order (ed. I. Rival),
Reidel, Boston, 1985, pp.169–184. ⇒19

http://page.mi.fu-berlin.de/ren05gia/
http://www.journals.elsevier.com/discrete-applied-mathematics/
http://page.mi.fu-berlin.de/ren05gia/
http://page.mi.fu-berlin.de/ren05gia/
http://www.journals.elsevier.com/discrete-applied-mathematics/
http://kbo.ue.poznan.pl/anholcer/
http://www.oplab.sztaki.hu/cv_bs_hu.htm
http://www.cs.laurentian.ca/wkoczkodaj/info.html
http://www.springerlink.com/content/1435-246x/
http://dss.in.tum.de/files/brandt-research/partial.pdf
http://www.sciencedirect.com/science/article/pii/S0895717709000077
http://www.journals.elsevier.com/discrete-applied-mathematics/


On partial sorting in restricted rounds 31
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[18] L. Csató, Ranking by pairwise comparisons for Swiss-system tournaments, Cent.
Eur. J. Oper. Res., 21, 4 (2013) 783–803. ⇒18
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[42] A. Iványi, Z. Kása, Parallel partial ranking, Appl. Discr. Math. and Heur. Alg.,
1, 3 (2015) 57–76. ⇒22, 24, 26
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