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Abstract
This paper introduces an effective convergence trading algorithm for mean revert-
ing portfolios using Long Short Term Memory (LSTM) neural networks. Utiliz-
ing known techniques for selection of sparse, mean reverting portfolios from asset 
dynamics following the VAR(1) model, we introduce a 2-step technique to effectively 
trade the optimal portfolio. Sequence-to-sequence (Seq2Seq) LSTM architecture is 
implemented to make longer term prediction of future portfolio values and estab-
lish a trading range. In addition, a simple LSTM network is applied to predict very 
precisely one time step ahead. Combining these two constructions, a sophisticated 
convergence trading algorithm is implemented which produced Sharpe ratios around 
1.0 on optimal portfolios selected from historical S[NONSPACE]&P500 stocks dur-
ing 2015 − 2022 . This represents a very significant improvement compared to the 
previous convergence trading algorithms on the same set of portfolios by around 
141% on average.

Keywords Mean reversion · Portfolio optimization · Sequence-to-sequence · 
LSTM · trading

1 Introduction

Finding accurate techniques for predicting financial time series is of extraordinary 
interest among researchers. There is extensive literature studying the use of deep 
learning methods to forecast financial time series. However, stock price forecast-
ing is quite challenging because of the significant noise, non-linearity, and volatil-
ity. Extensive literature is based on deep-learning forecasting model. (Zaheer et al. 
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2023; Zhang 2022; Wu et al. 2020; Yang et al. 2017; Tah 2018; Narula 2018; Baner-
jee et al. 2008). Vanilla recurrent neural networks (RNN) are unable to learn long 
sequences due to their property of exploding or vanishing gradients during the back 
propagation process (Schmidhube and Hochreiter 1997). A successful step toward 
finding accurate techniques, which was originally developed for natural language 
processing, is the LSTM networks. These networks were developed to handle this 
disadvantage as the expression long short term refers to this (Liu et al. 2020; Yadav 
and Jha. 2020; Chen et al. 2021). Seq2Seq architecture (Sutskever et al. 2014) was 
applied with LSTM networks which are able to predict longer time ranges using our 
predicted data to estimate the trading range to set trigger points to sell or buy port-
folios (Khalil and Pipa 2022). The predicted information provided by single and 
Seq2Seq LSTM networks is used to build a trading framework. The attention mecha-
nism was also incorporated to the architecture which is about the utilization of the 
historical information in order into enhance precision of prediction (Bahdanau et al. 
2014; Luong et al. 2015).

In this paper, we propose to apply the above described techniques to the problem 
of effective trading of sparse, mean reverting portfolios. These portfolios were cre-
ated using VAR(1) model fitted on stock price data and the weights of the portfolio 
are coming from eigenvectors related to the maximal eigenvalue of the regression 
matrix using Simulated Annealing (see Fogarasi and Levendovszky 2011).

In our previous work (Racz and Fogarasi 2021) we tried to forecast sparse, mean 
reverting portfolios using single LSTM networks and built a trading strategy that uti-
lizes this prediction. However, it was shown during the tests that in most cases the 
trading ranges were estimated inaccurately, so few trading events occurred. The aim 
of this article is to build a neural network that is able to predict a more accurate trad-
ing range rather than rely on the estimation of the long term mean. A more complex 
trading logic was built that incorporates both the Seq2Seq LSTM network which pre-
dicts the range and the simple LSTM which is able to estimate upcoming portfolio 
value very precisely

The structure of the paper is the following:

• In section 2 we briefly discuss the optimal portfolio selection
• In section 3 we briefly discuss the concept of LSTM.
• In section 4 we discuss the concept of the Seq2Seq LSTM neural network and 

their use on mean reverting time series.
• In section 5 we discuss the trading strategy based on the predictions.
• In section 6 we compare the performance of the different techniques.

2  Selecting Optimal Sparse, Mean Reverting Portfolios

This section briefly explains the mean reverting processes and the modeling of the 
financial time series with VAR(1). We call a stochastic process mean reverting when 
in the long term the value of the process oscillates around its average value. When 
the price is below its long term mean it will more likely increase rather than decrease 
and vice versa. This assists to build a simple trading strategy and to estimate the 
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trading range for the portfolio. The mathematical model of this is called the Orn-
stein-Uhlenbeck process. We denote the price of our portfolio by pt at time t, and 
by si

t
 the price of the ith stock at time t. Our mean reverting portfolio pt is composed 

by the linear combination of si
t
’s. The stochastic differential equation that drives the 

Ornstein − Uhlenbeck process is

where Wt is a Wiener process, � is the speed of mean reversion and � is the long term 
mean to which the process is reverting. The deterministic part of the SDE represents 
the property that the magnitude of attraction to the long term mean is proportional 
to the distance from the mean. The solution of the stochastic differential equation is:

The expected value of Eq. (2) is

and the variance is

Consequently in very long term, the expectation converges to

while the variance is

Note the variance is inversely proportional to the speed of mean reversion. In (Box 
and Tiao 1977; d’Aspremont. 2011) the concept of predictability was introduced as 
follows:

where �2

t
 is the variance of the time series. If the denominator in this equation is 

larger, pt will be pure noise as t approaches infinity, making the time series com-
pletely unpredictable. Conversely, if the numerator is larger as t progresses, pt will 
be perfectly predictable. Let the dynamics of the assets be modeled as discrete vec-
tor autoregressive process with parameter 1. As mentioned before si,t denotes the 
price of the stock i at time t where i = 1,… , n , where n is the number of stocks. 
The most general model of 8 is the non-stationary VAR(1) model, which includes a 
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)
dt + �dWt

(2)p(t) = p(0)e−�t + �
(
1 − e−�t

)
+ ∫

t

0

�e−�(t−s)dW(s)

(3)�
[
p(t)

]
= p(0)e−�t + �

(
1 − e−�t

)

(4)�
[
p(t)

]
= �2 ∫

t

0

e−2�(t−s)ds = �2 1 − e−2�t

2�
.

(5)limt→∞�
[
p(t)

]
= �,

(6)limt→∞�
[
p(t)

]
=

�2

2�
,

(7)� =
�2

t−1

�2

t



 A. Rácz, N. Fogarasi 

time-independent constant scalar shift term to describe drift or ensure positivity of 
the elements for all t:

where A is an n by n real matrix constant over a certain time period, c is a time inde-
pendent real scalar constant, Wt represents the noise or error term of the model with 
zero mean value, some constant variance, and uncorrelated across time. This can be 
rewritten in concise VAR(1) notation by incorporating shift into the autoregression 
matrix:

extending the notations, (Racz and Fogarasi 2021)

where A′ is an (n + 1) × (n + 1) matrix, the last column contains the constant shift 
c, the last row has 0’s except the (n + 1)st element, which is strictly 1, x′

t
 is a vector 

with n + 1 elements strictly 1 at the (n + 1)st element and W ′
t
 represents the noise as 

before, with no noise for the (n + 1)st element. For simplicity, we will omitt the ′′′ 
notation in this article. The autoregression matrix in Eq. (8) can be approximated 
using least squares regression as follows:

Using this model a portfolio can be created with linear combinations of the assets. 
Let P be a real valued vector, representing the weights related to stocks. The time 
evolution of the portfolio’s value can be written as

Applying the definition of predictability ( 7) to the VAR(1) model we get:

Maximizing predictability utimately becomes a generalized eigenvalue problem:

The argument of the argmax operator is known as the Rayleigh quotient. Therefore

(8)st+1 = c + Ast +Wt,
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To keep the number of constituents low and minimize transaction costs while main-
taining low portfolio complexity, the optimization problem now involves a trade-off 
between maximizing mean reversion speed and minimizing the number of stocks. 
Mathematically the Eq. 14 has an additional constraint, (Fogarasi and Levendovszky 
2011)

Solving an optimization problem (16) can happen in several ways. The simplest way 
is the exhaustive method where the global minimum is found by sweeping through 
the whole configuration space. This is a brute force method, that runs through all 
possible configurations and selects the one with the highest generalized eigenvalue. 
The method is accurate with very high computational cost (d’Aspremont. 2011). 
An efficient alternative way to get near the optimal solution is the greedy search. 
The greedy method starts with the largest diagonal element in the matrix. Then it 
chooses a subspace such that the generalized eigenvalue is the highest among the 
others. This for sparsity L = 1 and L = N should result in the same result as for the 
exhaustive method.

Simulated annealing (SA) is a probabilistic technique for approximating the global 
optimum of a given function. Specifically, it is metaheuristic to approximate global 
optimization in a large search space for an optimization problem. It is often used when 
the search space is discrete (e.g., the traveling salesman problem). For problems where 
finding an approximate global optimum is more important than finding a precise local 
optimum in a fixed amount of time, simulated annealing may be preferable to alterna-
tives such as gradient descent.

This notion of slow cooling implemented in the simulated annealing algorithm is 
interpreted as a slow decrease in the probability of accepting worse solutions as the 
solution space is explored. Accepting worse solutions is a fundamental property of 
metaheuristics because it allows a more extensive search for the global optimal solu-
tion. In general, the simulated annealing algorithms work as follows. At each step, the 
algorithm randomly selects a solution that is close to the current one, it measures its 
quality and then it decides to move toward or to stay with the current solution based on 
either one of two probabilities between which it chooses on the basis of the fact that the 
new solution is better or worse than the current one. During the search, the temperature 
is progressively reduced from an initial positive value to 0 which affects the two prob-
abilities: at each step, the probability of moving to a better new solution is either kept 
to 1 or changed to a positive value; on the other hand, the probability of moving to a 
worse new solution is progressively changed towards zero.

(16)
Popt = argmax(v(P)) = argmax

(
PTAGATP

PTGP

)
,

subject to Card(P) ≤ k
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3  Architecture

3.1  Vanilla LSTM to Predict 1 Step Ahead

Recurrent neural networks are capable of predicting future prices of a portfolio 
using historical values. In particular, LSTM networks are useful for processing 
and forecasting time series (Schmidhube and Hochreiter 1997).

This specific network comprises a single hidden layer with 4 hidden units and a 
dense layer on top of the LSTM. The optimizer used is stochastic Adam (Kingma 
and Ba 2014), and the applied loss function is the mean squared error, (MSE). 
The network was trained to predict future values using four historical values.

As mentioned earlier, this single-layer vanilla LSTM network is solely used 
for predicting one time step ahead accurately. However, for more efficient trading 
strategies, estimation over longer time intervals is required.

3.2  Seq2Seq LSTM

An architecture developed originally in the field of natural language processing is 
called Seq2Seq. A special class of these problems is called a modeling problem, 
where the input as well as the output is a sequence. A typical Seq2Seq model 
has an encoder and a decoder part which are two different neural networks. The 
encoder network is trained to create a smaller dimensional representation from 
the input data. This representation is then forwarded to a decoder network which 
generates a sequence of its own that represents the output. A schematic represen-
tation of Seq2Seq architecture is shown Fig. 1.

Both the encoder and decoder were created using one single layer vanilla 
LSTM network with a tanh activation function. Parameters like the number of 
hidden units, batch size and the learning rate were optimized during the training 
process. On top of the decoder LSTM a dense layer was applied.

Figures 3, 4, 5 and 6 display the true and predicted data of the portfolio for 
several date ranges.

Fig. 1  Possible seq2seq constructions. Image source form Andre j Karpa thy blog

http://karpathy.github.io/2015/05/21/rnn-effectiveness
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Table 1 shows the weight of the portfolio constituents for a particular portfolio. 
The sign indicates long or short position for + and − respectively. Under the stock 
name column the yahoo tickers are displayed.

3.3  Attention Mechanism

The attention mechanism was introduced by (Bahdanau et al. 2014) to address the 
bottleneck problem that arises with the use of a fixed-length encoding vector, where 
the decoder would have limited access to the information provided by the input. This 
is thought to become especially problematic for long and/or complex sequences, 
where the dimensionality of their representation would be forced to be the same 
as for shorter or simpler sequences. One of the limitations of the simple Seq2Seq 
model is that only the last state of the encoder RNN is used as input to the decoder 
RNN. If the sequence is very long, the encoder will tend to have much weaker mem-
ory about earlier time steps. The attention mechanism can solve this problem. An 
attention layer is going to assign proper weight to each hidden state output from the 
encoder, and map them to an output sequence. Note that (see Bahdanau et al. 2014) 
the attention mechanism is divided into the step-by-step computations of the align-
ment scores, the weights, and the context vector:

Alignment scores: The alignment model takes the encoded hidden states, hi , and 
the previous decoder output, st−1 , to compute a score, et,i , that indicates how well 
the elements of the input sequence align with the current output at position t. The 
alignment model is represented by function, a(.), which can be implemented by a 
feed-forward neural network:

Weights: The weights, �t,i , are computed by applying a softmax operation to the pre-
viously computed alignment scores:

Context vector: A unique context vector, ct , is fed into the decoder at each time step. 
It is computed by a weighted sum of all, T, encoder hidden states:

The Luong attention mechanism is an advanced method which was built on top of 
the Seq2Seq LSTM architecture, and uses Dot method to calculate alignment score.

The above detailed algorithms and methods were implemented in Python using 
Keras and TensorFlow packages.

To implement the attention mechanism we consider a weighted sum of the input 
from each time step of the encoder. The weights depend on the importance of that 
time step for the decoder to optimally generate the next value in the sequence.

The encoder compresses the sequential input and processes the input in the 
form of a context vector. We can introduce an attention mechanism to create a 

(17)et,i = a(st−1, hi)

(18)�t,i = softmax(et,i)

(19)ct =

T∑
i=1

�t,ihi
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shortcut between the entire input and the context vector where the weights of the 
shortcut connection can be changeable for every output.

Because of the connection between input and context vector, the context vector 
can have access to the entire input, and the problem of forgetting long sequences 
can be resolved to an extent Using the above-given information, the context vec-
tor will be more responsible for performing more accurately by reducing the bugs 
on the transformed data.

4  Trading Strategy

Let xt be the actual value of the portfolio, pt the predicted value, pmin and pmax the 
minimum and maximum of the time series predicted by the Seq2Seq LSTM neural 
network. The bmax and bmin are the upper and lower bounds of the trading range 
respectively, defined using pmax and pmin as:

where

and � is a tolerance constant. For the purposes of our tests, we have fixed � at 0.05 
based on visually observing asset price fluctuations. The single and Seq2Seq LSTM 
networks are applied in a two step trading strategy. In the first line of trigger the 
value of the portfolio hits the appropriate barrier of trading range defined by Seq2Seq 
LSTM. In the case of cash at hand, there is no event occuring when bmin ≤ xt , but an 
event is triggered when bmin > xt . In the case of portfolio at hand, no action occurs 
when xt < bmax and the first trigger is hit when bmax ≥ xt . The second line of trigger 
eventually decides about trading event. Single LSTM has very precise prediction for 
one step ahead and we utilize this property when a trading event is triggered. Single 
LSTM checks if the predicted portfolio value moves away from trading range, (in 
case of cash at hand xt < pt+1 ) if so then it waits 1 time step to trade. Similar logic 
applies when there is a portfolio at hand pt+1 ≤ xt . The trading range is updated 
every 5 steps. This is a heuristic number. The lower and upper bounds of the trading 
range are symmetric to the mid of the predicted long term portfolio prices. In other 
words, at the very begining, one is being in state "Cash @ hand" and remains in this 
state until the first buying trigger (defined by the seq2seq LSTM) is activated by the 
portfolio value. The actual purchase occurs when the second level trigger(defined by 
the vanilla LSTM network) is activated by the portfolio value, transitioning to state 
"Portfolio @ hand". The logic for selling portfolio is basically similar to that for 
buying, except the portfolio must hit selling thresholds. The schematic diagram of 
the trading logic can be seen on Fig. 7.

(20)bmax = pmax − R

(21)bmin = pmin + R,

(22)R = �(pmax − pmin)
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5  Performance Test

The network was trained on the same time range as used for VAR(1) calibration. The 
portfolio was created with the regression matrix and used as an input for the train-
ing. The number of LSTM layers is 4, batch size is 1, epochs is 100. We used 3 con-
secutive data points to predict. Figure 2 shows an example of the testing.

The performance testing was started with $10, 000 investment and the trad-
ing interval was 100 days. The number of tests were 500 and each used 400 day 
long calibration data set with different starting points (reasons for these param-
eters are in Racz and Fogarasi 2021). The tests were run on portfolios selecting 

Fig. 2  Example of Seq2Seq LSTM training and testing result. The red curve is the training input for the 
network, the blue is the testing data. The green curve is the fitted data for learning data set, the blue is the 
predicted based on the red input

Fig. 3  Predicting optimized portfolio. The green curve is the calibration range, the red curve is the real 
value for calibration, the blue is the VAR(1) prediction, the black curve is the Seq2Seq LSTM predicted, 
the yellow is the online one-step LSTM prediction. The portfolio value is in arbitrary units as the optimi-
zation and prediction performed on the log of the real data
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constituents from S[NONSPACE]&P500 pool from a time period from 1st of Janu-
ary 2015 to 31st of December 2022. Although this time period contains periods of 
rapid growth in the index this does not introduce a bias to our algorithm which is 
performed on a small subportfolio of the index, containing short positions also. 

Fig. 4  Predicting optimized portfolio. The green curve is the calibration range, the red curve real value 
for calibration, the black curve is the Seq2Seq LSTM predicted, the yellow is the online one-step LSTM 
prediction. The portfolio value is in arbitrary units as the optimization and prediction performed on the 
log of the real data

Fig. 5  Predicting optimized portfolio. The green curve is the calibration range, the red curve real value 
for calibration, the blue is the VAR(1) prediction, the black curve is the Seq2Seq LSTM predicted, the yel-
low is the online one-step LSTM prediction. The portfolio value is in arbitrary units as the optimization 
and prediction performed on the log of the real data
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The profit after the trading time range was calculated as the difference between 
the buying and selling price.

To see the impact on performance of the trading technique using the Seq2Seq 
LSTM neural network Fig.  8 shows histograms of returns of different techniques. 
The online single step LSTM trading strategies, the Seq2Seq LSTM without and the 
100 days returns of the S[NONSPACE]&P500 portfolio on the same time period 
described above.

The mean, standard deviation and Sharpe ratio are calculated for two different 
sparsity values with and without the attention mechanism on Table 2.

Fig. 6  Predicting optimized portfolio. The green curve is the calibration range, the red curve real value 
for calibration, the blue is the VAR(1) prediction, the black curve is the Seq2Seq LSTM predicted, the yel-
low is the online one-step LSTM prediction. The portfolio value is in arbitrary units as the optimization 
and prediction performed on the log of the real data

Table 1  Constituents of an 
example portfolio. The first 
column has the Yahoo tickers 
of stocks, the second shows the 
weights in portfolio and the 
third is the number of stocks

 The minus sign represents short position. The nominal value of the 
portfolio is $10k

Stock Name Weight # Stocks in 
portfolio

PLD −0.3247 −23
AMD −0.0448 −31
AZO 0.383 1
MS 0.248 7
HD 0.24 −13
DE −0.3807 51
WEC 0.1027 6
GPN −0.1467 11
INTU −0.6303 −22
VZ 0.203 11
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The mean Shapre ratios, averaged across different sparsities are shown in Table 3.
Figure 9 shows a summary comparison of the Sharpe ratios produced by the dif-

ferent methods.
The results of Table 3 are from (Racz and Fogarasi 2021) in which the definition 

of online and offline Var and LSTM strategies can be found. Table 3 shows poor trad-
ing performance as all the Sharpe ratios are below 0.5 and some of the techniques 
result in negative values. The method presented in this article provides Sharpe ratios 
around 1.0 as seen in Table 2 representing an average improvement of 141%.

6  Conclusions and Directions for Future Works

We presented a two-level trading technique using two separate networks, a vanilla 
and a Seq2Seq LSTM network to be utilized on mean reverting portfolios. We tested 
the trading strategy on portfolios of S[NONSPACE]&P500 stocks by fitting VAR(1) 
model and optimizing predictability. Compared to our previous results we can see a 
significant increase in the Sharpe ratios from values below 0.5 to around 1.0. We did 
not observe a significant performance increase by adding an attention layer on top of 
the Seq2Seq LSTM network.

A future direction of work could be to create more complex prediction archi-
tectures such as stacked LSTM networks in both the encoder and the decoder. 

Fig. 7  Schematic diagram of trading logic. At the very beginning, one is being in state "Cash @ hand" 
and remains in this state until the first buying trigger (defined by the seq2seq LSTM) is activated by the 
portfolio value. The actual purchase occurs when the second level trigger(defined by the vanilla LSTM 
network) is activated by the portfolio value, transitioning to state "Portfolio @ hand". The logic for sell-
ing portfolio is basically similar to that for buying, except the portfolio must hit selling thresholds
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Hyperparameter optimization for � , trading range and trading length. Further simu-
lations and testing are required on different asset classes and markets to determine 
general applicability of our methodology outside of stock markets.

Fig. 8  Histrograms of returns of the investigated methods

Table 2  Mean, standard deviation and Sharpe ratio of the trading performance

Method Mean Std dev Sharpe ratio Expected shortfall

Luong average 287.96 293.31 0.982 −137.16
No att average 303.24 308.57 0.983 −153.57
S&P500 Buy&Hold −119.4 268.19 −0.445 −226.79

Table 3  The Sharpe ratio of the 
previous methods averaged over 
the sparsities(number of stocks 
selected)

Average 
sharpe 
ratios

Offline VAR 0.0132
Offline LSTM −0.0556
Online VAR 0.166
Online LSTM 0.4068
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