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We study the problem of selecting a sparse, mean reverting portfolio from a universe of assets using simulated 
annealing (SA). Assuming that assets follow a first order vector autoregressive process (VAR(1)), we make a 
number of improvements in existing methods. First, we extend the underlying asset dynamics to include a 
time-independent additive term, thereby enriching the model’s applicability. Second, we introduce Extreme 
Learning Machine (ELM) to decide whether to apply SA or settle for the much faster greedy solution. Finally, 
we improve the SA method by better calibration of the initial temperature and by determining the exact value 
of the weights within a selected dimension using the Rayleigh quotient. On real data, these changes result in 
more than 90% improvement in run time on average and 4.78% improvement in optimized mean reversion 
in our simulations. We also test the trading performance of our method on both simulated and real data and 
managed to achieve positive mean trading results in both cases.

1. Introduction1. Introduction
Financial performance of various investments is 

influenced by a wide range of factors which have 
been studied extensively (Cruz Cárdenas et al., 
2022; Mysaka & Derun, 2021; Sierpinska-Sawicz & 
Sierpinska, 2021). Amongst these, applying com-
putational methods to the world of finance and 
investing has attracted considerable attention in 
recent years (Sasidharan et al., 2023; Sullistiawan et 
al., 2023) One of the classical problems of compu-
tational finance is to create a portfolio from a high 
number of available financial products that is opti-
mal in some sense. The aim of the present work is 
to create a portfolio of which predictability is high 

so the future value can be inferred with very good 
precision in a way that it has a very low number 
of constituents. Portfolios that follow mean re-
verting stochastic processes meet this criteria (see 
Banerjee et al., 2008; d’Aspremont, 2011; Fogarasi 
& Levendovszky, 2012; Fogarasi & Levendovszky, 
2011). The mean-reverting property is widely used 
in economics (Ahsan & Rub, 2017; Madan & Wang, 
2022; Narula, 2018; Tah, 2018). An efficient trading 
logic can be built based on the property of mean 
reverting time-series (Leowski, 2017), like bid-ask 
spread trading (Isaenko, 2018), pairs trading (Wu 
et al., 2020; Zhang, 2021). Two properties, the spar-
sity and the measure of predictability, the speed of 
mean reversion compete with each other during the 

Improved Sparse Mean Reverting Portfolio 
Selection Using Simulated Annealing and Extreme 
Learning Machine

ABSTRACT

C650. 

KEY WORDS: 

JEL Classification: 

sparse portfolios, mean reverting portfolios, simulated annealing, extreme learning machine, 
machine learning.

Budapest University of Technology and Economics, Department of Networked Systems and Services, Hungary

Correspondence concerning this article should be addressed to: 

Adrian Peretz, Budapest University of Technology and Economics, 

Budapest, Műegyetem rkp. 3, 1111 Hungary 

E-mail: faus2s@yahoo.com

Attila Rácz  and Norbert Fogarasi 

Primary submission: 01.03.2023   |    Final acceptance: 05.11.2023

https://orcid.org/0000-0002-7432-5911
https://orcid.org/


337 Attila Rácz,Norbert Fogarasi

10.5709/ce.1897-9254.541DOI: CONTEMPORARY ECONOMICS

Vol. 18 Issue 3 336-3512024

optimization. The speed is proportional to predict-
ability while the sparsity (the number of different 
stocks used in the portfolio) is important for in-
vestors as this minimizes the transaction cost and 
makes the portfolio easier to interpret. This optimi-
zation can be done using simple and fast approxi-
mation and much more complex and expensive 
methods (see d’Aspremont, 2011; Fogarasi & Lev-
endovszky, 2011; Stübinger & Endres, 2021; Yang 
et al., 2017; Wei, 2022)). It was shown that further 
optimization such as SA starting from the greedy 
solution can reach a solution closer to the global 
one (Fogarasi & Levendovszky, 2011). However, in 
the majority of cases, the less expensive and simpler 
greedy algorithm can find the global optimum. To 
utilize this, we propose using ELM neural networks, 
which helps decide whether a complex, but power-
ful algorithm, such as SA, should be used. We tested 
the algorithms on both simulated and real data. 

The structure of the paper is the following: 
• In section Different models on VAR(1), after a 

short summary about mean reverting process we 
describe possible extensions to the modeling of 
future values of stocks and how this modifies the 
selection. 

• In section Comparison of exhaustive and 
greedy methods, we compare the exhaustive and 
greedy methods, results and the application of the 
Extreme Learning Machine. 

• In section Simulated Annealing, we detail the 
changes applied for the Simulated Annealing. 

• In section Performance test, we check the im-
pact of the changes we made. 

• In section Conclusions and future works, we 
make conclusions and recommendations. 

2. Different models on VAR(1)2. Different models on VAR(1)
This section briefly explains mean reverting 

processes and the modeling of the stock data with 
VAR(1). Since in the long term the value of the 
process oscillates around its average value, when 
the price is below its mean it will more likely 
increase rather than decrease. This observation 
makes building a simple trading strategy possible 
and enables estimation of the trading range for the 
portfolio. The simplest example of a mean reverting 
process is the Ornstein-Uhlenbeck process which is 

the continuous version of autoregression processes 
with parameter 1, (AR(1)). 

2.1. Ornstein-Uhlenbeck process 
The process is a stationary Gaussian-Markov 

process, a random walk with higher attraction to 
mean than diversion. Our mean reverting portfolio 
pt is composed of the linear combination of stock 
prices. The stochastic differential equation that 
describes the Ornstein-Uhlenbeck process is 

                               (1)

where Zt is a standard Brownian motion, λ is 
the speed of mean reversion and µ is the long term 
mean of the process which it is reverting to.

2.2. Asset Dynamics and Portfolio Selection 
Is the sentence “I always lie” true or false? This 

small piece of logic has challenged philosophers 
from around 400 years B. C. to

2.2.1. Modeling Asset Dynamics with VAR(1)
We can model the available time series of a 

population of assets with discrete stationary VAR 
(1) process. Let si,t denote the price of the asset i at 
time t where i = 1, . . . , n and st the n-length vector 
which elements are the si,t. The stationary vector 
autoregression process can be written in the following 
form

                                                     (2)

Where A is the matrix of auto-regression, Wt is 
uncorrelated white noise. One can create a portfolio 
from the available assets to mitigate risks. Let P be 
a real valued vector representing the weights of the 
portfolio. The time evolution of the value of our 
portfolio can be written as 

                                                    (3)

We can define the measure of predictability by the 
following (Box & Tiao, 1977; d’Aspremont, 2011):

                                                                                   (4)
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where σ2
t is the variance of the time series. If the 

denominator is larger, st will be pure noise as t goes to 
infinity, on the other hand, if the nominator is larger st 
will be perfectly predictable. After using the definition 
of predictability (4) for the VAR (1) model we get:

            (5)

Maximizing predictability is eventually a generalized 
eigenvalue problem:

                                       (6)

The argument of the argmax operator is the so called 
Rayleigh quotient. The above becomes

                                                                   (7)

If we use several assets to create a portfolio, the 
transaction cost will be high. To reduce that we 
will need to apply an additional constraint to the 
optimization. On the other hand, in order to hold the 
transaction cost as low as possible and also to keep the 
portfolio complexity low, only a low number of stocks 
will need to be obtained. The optimization problem 
now is the trade-off between the maximization of 
mean reversion speed and the minimization of the 
cardinality of stocks. Mathematically, we can introduce 
an additional constraint to equation (6) as follows:

                      (8)

The autoregression matrix in equation (2) can 
be approximated using least squares regression 
(d’Aspremont, 2011; Fogarasi & Levendovszky, 2011) 
as follows

                                                       (9)

The model in equation (2) can be extended to the 
non-stationary VAR(1) model that contains a time 
independent constant scalar shift term to describe drift 
or to ensure positivity of the elements for all t:

                                                              (10)

where A is an n × n real matrix constant at some 
certain time period, c is a time independent real scalar 
constant, Wt represents the noise or error term of the 
model with zero mean value, some constant variance 
and uncorrelated across time. This can be rewritten in 
concise VAR(1) notation by incorporating a shift into 
the matrix of autoregression: 

                                            (11)

              (12)

where A' refers to a (n + 1) × (n + 1) matrix in which 
the last column is filled with the constant shift c, the 
last row has 0’s except the (n + 1)st element which 
should be strictly 1, x't a vector with n + 1 elements 
strictly 1 at the (n + 1)st element and W't still provides 
the noise as in the previous case except no noise for the 
(n + 1)st element (Lütkepohl, 1993).

2.2.2. Predictability in Case of Constant Shift 
In case we add the shift and do not renormalize to 

zero mean, we will have to modify the calculation of 
predictability derived in (5). Otherwise it does not 
capture the covariance matrix.

                  (13)

Applying the linearity of the expectation operator and 
consider that E(st−1 − m) = 0 where m is the mean of the 
process st , we get

                                           (14)

So the quantity that we have to maximize is

                                                        (15)

Which can give back the original case (5) when m = 0.

2.3. Parameter Estimation 
To verify the estimation of process parameters we 

simulate VAR (1) including the constant shift term. 
The latter has a technical property that ensures the 
positivity of the values of time series at every time step 
t. Figure 1 shows the comparison of shift applied for 
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simulation against the estimated from simulated time 
series and the applied and calibrated noises.

Figure 2 shows the estimation error with and 
without taking into account the time independent shift 
for two different population sizes.

The estimation error is the mean squared error of 
the difference of simulated and regressed data. The 
figures clearly indicate that if the model does not 
capture the details, the regression matrix estimation 
will be inaccurate. 

Figure 3 presents an individual simulated time series 

with the estimated noiseless curve using the extended 
VAR(1) model. 

Figure 4 shows an example individual time series 
with regression including the result with and without 
taking into account the constant shift in the calibration.

2.3. Trading Strategy
As the portfolio is set up assuming it follows the 

Ornstein-Uhlenbeck process (for discrete timeseries 
AR(1)), the applied trading strategy also takes 
advantage of this. For this reason we need two bounds 

Figure 1
Overview of the Development of First- and Second-order Concepts
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Figure 2
Estimated Error Comparison

Figure 3
Single Simulated Time Series Out of 8 With Shift=5



341 Attila Rácz,Norbert Fogarasi

10.5709/ce.1897-9254.541DOI: CONTEMPORARY ECONOMICS

Vol. 18 Issue 3 336-3512024

that trigger the selling and buying of the portfolio. 
We estimate the mean and the standard deviation 
(std) of the portfolio during the identification 
period. The lower bound of the trading interval is 
the portfolio value below mean with the quantity of 
std (mean − std) while upper is the mean + std. In 
case we do not have portfolio and its actual value 
is below the lower bound, we purchase using all 
available cash and sell the whole if we are above 
the upper bound (Fogarasi & Levendovszky, 2011). 
Figure 5 shows the effect of the shift for a real stock. 
The improvement of the accuracy of the prediction 
is clear, however we utilize this directly in the 
creation of the portfolio.

3. Comparison of Exhaustive and 3. Comparison of Exhaustive and 
Greedy MethodstGreedy Methodst

Solving optimization problem (8) can happen 
in several ways. The simplest way is the exhaustive 
method where the global minimum is found by 
sweeping through the whole configuration space. 
This is a brute force method, that runs through all 
possible configurations and selects the one with 
the highest generalized eigenvalue. The method 
is accurate with very high computational cost 
(d’Aspremont, 2011). An efficient alternative way 
to get near optimal solution is the greedy search. 
The greedy method starts with the largest diagonal 

element in the matrix, then it chooses a subspace 
such that the generalized eigenvalue is the highest 
among the others. This for sparsity L = 1 and L = 
N this should result in the same as for exhaustive. 
Figure 7 presents the comparison of the eigenval-
ues coming from the exhaustive and the greedy 
methods for all sparsities in a certain configura-
tion.

The result of exhaustive and greedy methods are 
the same in most cases as we observed by running 
a high number of tests. Thus, the validity of the 
greedy method is experimentally confirmed. Our 
goal is to find cases when greedy solution is sub-
optimal and then to use it as an initial point for 
further optimization process for SA (Fogarasi & 
Levendovszky, 2011).

3.1. Classification with Extreme Learning 
Machine (ELM) 

As SA is a complex and expensive method and 
most of the times greedy method can reach the 
global optimum, no further optimization is nec-
essary. In order to decide whether we should start 
SA we apply machine learning algorithms. Ex-
treme Learning Machine is a single-hidden layer 
feed-forward neural network (SLFN) in which the 
hidden nodes are chosen randomly although the 
output weight is chosen deterministically (Huang 

Figure 4
Single Simulated Time Series Out of 13 With and Without Constant Shift

Note. These show that the shifts and noise variance have been captured correctly and demonstrate that the prediction 
error can be diminished by an order of magnitude on simulated data.
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et al., 2006). The term ’extreme’ comes from the ex-
treme fast learning speed, being thousands of times 
faster than traditional feed-forward methods like 
backpropagation. Furthermore, it is easy to imple-
ment and there is a very small number of training 
errors and norm of weights. Figure 8 summarizes 
the scheme of network structure. 

It is very interesting and surprising that, un-
like the most common understanding, all the pa-

rameters of SLFNs need to be adjusted, the input 
weights, Wi and the hidden layer biases, bi are in 
fact not necessarily tuned and the hidden layer out-
put matrix H can actually remain unchanged once 
random values have been assigned to these param-
eters in the beginning of learning. For fixed input 
weights Wi and the hidden layer biases bi, to train 
an SLFN is simply equivalent to finding a least 
squares solution of the linear system Hβ = T. 

Figure 5
The Effect of the Shift for a Real Stock

Figure 6
Scheme of Trading Strategy.

Note. Using 250-day-long identification window. The full population is 250. The blue line is the simulated data, the red line 
represents the regressed curve generated with the original autoregression matrix, the orange curve is the regression result 
with the calibrated matrix incorporating the shift and the green one is the same except ignoring the shift term. 

Note. Original figure from: (Fogarasi & Levendovszky, 2011) 
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The number of the hidden nodes is usually much 
less than the number of the distinct training sam-
ples, H is a non-square matrix. The smallest norm 
least-square solution of Hβ = T is:

                                                                 (16)

where H+ is the so-called Moore-Penrose general-
ized inverse of H. The ELM algorithm is as follows:

• Assign random numbers to input weights. 
• Calculate the hidden layer output matrix H 
• Calculate the output weights β 

                                                      (17)

                                               (18)

3.2. Training ELM 
The training was performed with every regression ma-

trix size from 5 to 30 and every cardinality form 3 to ’ma-
trix size−2’. The population for every configuration was 
1000 and 70% was the learning population, 30% was used 
for validation. Table 1 shows the accuracy of the training 
for different hidden unit sizes.

Figure 7
Comparison of Normalized Eigenvalues of Greedy and Exhaustive Eigenvalues

Figure 8
Extreme Machine Learning Schematic Diagram

Note. Original figure from: (Deng et al., 2019)
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To test the efficiency of the graph optimization, we 
compare results (runtime, return, etc) to the original SA 
outcome. In order to make use of SA, it is important to 
find the sub-optimal solutions. On the other hand, it is 
not a problem to start the Metropolis algorithm from the 
exhaustive solution. The input consists of 800 elements, 
each 14 units long. We can see that in Table 1 the accu-
racy reaches its maximum value with 10 hidden layers. In 
some cases the accuracy for the number of hidden layers 
below 10 can be as low as 0.15. The cause of the instabil-
ity is in calculation of the output weights which contains 
the Moore-Penrose inverse. In practice one can see that 
the product above does not give the exact identity matrix 
back. 

The comparison of greedy and exhaustive methods 
was carried out with real data. The population of stocks 
was chosen randomly in every configuration and the size 
of the regression matrix ranged from 5 to 21. Table 2 sum-

marizes the statistics.
During the training of classifications we indicated 

the run when the difference of the eigenvalues between 
greedy and exhaustive was larger than 0.008. The training 
contained only the eigenvalue of the particular configura-
tion (size and sparsity) and the indicator value. The num-
ber of layers was 4.

4. Simulated Annealing4. Simulated Annealing

4.1. Introduction 
Simulated annealing is a probabilistic technique for ap-

proximating the global optimum of a given function. Spe-
cifically, it is metaheuristic to approximate global optimi-
zation in a large search space for an optimization problem. 
It is often used when the search space is discrete (e.g., the 
traveling salesman problem). For problems where finding 
an approximate global optimum is more important than 

Table 1
Accuracy of Method

Hidden Units Accuracy

1 0.85
2 0.85
3 0.85
4 0.85
5 0.9625
6 0.9875
7 0.9791
10 1.0
15 1.0

Table 2
Testing the Result of Classification

Size/Sparsity False negative False Positive True Negative True Positive

17/14 0 0 36 1003
15/12 0 0 37 992
14/6 0 0 130 898
12/7 0 0 97 998
9/5 0 0 70 1015
8/5 0 0 59 1048
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finding a precise local optimum in a fixed amount of time, 
SA may be preferable to alternatives such as gradient de-
scent. 

This notion of slow cooling implemented in the SA 
algorithm is interpreted as a slow decrease in the prob-
ability of accepting worse solutions as the solution space 
is explored. Accepting worse solutions is a fundamental 
property of metaheuristics because it allows a more exten-
sive search for the global optimal solution. In general, the 
SA algorithms work as follows. At each step, the algorithm 
randomly selects a solution that is close to the current one, 
it measures its quality and then it decides to move toward 
or to stay with the current solution based on either one of 
two probabilities between which it chooses on the basis of 
the fact that the new solution is better or worse than the 
current one. During the search, the temperature is pro-
gressively reduced from an initial positive value to 0 which 
affects the two probabilities: at each step, the probability 
of moving to a better new solution is either kept to 1 or 
changed to a positive value; on the other hand, the prob-
ability of moving to a worse new solution is progressively 
changed towards zero (Salamon et al., 2002), (Geman & 
Geman, 1984). 

4.2. Optimization on Graph 
The method suggested by Fogarasi and Levendovszky 

(2011) works in an arbitrarily large number of dimen-
sional space as the weight of the constituent can vary con-
tinuously. In this method we only select the assets with 
non-zero weights, however, the weights themselves are 
calculated by equation (6) ie. Rayleigh quotient. We treat 

two configurations as connected nodes when they differ 
from each other by exactly one element. Hence, we can 
define a graph with the non-zero weights and the opti-
mization happens on this graph by walking through the 
nodes. The expectation is that we can reach the minimum 
with much fewer function evaluation than before. Figure 
9 is a schematic representation of the configuration space 
in which the SA method operates. 

4.3.  Calibrating Initial Temperature
It is essential to set the initial temperature of the opti-

mization process properly. One way to do this is to start 
SA from the result of the greedy method. In case the result 
of the greedy method is highly suboptimal when the tem-
perature is high, the probability of positive transitions is 1. 
On the other hand if it is too low then the system cannot 
break out from the local minimum. A commonly applied 
technique to calibrate initial temperature is to declare the 
initial probability of positive transition and derive the cor-
responding temperature from this. The brief description 
of the method we applied (Ben-Ameur, 2004) is as follows. 

• Collect positive transitions (S) and set χ0 to the re-
quired transition probability. 

• Set T1 > 0 and n = 1. 

•  where Emin and Emax are the 
energies before and after transition respectively.

Figure 9
A Piece of the Configuration Space
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5. Performance test5. Performance test
During the test of the effectiveness of the im-

provement of the graph based SA some number 
of stocks were selected from S&P500 pool (ie. 20 
in Figure 10 and 36 in Figure 11) with a random 
sparsity (15 and 31 respectively). The calibration 
time window was 350 days. Each point in the fig-
ures represents a random selection from the pool. 
The initial points of the SA were not necessarily the 
result of the greedy algorithm. 

The new method results in a better optimum in 
all cases tested, resulting in 4.78% improvement on 
average. 

We tested the performance of the SA to the previ-
ously detailed modifications. We measured how the 
energy of the local optimum, the running time, the 
number of function calls of the proposed method 
changed. Figure 10 and Figure 11 illustrate the test 
results. 

We demonstrate that we can reach better solu-
tions with fewer function evaluations and mre than 
90% improvement in running. We tested the per-
formance of the algorithm on simulated and real 
data for S&P500 gathered from Yahoo finance for 

the period between 01/01/2016 and 12/31/2020. 
In every test case the selected stocks were chosen 
randomly from the whole S&P500 population. The 
sparsity varied from 3 to 12 with a step size of 3. The 
length of the identification window was 100 days. 
We first validated the improvements on simulated 
data. We generated 20 time-series using VAR(1) 
with time independent shift. On figure 12 we show 
the profit histogram of 220 simulations.

For the sake of representation we accumulated 
the profits above $1, 000 into the highest bin (the 
one near to $1, 000 in Figure 12). The results prove 
that the simple trading strategy can be well applied 
to the extended V AR(1) model. In Table 3 we pro-
vide the statistics of the profits trading on simulated 
data.

Figure 13 shows the histogram of the profit for a 
portfolio constructed from real-time series.

The length of the trading time window was 100 
days in every case. The range of the histogram was 
fixed from $ − 550 to $2, 000 with 25 bins. Returns 
under the lower limit and above the upper limit were 
floored to their respective values similarly to the simu-
lated case. In Table 4 we provide the statistics of the 

Figure 10
Performance Test

Note: The upper left graph compares the minimal energy achieved by the two methods. The red line, x = y represents 
cases where the two methods yield the same result. The full runtime comparison illustrated in the upper right graph whilst 
the lower left graph shows the number of function calls. In the lower right graph we visualize how the two methods differ 
in terms of energy and function calls. P opulation = 20, sparsity = 15, Tid = 350 days 
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Figure 11
Energy and Function Call Comparision

Note: Energy and function calls comparisons for the two methods, population = 35, sparsity = 31, Tid = 350 days  

Figure 12
Profit Histogram

Note: Using simulated time series with population size 20. The horizontal axis shows the profit in dollars, the vertical refers 
to the number of cases.

Table 3
The Mean and Standard Deviation

Sparsity Mean Profit STD of Profit

3 117.52 159.78
6 228.95 463.18
9 159.89 270.46
12 85.62 127.16
Total 168.09 328.32
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profits trading on real data. Note that the above ex-
plained flooring was not applied in the tables only in 
the figures for sake of representation.

As seen, the mean profit on both simulated and real 
data is positive but with a sizable standard deviation, 
causing a number of runs to be unprofitable. This is 
primarily due to the use of a limited time window 
which may result in losing portfolios remaining on-
hand at the end of the arbitrary time window. 

As seen in Figure 14 and 15, the movement of the 
portfolio is predicted by our model accurately in most 
cases, implying that the selected portfolio is mean-
reverting. 

The amount of maximum investable money at the 
beginning of learning was $10, 000. The profit can be 
very sensitive to the order of magnitude of our money 

since we must invest in an integer number of stocks. As 
it can be seen, the amount of losses are not negligible 
in the case of both simulated and real data. There are 
two main reasons for this: first the trading strategy is 
not able to handle non-stationary dynamics and the 
estimation of the trading range is not accurate enough. 
Second, our trading time window has ended with a 
losing portfolio on hand.

6. Conclusions and Future Works6. Conclusions and Future Works
We extended the analytical model of asset dynam-

ics by adding a time-independent drift term to cap-
ture asset movement more precisely. We presented the 
impact of this model change based on simulated and 
real S&P500 data. Furthermore, we also introduced 
an ELM-based decision process to save run-time not 

Figure 13
Profit Histogram

Note: Histogram of returns of 500 simulation with 100-day-long trading window, selecting 7 stocks from population size 
16 and 50-day-long identification period.

Table 4
The Mean and Standard Deviation

Sparsity Mean Profit STD of Profit
3 309.54 734.41
6 379.05 634.01
9 344.06 563.90
12 334.84 581.28
Total 340.77 641.02
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to start SA every time as the greedy method can often 
reach the global optimum. Finally, we applied a meth-
od for initial temperature setting and used the general-
ized eigenvalue calculation to reduce the dimensional-
ity of the problem. We have shown that these changes 
reduce the run-time consistently and improve the per-
formance of the optimization in 100% of the cases test-
ed. The method generates a positive mean profit but 
with a fairly large standard deviation due to the use of a 
limited time window which results in losing portfolios 

in some cases. By further improving the mean revert-
ing portfolio value prediction and adopting the trading 
algorithm to the prediction, we have great hope to fur-
ther improve the trading performance of this method. 
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