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Abstract
Quantum computers have the potential to provide quadratic speedup forMonteCarlomethods
currently used in various classical applications. In this work, we examine the advantage of quantum
computers for financial option pricingwith theMonteCarlomethod. Systematic and statistical errors
are handled in a joint framework, and a relationship to quantumgate error is established.Newmetrics
are introduced for the assessment of quantum advantage based on sample count and optimized error
handling.We implement and analyze a Fourier series based approach and demonstrate its benefit over
themore traditional rescalingmethod in function approximation. Our numerical calculations reveal
the unpredictable nature of systematic errors,making consistent quantum advantage difficult with
current quantumhardware. Our results indicate that very lownoise levels, a two-qubit gate error rate
below 10−6, are necessary for the quantummethod to outperform the classical one, but a lownumber
of logical qubits (ca. 20)may be sufficient to see quantum advantage already.

1. Introduction

Over the last decades,many algorithms have been proposed for quantum computers that offer a speedup over
the best-known classical counterpart [1]. One of them is theMonte Carlomethod, for which quantum
computers promise a quadratic speedup over the classicalMonte Carlomethod[2]. Although this speedup is less
impressive than the speedup in some other quantumalgorithms, the broad applicability ofMonte Carlo in
physics,mathematics, finance, andmany otherfieldsmakes it of great interest [3–9]. Hereafter wewill refer to
Monte Carlomethods utilizing quantum computers to speed up the convergence as ‘quantum-accelerated
Monte Carlo’ orQAMCmethods.

At the core of theQAMCmethod lies theQuantumAmplitude Estimation (QAE) algorithm,which can
estimate the amplitude of a quantum state with an error of N1( ) , whereN denotes the number of samples
[10]. Over the last years,many different realizations were proposed forQAEwith decreasing quantum circuitry
footprint [11–15].

Monte Carlomethods are widely used in thefinancialmodeling industry for derivative pricing [5]. One of
the simplest examples of a derivative is the European call optionwhich haswell-knownproperties, and an
analytic solution under the Black-Scholesmodel [16]. Pricing options on quantum computers withMonteCarlo
was proposed and implemented previously [5, 6].

Errors in theQAMCmethodwere previously analyzed to some extent byChakrabarti et al [17], but they only
considered the number of logical qubits needed and did notmodel the noise in detail. In other papers [18–20]
the impact of hardware noise on the statistical errors of theQAMCwas analyzedwith the assumption of perfect
depolarizing noise, but systematic errors of the algorithmwere not taken into account.

In this paper, we combine earlier approaches by considering all kinds of noise effects.We propose a novel
generalmetric to quantify the advantage of a specific algorithmover another. In thismetric, we connect
systematic and statistical errors, sowhen optimizing for thismetric, we can determine and set free parameters in
the quantumalgorithm to boost performance and create earlier quantum advantage.
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In a recent paper, Herbert et al [21] came upwith an improvement on the previous function approximation
techniques using a Fourier series based approach. This Fouriermethod has been implemented below andwas
compared to themore traditional ‘rescaling’ approach.We can demonstrate that the Fouriermethod leads to
smaller errors with clear advantages in option pricing algorithmdesign.

1.1. Pricing European call options
Our chosen example is the European call option pricing problem. AEuropean call option is afinancial contract
that gives the holder the right (without obligation) to buy a certain asset at a specific futurematurity timeT at a
predefined strike priceK. Financial theory says that the option pricing problem is equivalent to an expected value
calculation and, in the general case, can be approximatedwithMonte Carlomethods [22]. In the industry-
standard Black-Scholes-Mertonmodel [23, 24], the distribution comes out as log-normal, so there is a closed-
form formula for the price, and this can be compared to anywider scaleMonte Carlo implementation to test the
efficiency of the latter.

The Black-Scholes log-normal probability distribution of the underlying stock price at time t takes the form:
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where ν is called the volatility of the underlying, r is the risk-free rate, S0 is the current price.
The payoff function of the option is:
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The option pricing task is to calculate the price of the option, which is just the expected value of the payoff at
maturity discountedwith the risk-free rate:
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1.2.Quantum-acceleratedMonteCarlomethod
Wewill briefly discuss themain steps of theQAMCmethod to introduce the reader to our notation. For amore
detailed exposition, see [6].

TheQAMCalgorithm consists of 3 parts: state preparation, function application, and amplitude estimation.

1.2.1. State preparation
The problemhas to be discretized for theQAMCmethod, andwe have to truncate the probability distribution
tofit into afinite number of bins. The distribution is truncated to the range S w S SVar ,T T T - +[ ( ) ( ) ( )
w SVar T( ) ]and discretized into 2n bins, wherew is a free parameter, n is the number of qubits. This
discretization is one source of the systematic errors wewill keep track of in the sequel.

Then the discrete probability distribution has to be loaded into the amplitudes of the quantum states as
visualized infigure 1. In ourwork, this was done in an exact waywith a state preparation circuit for arbitrary
states [25].

p i0 0 0 , 4n
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i n
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where i nñ∣ denotes the n-qubit basis states.
Note that in a typical classicalMonte Carlo application infinance, the probability distribution is not known

a priori, but a stochastic process is posited to evolve the price from time 0 to timeT. Usually, this is the hard part
ofMonte Carlo pricing classically. Here, in our discussion of theQAMCmethod, we assume that the
distribution is known and available in functional form. A full-scale generalQAMC implementation should
include a fast quantum circuit to generate this distribution and create proper state preparation, but this is a
preceding step that we do not consider here.
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1.2.2. Function application
Apply the desired function f (i) on the probability distribution:
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The probability ofmeasuring the last (payoff) qubit in the 1ñ∣ state will be equal to the expectation value of
the function on the discrete distribution:
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The piece-wise linear behavior of the payoff function (2) is achievedwith a comparator circuit on the
quantum computer that sets one ancilla qubit to state 1ñ∣ only if the state qubits are in state iñ∣ , where Si> K. Our
implementation of the comparator circuit [6] requires n ancilla qubits.

After the comparator, only the identity function needs to be applied to the payoff qubit. Because exact
quantumarithmetic is unfeasible onNISQdevices, some approximation is needed. The ‘rescaling technique’ for
the approximation of the linear part of the payoff functionwas proposed [6] based on the generalmethod of
Woerner et al [3]. This technique is based on the fact that the xsin2( ) function can be appliedwith a linear
number of rotation gates. If we rescale and shift the support of the distribution so that all function values are
close to 1

2
, the first termof the Taylor series of xsin2( ) can be used to generate a linear function:
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for small x. Rescaling is parametrized by a number c, such that only x values in the range [−c, c] are used.
With repeatedmeasurements of the payoff qubit, we could approximate the expectation value using the

quantum circuit in (5). This is the point wherewe have to use theQuantumAmplitude Estimation algorithm to
achieve (quadratic) speedup, aswewill see shortly.

Wewould like to point out that, strictly speaking, theQAMCalgorithm solves a different sampling task than
its classical counterpart. The expectation value of the function on the discretized probability distribution is
transformed into a Bernoulli distributionwith the same expectation value, and this latter is the distribution
sampled.

1.2.3. Quantum amplitude estimation
The circuit (5) gave us the desired probability on its last qubit.With theQAE algorithm, we can find this
probability with the estimation error scalingO(1/N), i.e., quadratically faster thanwith traditional sampling.

TheGrover operator is defined as:

, 80 0
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Figure 1.European call option pricingwithQAMCon n = 3 state preparation qubits. The bars represent the discretized probabilities
of the corresponding spot price. They are labeledwith the quantum state they are loaded into. The dashed (blue) line is the original
continuous distribution. The dotted (orange) line is the exact payoff (2), while the continuous (orange) line is the ‘rescaled’ (c = 0.35)
approximation of the payoff. Other parameters of the option:K = 2,T = 1, ν = 0.2, r = 0.05,w = 3.
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Application of themkth power of theGrover operator on the original state gives:
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where 0y ñ∣ and 1y ñ∣ are n-qubit normalized quantum states coming from (4), and f i psin a i i
2

0
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TheGrover operator is applied in a sequence of {mk} that is called the ‘schedule’ of amplitude estimation.
Themeasurement probabilities of the payoff qubit in the computational basis P 1k 1y ñ ñ =(∣ ∣ )

msin 2 1k a
2 q+([ ] ) are then sampled, and θa is estimatedwith amethod like quantumphase estimation or

maximum likelihood.
Asmentioned previously, we use n qubits for the state preparation, n qubits for the comparator circuit, and

an additional qubit as the payoff qubit. Therefore, the total number of qubits necessary is 2n+ 1.
If the number of quantum samples (shots) isNshot for every Grover step, the operators  and †

corresponding to the problem get evaluatedN=NshotNq times in total, where N m2 1k
M

kq 0= å += ( ) is the
number of queries to the operator (or † ) per shot. The numberN is interpreted as the number of samples for
the quantumalgorithm.

The twomost costly and problematic parts are the qubit initialization into the desired discretized
distribution and the application of the target function. Thefirst is problematic because its computational cost
grows exponentially with the number of qubits. The second one has to be done approximately. Sincewe use a
finite number of qubits, these contribute to systematic errors beyond the usual statistical errors ofMonteCarlo.

2.Quantumadvantagemetric

Wecan compare the relative efficiency of the quantumand the classicalMonte Carlomethods by calculating the
ratio of the pricing errors at a fixed sample size. Distinguishing statistical errors from systematic errors, we can
write
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where òc and òq denote the full error (statistical and systematic) of the classical and the quantummethod,
respectively;σc andσq denote the statistical error only (standard deviation around the expected value of the
measurements), while òsyst is the systematic error in the quantummethod.We can reasonably assume that the
classicalmethod is free of systematic errors.

Although later on, we always calculate the above quantity numerically, the behavior of the abovemetric can
be studied analytically.

Consider amethod that promises an algebraic (power ζ) speedup over another one at the expense of some
systematic error. Then the above-definedmetric 10 can bewritten in the followingway:
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whereNshot is the sample count for the quantum circuit in everyGrover step,Nq is the number of queries per
shot, cs̃ and qs̃ are the standard deviations of the classical and quantumdistributions being sampled.

In the presence of depolarizing noise, there is an upper threshold for the number ofGrover steps (mk), where
thefirst term in the previous formula (11) remains constant for increasingNq [18]. One can easily see that fewer
quantum shots (Nshot) lead to a greater quantumadvantageQ.

If wewant to generalize this quantum advantagemetric andmake itmore useful by selecting the same
runtime instead of the number of samples, with known classical and quantum runtime per sample τc and τq, the
modified formula reads:

Q Q 12T
2 c

q

2t
t

» ( )

Wherewe omitted the time of themeasurement and reset operations τr, since generally τr= τq for practical
problems. In the case of theQAE, it alsomeans that the two projection operations in each step are not taken into
account since, carefully engineered, they do not contributemuch to the overall depth of the quantum circuit.

3.Methods

3.1.Depolarizing noise
The depolarizing noise on n qubits with ‘coherence probability’ η, or alternatively with depolarizing ‘error
parameter’ ò= 1− η, is defined as the following quantum error channel [26]:
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where ρ is the theoretically exact densitymatrix of the n perfect qubits after the gate operation in question. This
noise channel acting on the readout qubit causes the amplitude amplification operator ofmk iterations ( mk )
to result in a noisy amplified probability
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where h is the (effective) coherence probability of theGrover operator.With a bit of approximation, we
neglected the small additional error of the operation preceding theGrover operator. Following the
hardware noise through every elementary gate operationwould bemore realistic. However, as shown in [20],
this assumption leads to a very similar overall effect characterized by an effective ηQ. This is demonstrated in
figure 2, wherewe simulated theQAEnoise on the gate level and thenfitted the result with an effective h on the
Grover level with convincing accuracy.

The one and two-qubit gate error parameters, ò1 and ò2, in the depolarizing channel, can be related to IBM’s
randomized benchmarkingmeasurements by some constantmultiplicative factors. For instance, the reported
‘Pauli-X error’ on their platform is equal to 1

2 1 and the ‘CNOT error’ is 3

4 2 [27].

3.2. Fourier series based function application approach
AFourier series based function approximation techniquewas recently introduced byHerbert et al [21]. The
technique uses the easily calculable axsin2 q-( ) function to calculate the axsin( ) and axcos( ) functions and
constructs the payoff function (weightedwith the distribution) as a Fourier series from them.

We adapted this technique to European call option pricing. The extensions include taking the effect of the
comparator into account andmaking the linear part of the payoff smoothly periodic.

Themain steps of themethod are to construct distinct quantum circuits l for the lth term in the Fourier
series:
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whereΘ is theHeaviside step function. This can be done easily with a linear number of rotation gates, giving us
the probabilities ofmeasuring the payoff qubit in the 1ñ∣ state:
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Figure 2. Fit of the depolarizing channel probabilities (14) on the noisy simulation results, where the depolarizing channel was applied
after every 1-qubit gate with error parameter ò1 = 2 × 10−5 and after every 2-qubit gatewith error parameter ò2 = 6 × 10−4. The
fitted channel’s coherence probability is 0.941h = .
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Themethod’s feasibility relies on the fact that the Fourier coefficients decay as 1/n3. This is only true for
functions that are continuous and have continuous first derivatives, with their second and third derivatives being
piece-wise continuous and bounded. That is whywe have tomake the linear part of the payoff function
continuously periodic and calculate the Fourier coefficients that satisfy the following equations (for the
coefficients, see A6):
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where xu is the upper limit of the linear part, a, b, c, and d are the coefficients of the third-order polynomial that
ensures the sufficiently smooth periodic continuation of the linear function, andW is the period of the function
that should be strictly larger than xu.

Following a short calculation (see section appendix A.1), we end upwith the following formula of the
expectation value for the option price with the above-mentioned Fourier coefficients:
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From the error analysis of the Fourier technique, it will be apparent that choosing the smallest possible xu
will result in the smallest statistical error. By setting the shift x0= K and x x Kmax iu = -( ) , weminimize xu
and ensure that only the linear part of the function gets evaluated.

Obviously, we have to choose a threshold lmax wherewe truncate the Fourier series. This will be treated as a
free parameter influencing one source of systematic error.

3.3. Statistical error
The noise-dependent variance of the estimates is calculatedwith the help of theCramér-Rao error bound for the
QAEdescribed in [18]. In a short summary, they create a likelihood function from themeasurement
probabilities (14) and calculate its Fisher informationmatrix regarding the parameters η and θ. TheCramér-Rao
inequality provides a lower bound on the variance of the estimates:

m N m N, , , , , , , 19k kQAE
2 1

1,1s q h q h -( { } ) [ ( { } ) ] ( )

where sin2 q( ) is the estimated probability,  is the Fisher informationmatrix, η is the parameter of the
depolarizing channel, and {mk} is the schedule of the amplitude estimation.

The noisemodel is best interpretable in terms of qubit operation error parameters, and these are the
parameters in our simulations too.We used themethod described in section 3.1 tofit the coherence probability
h of the amplitude amplification step (Grover operator) on the simulated results with linearGrover schedule
mk= {0, 1, 2, 3,K,20}.

Whenwe use theCramér-Rao bound in place of the variance, we implicitly assume that the estimate is
efficient. This is only true in theN→∞ limit. To takefinite sample sizes into account, wemademaximum
likelihood simulations for a simple 2-qubit casewith different numbers of samples. To calculate the standard
deviation, the simulationswere repeated 1000 times each.We couldfit an exponential function on the ratio of
the realized standard deviation and the lower bound that will be used later for correction (figure 3).

3.3.1. Rescaling technique
In the case of the rescaling technique (as its name suggests), the result of theQAE is rescaled, so the variance is
amplified inmost cases. If QAE

2s denotes the variance of the estimated rescaled probability, the variance of the
option price is:

x K

c
, 20R

2 max
QAE

2
⎛
⎝

⎞
⎠

s s=
- ( )

where xmax is the highest value of the domain after truncation controlled byw, c is the rescaling parameter.

3.3.2. Fourier series based approach
In the case of the Fourier function application technique, we performmultiple amplitude estimation tasks for
theP0(0, 0),Pl(K, 0) andPl(K,π/4)with standard deviations of the estimated probabilityσ0, l

0s( ) and l
4s p( ),
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respectively. The variance of the option price following the previous derivation 18 is:
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Since the Fourier technique demands additional applications of the circuit , the number of queries and so
the sample size is increased, which is the same asmultiplying the variancewith l2 1max + , i.e., the variance in our
formulas will be:

l2 1 . 22F
2

F
2

maxs s= +˜ ( ) ( )

3.3.3. Classical case
In the classical case, the variancewas calculated from the Black-Sholesmodel in a closed form (section
appendix A.3). The variance of theMonte Carlo estimate can be calculated from the variance of the Black-Sholes
option price:

N
. 23c

2 BS
2

s
s

= ( )

3.4. Systematic errors
As systematic errors are exempt from statistical uncertainty, they are easily calculated numerically. Tomitigate
the effect of large independent systematic errors canceling each other out randomly, we calculated the systematic
errors coming fromdifferent sources separately and considered the quadratic sum.

The discretization and truncation errors are not easily separated numerically. However, we can obtain an
analytic formula for the truncation error (see section appendix A.4) and calculate the discretization errorwith it.

The total systematic error is calculated as follows:

24syst trunc
2

disc
2

func
2= + + ( )   

Where òtrunc, òdisc are the systematic errors coming from truncating and discretizing the probability distribution,
and òfunc is the systematic error coming from the function approximation.

The above-defined systematic error is then added to the variance (20 or 21) to obtain the total error of the
QAMCalgorithm:

25q R F
2

syst
2s= + ( ) 

3.5. Simulation
All simulationswere donewith the IBMQiskit SDK [28]. In noisy simulations, the depolarizing channel was
used on one, and two-qubit quantumgates with all qubits treated equally. This noisemodel, although a

Figure 3.The efficiency of theML estimate calculated for the option pricing setting. The fitted parameters are a = 0.039, b = 0.886.
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simplification, has a good resemblance to the noise on real devices [18, 29]. The effective coherence probability
(h)was fitted to the simulated probabilities as discussed in section 3.1.Where possible, Qiskit’s densitymatrix
methodwas used to obtain exact expectation values even under noise.

In our simulations, we usedQiskit’s built-in transpilationwithmaximumoptimization to transpile the
circuits into a basis gate set of {CX,X, SX, RZ} defined byQiskit. These are the standard native gates on IBM
quantum computers. The depolarizing noise channel was applied after every gate operation except the RZ gate,
similar to real quantumhardware. After one-qubit operations, a noise channel with depolarizing error
parameter ò1, and after two-qubit operations (CXgates)with parameter ò2 was applied.

Throughout the simulations, we fixed the ratio between one and two-qubit gate errors to ò2/ò1= 30, and the
couplingmap to all-to-all coupling.We checked different settings, but it had no substantial effect on the fitted
noisemodel effective parameter (coherence probability) h (see figure A1).

Due to increasing computational cost, we found it infeasible to simulate quantum circuits beyond 13 qubits.
However, a higher number of qubits can be easily necessary for optimal quantumadvantage. To overcome this
issue, we used a simple formula (26) to extrapolate tomore qubits. If we assume that every application of aCX
gatewith error parameter ò2 introduces the same effective error to theGrover operator, we can approximate the
effective coherence probability with:

n 1 , 26a bn c
2

nh » - + +( ) ( ) ( )

where n is the number of state preparation qubits. The exponent is the total number ofCX gates in theGrover
operator (a n coming from state preparation, bn+ c from the other parts).

The implementation of the option pricing circuit followed [6]with slightmodifications. In theGrover
operator, the 0 projection onto the all-zero state is amulti-controlled Toffoli (MCX) gate that can be very costly
if implementedwithout ancilla qubits: its CX count scales exponentially with the number of qubits [30].With
ancilla qubits, linear scaling is achievable. Luckily we already have enough ancilla qubits because of the
comparator, andwith the ‘v-chain-dirty’ implementation ofMCX, the dirty ancilla qubits can be reused [31].
Our code is available onGitHub (https://github.com/udvzol/option_pricing).

4. Results

We show results that weremadewith the exponentially increasingGrover schedulemkwith a base of two, i.e.,
m0= 0,mk= 2k−1,∀k> 0. The rationale behind this is that this schedule provides the largest quantum speedup,
and its fast increasemakes numerical optimizations easier.We have to note that other schedules can bemore
robust against noise [18], but fromourmetrics point of view, they performed similarly. Thematurity of the
optionswas chosen to beT= 1 for simplicity. This does not constrain the analysis since by changing the
parameters ν and r, the same behavior can be achieved. Also, for simplicity, we consider at-the-money options,
i.e., where the current spot price and the strike are the same, which is usually themost relevant setup infinance.
In particular, we use S0= K= 2.

4.1. Numerical optimization of the quantumadvantage
Weaimed to identify the gate error threshold thatmakesQAMCadvantageous over the classical one. The
quantummethod has several parameters such as theGrover schedule {mk}, the number of state preparation
qubits n, the truncation parameterw, and the number of Fourier coefficients lmax or, alternatively, the parameter
c in the rescaling technique. Optimization for the quantumadvantagemetricQmade it possible to eliminate the
dependence onmany parameters and only retain the dependence on the gate error. Of course, there is a trade-off
between systematic and statistical errors, but during the optimization, we treat themon equal footing.

In fact, if wewere optimizing for the quantumadvantagemetricQ alone, which is a ratio of error bars, there
would be no control over the absolutemagnitudes of these errors. To circumvent this, wemaximizeQwhile
restricting the individual errors below a certain threshold òthr:

Q Qmax 27thr
q thr

=
<

( ) ( )
 

We investigated and optimized quantumadvantage on the following parameter grid: n from1 to 14with step
size 1; 30 evenly spaced values forw in [0.5, 10]; 30 logarithmically spaced values for c in [10−5, 100]; lmax from0
to 59with step size 1, and themaximumof the exponential schedule went from0 to 223.Weworkedwith
relatively small sample sizes, e.g.,Nshot= 100, changing this parameter to achieve our òthr error constraint. Note,
however, that due to systematic errors, the precision cannot be increased beyond a certain point by increasing
Nshot. Therefore, our interest was rather how to get themaximumout of a small, optimized implementationwith
a reasonable (finite)number of quantum samples.
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The optimal number of state preparation qubits n changes with varying gate errors. In agreementwith our
expectations, the lower the noise is, themore qubits are favored since it decreases the discretization error. This
behavior can be seen infigure 4. For large noise, there is no point in decreasing the discretization error because
thatwould requiremore qubits and larger circuits and thuswould increase the overall error level of the
algorithm elsewhere.

To compare the Fourier and the rescalingmethodologies and quantify the quantumadvantage across several
option parameters, wemade a grid of options with r= {0.05, 0.1, 0.2} and ν= {0.1, 0.2, 0.3, 0.4}. The grid
choicewas inspired by real-world options. Our results show great variability in the achievable quantum
advantage due to the unpredictable and erratic impact of systematic errors. Nevertheless, from figure 5 the
following conclusions can be drawn:

• Formost of the options tested, quantum advantage is achievedwhen theCX error rate goes down to 10−6 or
10−7.

• The Fourier technique performs better on every option across a wide range ofCX errors.

• The relative advantage of the Fourier approach is pretty stable and does not depend on the gate error.

Figure 4.Themaximumachievable quantum advantage on an optionwith r = 0.05, ν = 0.1. The different curves show themaximum
advantagewith a specific number of qubits. The solid (blue) band highlights the best curve. The sample sizewas constantNshot = 100.

Figure 5. (Left)The advantageQ of the quantum algorithmwith the Fourier and the rescaling technique compared to the classical
Monte Carlo algorithm. The number of samples is varied to give a relative error smaller than òthr = 1%. The calculations for 11
different options are averaged. (Right)Comparison of the Fourier and rescaled technique on the options separately at three different
error rates. The points corresponding to the same option are connectedwith a solid line. The optionmarkedwith a (pink) dashed
ellipse on the rightwas considered an outlier due to the fortunate cancellation of some systematic error factors, and its contribution
was omitted.
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Typical optimal parameters in the regionwherewe see quantumadvantage (Q> 1) are 5–10 for n, around
10−2 for c, 5–10 forw, 10–30 for lmax, greatly varying, and 10–20 for the length of the schedule.

4.2. Systematic errors
We found that systematic errors have high variability and can showunexpected behavior. To assess the
importance of systematic errors, we calculated the ratio of the systematic to statistical errors in the optimum, see
figure 6. The statistical error (standard deviation around themean) is generally larger than the systematic error,
but the ratio remains relatively high, around 0.7 for the rescaled function application technique. For the Fourier
technique, the ratio is lower almost by one order ofmagnitude. The fact that it was possible to decrease the ratio
to these levels highlights the benefit of the technique.

5. Conclusion

Weexamined the efficiency of theQAMCmethod in a realistic implementation of quantumoptions pricing.We
found that systematic errors can produce large variations as parameters of the options or the quantum algorithm
are changed, and this greatly influences themethod’s feasibility on a small noisy quantum computer.

We found clear evidence that the Fourier function approximation techniqueworks better in the option
pricing algorithm. Thisfinding coincides with the limited comparison done byHerbert et al [21].

According to our calculations, a CX error level of around 10−6 will be needed for quantum advantage to
showup in European option pricing. Current IBMcomputers have aCX error rate of around 10−2− 10−3. Our
target error rates can be achievedmost probablywith error correction only.

Our finding that about 20 qubitsmight be sufficient to achieve quantumadvantagemay contradict the 7500
qubits Chakrabarti et al [17] deemed necessary atfirst sight. However, given themuchmore complicated
problem and objective they considered, the two results complement each other.

The state preparation step has a high impact on both the noise level and the errors fromdiscretization and
truncation. The problem can be tackled by quantumgenerative adversarial networks, which can reduce the
computational cost of the step, but introduce another type of systematic error due to its approximate
nature [32].

If quantum arithmetic becomes feasible, both the probability distribution evaluation and function
evaluation could be done on the quantum computer eliminatingmost of the systematic errors at the expense of
larger noise.

The quantumFischer information could provide a lower error bound than the classical Fischer information
calculated here. However, it is only obtainable through adaptivemeasurements. Equivalently,modified versions
of theGrover operator could lead to higher classical Fischer information [33]. These types ofmodificationswere
out of scope for this paper; only the standard algorithmwas considered.

It would beworth exploring other types of noisemodels, but unfortunately, they can be treated only
numerically.

Figure 6.The ratio of systematic to statistical errors of the estimated options prices averaged over the set of options. (Blue) circles
correspond to the rescaled function approximation technique and (orange) diamonds to the Fourier technique.
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Appendix

A.1. Fourier series based technique
Compared to the original approach, the kink in the options payoff function brings new terms into the Fourier
expansion. The following equations (A1), (A2) connect the probabilitiesmeasured on the payoff qubit to the cos
and sin terms of the Fourier series:
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Inverting A1 andA2 and substituting xiwith (xi− x0) gives us:
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Weuse these formulas in the Fourier series to reach equation (18).

A.2. Coefficients of the third-order polynomial
The following coefficients satisfy the conditions required of the third-order polynomial 17:
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A.3. Variance of the option return
The Black-Sholes formula for the option price in our notation:
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The variance of the option price [34] can be calculated as follows:
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where CDF(x) is the cumulative distribution function of the log-normal distribution (A10) and
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A.4. Truncation error
First, wewould like to introduce a couple of useful expressions. In our notation, the expectation value and the
standard deviation of the log-normal distribution are:
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The cumulative distribution function of the log-normal distribution can be expressed as:
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Another helpful function is whatwe call here the ‘cumulative expectation function’ (CEF):
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Using the expressions above the truncation error can be calculated as:
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A.5.Different noisemodels
We found that the noise level of theGrover operator was largely independent of the noisemodel used on qubit
operations, except for theCX error parameter (figure A1). Thismade theCX error parameter ideal to describe
the noisemodels. Other parameters were fixed.
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