Lineáris, rezisztív hálózatelméleti modellek

Soros kapcsolás

Feszültség osztó: lehet terheletlen (a két ellenálláson ugyan az az áram folyik) vagy terhelt (nem egyezik a két ellenállás árama)

Példa: terheletlen terhelt (áramvezérelt áramgenerátorral)

\[
\begin{align*}
\text{Bemenő ellenállás: } R_{be} &= \frac{U_1}{I_1} = R_1 + R_2 \\
\text{Feszültség(osztás) átvitel: } K &= \frac{U_2}{U_1} = \frac{R_2}{R_1 + R_2}
\end{align*}
\]

\[
\begin{align*}
R_{be} &= \frac{U_1}{I_1} = \frac{R_1 I_1 + R_2 (I_1 + \beta I_1)}{I_1} = R_1 + (1 + \beta)R_2 \\
K &= \frac{U_2}{U_1} = \frac{R_2 (I_1 + \beta I_1)}{R_1 I_1 + R_2 (I_1 + \beta I_1)} = \frac{(1 + \beta)R_2}{R_1 + (1 + \beta)R_2}
\end{align*}
\]

Párhuzamos kapcsolás, áram osztó

Példa: terheletlen terhelt (feszültség vezérelt feszültség generátorral)

\[
\begin{align*}
\text{Bemenő ellenállás: } R_{be} &= \frac{U_1}{I_1} = R_1 + R_2 \\
\text{Áramosztó: } K &= \frac{I_2}{I} = \frac{R_1}{R_1 + R_2}
\end{align*}
\]

\[
\begin{align*}
R_{be} &= \frac{U_1}{I} = \frac{U + U}{R_1 + R_2} = \frac{1}{R_2} + \frac{1}{R_2} \\
R_{be} &= \frac{U_1}{I_1} = R_1 * R_2 = \frac{R_1 R_2}{R_1 + R_2} \\
R_{be} &= \frac{U_2}{I_2} = \frac{U - AU}{R_1 + R_2} = \frac{1}{R_1} + (1 - A) \frac{1}{R_2} \\
K &= \frac{I_2}{I} = \frac{R_2}{U + U - AU} = \frac{1}{R_1} + (1 - A) \frac{1}{R_2}
\end{align*}
\]
Lineáris kapu (kétpólus) Thevenin és Norton ekvivalense:

Példa:
A kétpólusú áramkör:

\[
\begin{align*}
\text{Thevenin ekvivalens} & \quad \equiv \\
\text{Norton ekvivalens} & \quad \equiv
\end{align*}
\]

Paraméterei: \( U_{\text{th}} = U_u \), \( I_{\text{no}} = I_r \), \( R_{\text{th}} = R_{\text{no}} = R \)

\[
R_{\text{th}} = R_{\text{no}} = \frac{U_u}{I_r}, \text{vagy}
\]

\[
R_{\text{th}} = R_{\text{no}} = R_{\text{bc}} \bigg|_{U_0 = 0, I_0 = 0, \text{dezaktíválás}} = R_1 + (R_2 \ast R_3)
\]

\( I_{\text{no}} = I_r \) rövidzárási áram:

\[
U_{\text{th}} = U_u \quad \text{üresjárási feszültség:}
\]

Szuperpozíció elvét felhasználva:

\[
I_r = I(U_0, I_0 = 0) + I(I_0, U_0 = 0) = \\
= \frac{R_3}{R_1 + R_3} \frac{U_0}{R_2 + R_1 \ast R_3} + \frac{R_2 \ast R_3}{R_1 + R_2 \ast R_3} I_0
\]

\[
U_u = U(U_0, I_0 = 0) + U(I_0, U_0 = 0) = \\
= \frac{R_3}{R_2 + R_3} U_0 + (R_2 \ast R_3) I_0
\]

\[
R_{\text{th}} = R_{\text{no}} = R_{\text{bc}} \bigg|_{\text{dezaktíválás}} = (R_1 + (R_2 \ast R_3))
\]

Ellenőrzés: \[ R_{\text{bc}} I_r = U_u \] azaz,

\[
(R_1 + (R_2 \ast R_3)) \left( \frac{R_3}{R_1 + R_3} U_0 + \frac{R_2 \ast R_3}{R_1 + R_2 \ast R_3} I_0 \right) = \frac{R_3}{R_2 + R_3} U_0 + (R_2 \ast R_3) I_0
\]
**Példa:** Soros kapcsolás végein lévő (a közös föld-csomóponthoz képest értelmezett) feszültségektől egy belső pont feszültsége hogyan függ?

\[ \begin{align*}
R_1 &= 10 \text{ k}\Omega \\
R_2 &= 5 \text{ k}\Omega \\
U_1 &= +12 \text{ V} \\
U &= \? \\
U_2 &= -6 \text{ V}
\end{align*} \]

Kapásból felírható különböző elvű, konkrét (számszerű) megoldási lehetőségek:

1. \[ I = \frac{12 - (-6)}{10 + 5} = \frac{18}{15} \text{ mA} \quad \text{vagy} \quad U = 12 - \frac{18}{15} \cdot 10 = 0 \text{V} \]
   \[ \text{vagy} \quad I = \frac{(-6) - 12}{10 + 5} = -\frac{18}{15} \text{ mA} \quad \text{vagy} \quad U = 12 + \left( -\frac{18}{15} \cdot 10 \right) = 0 \text{V} \]

2. Az \[ \frac{12 - U}{10} = \frac{U - (-6)}{5} \text{ egyenlet megoldása:} \quad \frac{U}{5} + \frac{10}{10} = \frac{12}{10} - \frac{6}{5} \rightarrow U = \frac{12 - 6}{10 + 5} = 0 \text{V} \]

3. \[ U = \frac{5}{10 + 5} \cdot 12 + \frac{10}{10 + 5} \cdot (-6) = 4 - 4 = 0 \text{V} \]

A megoldások általánosított (paraméteresen számolt) gondolatmenetei:

1. módszer:
Az egyik végpont feszültségéhez (a felvett áramirántól függően) hozzáadjuk vagy levonjuk a hozzá közelebb álló ellenálláson eső feszültséget:

\[ I = \frac{U_1 - U_2}{R_1 + R_2}, \quad U = U_1 - R_1 I \quad \text{vagy} \quad U = U_2 + R_2 I \]

2. módszer: a soros kapcsolásra csomóponti egyenlet felfrása

\[ I_1 = I_2 \quad \text{azaz} \quad \frac{U_1 - U}{R_1} = \frac{U - U_2}{R_2} \quad \rightarrow \quad U \left( \frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{U_1}{R_1} + \frac{U_2}{R_2} \]

\[ U = \frac{R_2}{R_1 + R_2} U_1 + \frac{R_1}{R_1 + R_2} U_2 \]

3. módszer: szuperpozíció

\[ U = K_1 U_1 + K_2 U_2, \quad \text{ahol} \ K_1 \text{ és} \ K_2 \text{ két terheletlen feszültségosztó képlet:} \]

\[ K_1 = \frac{U_1}{U_1} \quad \text{és} \quad K_2 = \frac{U_2}{U_2} \]

A három módszer, természetesen ugyan azt az eredményt adja.
Hogy ki, mikor, melyiket alkalmazza? Téssék gyakorolni és a megszerzett rutin alapján adott esetben a leggyorsabban célzhatóan választani, egy másik módszerrel pedig ellenőrizni lehet, nem számoltunk-e el valamit! Dimenziók, mértékegységek, nagyságrendek mindig ellenőrizendőek!