
Arithmetic types Implicit type conversion

Arithmetic types in C
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

18 September, 2024

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 1 / 34

Arithmetic types Implicit type conversion

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Arithmetic types of C
Introduction
Integers

Characters
Real

2 Implicit type conversion

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 2 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Chapter 1

Arithmetic types of C

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 3 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types – Introduction DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type is

Set of values
Operations

Representation

In a real computer – the set of values is limited

We can not represent arbitrary large numbers
We can not represent numbers with arbitrary accuracy
π ̸= 3.141592654
We must know the limits of what can be represented, in order
to store our data

without any loss of information or
with an acceptable level of information loss, without wasting
memory

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 4 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types – Introduction DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type is

Set of values
Operations

Representation

In a real computer – the set of values is limited
We can not represent arbitrary large numbers

We can not represent numbers with arbitrary accuracy
π ̸= 3.141592654
We must know the limits of what can be represented, in order
to store our data

without any loss of information or
with an acceptable level of information loss, without wasting
memory

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 4 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types – Introduction DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type is

Set of values
Operations

Representation

In a real computer – the set of values is limited
We can not represent arbitrary large numbers
We can not represent numbers with arbitrary accuracy
π ̸= 3.141592654

We must know the limits of what can be represented, in order
to store our data

without any loss of information or
with an acceptable level of information loss, without wasting
memory

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 4 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types – Introduction DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type is

Set of values
Operations
Representation

In a real computer – the set of values is limited
We can not represent arbitrary large numbers
We can not represent numbers with arbitrary accuracy
π ̸= 3.141592654
We must know the limits of what can be represented, in order
to store our data

without any loss of information or
with an acceptable level of information loss, without wasting
memory

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 4 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types – Introduction DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type is

Set of values
Operations
Representation

In a real computer – the set of values is limited
We can not represent arbitrary large numbers
We can not represent numbers with arbitrary accuracy
π ̸= 3.141592654
We must know the limits of what can be represented, in order
to store our data

without any loss of information or

with an acceptable level of information loss, without wasting
memory

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 4 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types – Introduction DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type is

Set of values
Operations
Representation

In a real computer – the set of values is limited
We can not represent arbitrary large numbers
We can not represent numbers with arbitrary accuracy
π ̸= 3.141592654
We must know the limits of what can be represented, in order
to store our data

without any loss of information or
with an acceptable level of information loss, without wasting
memory

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 4 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void
scalar

arithmetic
integer: integer, character, enumerated
floating-point

pointer

function
union
compound

array
structure

Today we will learn about them

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 5 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Types of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void
scalar

arithmetic
integer: integer, character, enumerated
floating-point

pointer

function
union
compound

array
structure

Today we will learn about them

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 5 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Binary representation of integers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary representation of unsigned integers stored in 8 bits

dec 27 26 25 24 23 22 21 20 hex
0 0 0 0 0 0 0 0 0 0x00
1 0 0 0 0 0 0 0 1 0x01
2 0 0 0 0 0 0 1 0 0x02
3 0 0 0 0 0 0 1 1 0x03
...

...
...

...
127 0 1 1 1 1 1 1 1 0x7F
128 1 0 0 0 0 0 0 0 0x80
129 1 0 0 0 0 0 0 1 0x81

...
...

...
...

253 1 1 1 1 1 1 0 1 0xFD
254 1 1 1 1 1 1 1 0 0xFE
255 1 1 1 1 1 1 1 1 0xFF

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 6 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

127

01..11

overflow

128

10..00

overflow

129

10..01

overflow

254

11..10

overflow

255

11..11

overflow

In case of unsigned
integers stored in 8 bits

255+1 = 0
255+2 = 1
2-3 = 255

”modulo 256 arithmetic”

We always see the
remainder of the
result divided by 256

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 7 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

127

01..11

overflow

128

10..00

overflow

129

10..01

overflow

254

11..10

overflow

255

11..11

overflow

In case of unsigned
integers stored in 8 bits

255+1 = 0

255+2 = 1
2-3 = 255

”modulo 256 arithmetic”

We always see the
remainder of the
result divided by 256

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 7 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

127

01..11

overflow

128

10..00

overflow

129

10..01

overflow

254

11..10

overflow

255

11..11

overflow

In case of unsigned
integers stored in 8 bits

255+1 = 0
255+2 = 1

2-3 = 255

”modulo 256 arithmetic”

We always see the
remainder of the
result divided by 256

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 7 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

127

01..11

overflow

128

10..00

overflow

129

10..01

overflow

254

11..10

overflow

255

11..11

overflow

In case of unsigned
integers stored in 8 bits

255+1 = 0
255+2 = 1
2-3 = 255

”modulo 256 arithmetic”

We always see the
remainder of the
result divided by 256

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 7 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

127

01..11

overflow

128

10..00

overflow

129

10..01

overflow

254

11..10

overflow

255

11..11

overflow

In case of unsigned
integers stored in 8 bits

255+1 = 0
255+2 = 1
2-3 = 255

”modulo 256 arithmetic”

We always see the
remainder of the
result divided by 256

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 7 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

127

01..11

overflow

128

10..00

overflow

129

10..01

overflow

254

11..10

overflow

255

11..11

overflow

In case of unsigned
integers stored in 8 bits

255+1 = 0
255+2 = 1
2-3 = 255

”modulo 256 arithmetic”
We always see the
remainder of the
result divided by 256

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 7 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Two’s complement representation of integers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Two’s complement representation of signed integers stored in 8
bits

dec 27 26 25 24 23 22 21 20 hex
0 0 0 0 0 0 0 0 0 0x00
1 0 0 0 0 0 0 0 1 0x01
2 0 0 0 0 0 0 1 0 0x02
3 0 0 0 0 0 0 1 1 0x03
...

...
...

...
127 0 1 1 1 1 1 1 1 0x7F

−128 1 0 0 0 0 0 0 0 0x80
−127 1 0 0 0 0 0 0 1 0x81

...
...

...
...

−3 1 1 1 1 1 1 0 1 0xFD
−2 1 1 1 1 1 1 1 0 0xFE
−1 1 1 1 1 1 1 1 1 0xFF

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 8 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

126

01..10

overflow

127

01..11

overflow

−128

10..00

overflow

−127

10..01

overflow

−2

11..10

overflow

−1

11..11

overflow

In case of signed integers
stored in 8 bits

127+1 = -128
127+2 = -127
-127-3 = 126

on the other hand

2-3 = -1

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 9 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

126

01..10

overflow

127

01..11

overflow

−128

10..00

overflow

−127

10..01

overflow

−2

11..10

overflow

−1

11..11

overflow

In case of signed integers
stored in 8 bits

127+1 = -128

127+2 = -127
-127-3 = 126

on the other hand

2-3 = -1

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 9 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

126

01..10

overflow

127

01..11

overflow

−128

10..00

overflow

−127

10..01

overflow

−2

11..10

overflow

−1

11..11

overflow

In case of signed integers
stored in 8 bits

127+1 = -128
127+2 = -127

-127-3 = 126

on the other hand

2-3 = -1

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 9 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

126

01..10

overflow

127

01..11

overflow

−128

10..00

overflow

−127

10..01

overflow

−2

11..10

overflow

−1

11..11

overflow

In case of signed integers
stored in 8 bits

127+1 = -128
127+2 = -127
-127-3 = 126

on the other hand

2-3 = -1

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 9 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

126

01..10

overflow

127

01..11

overflow

−128

10..00

overflow

−127

10..01

overflow

−2

11..10

overflow

−1

11..11

overflow

In case of signed integers
stored in 8 bits

127+1 = -128
127+2 = -127
-127-3 = 126

on the other hand

2-3 = -1

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 9 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

The overflow DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0

00..00

overflow

1

00..01

overflow

2
00..10

overflow

3
00..11

overflow

126

01..10

overflow

127

01..11

overflow

−128

10..00

overflow

−127

10..01

overflow

−2

11..10

overflow

−1

11..11

overflow

In case of signed integers
stored in 8 bits

127+1 = -128
127+2 = -127
-127-3 = 126

on the other hand
2-3 = -1

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 9 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Integer types in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

type bit1 <limits.h> printf
signed char 8 CHAR_MIN CHAR_MAX %hhd2

unsigned char 8 0 UCHAR_MAX %hhu2

signed short int 16 SHRT_MIN SHRT_MAX %hd
unsigned short int 16 0 USHRT_MAX %hu
signed int 32 INT_MIN INT_MAX %d
unsinged int 32 0 UINT_MAX %u
signed long int 32 LONG_MIN LONG_MAX %ld
unsigned long int 32 0 ULONG_MAX %lu
signed long long int2 64 LLONG_MIN LLONG_MAX %lld
unsigned long long int2 64 0 ULLONG_MAX %llu

1Typical values, the standard only determines the minimum
2since the C99 standard

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 10 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Declaration of integers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defaults
The signed sign-specifier can be omitted

1 int i; /* signed int */
2 long int l; /* signed long int */

If there is sign- or length-modifier, the int can be omitted.

1 unsigned u; /* unsigned int */
2 short s; /* signed short int */

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 11 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Declaration of integers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defaults
The signed sign-specifier can be omitted

1 int i; /* signed int */
2 long int l; /* signed long int */

If there is sign- or length-modifier, the int can be omitted.

1 unsigned u; /* unsigned int */
2 short s; /* signed short int */

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 11 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Integer types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An example on how to use the previous table: a program that
runs for a very long time3

1 #include <limits.h> /* for integer limits */
2 #include <stdio.h> /* for printf */
3

4 int main(void)
5 { /* almost all long long int */
6 long long i;
7

8 for (i = LLONG_MIN; i < LLONG_MAX; i = i+1)
9 printf("%lld\n", i);

10

11 return 0;
12 } link

3provided that long long int is 64 bit long, the program runs for 585 000
years if the computer prints 1 million numbers per second

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 12 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect03/src/longloop.c

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Integer constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Specifying integer constants

1 int i1=0, i2=123, i4=-33; /* decimal */
2 int o1=012, o2 =01234567; /* octal */
3 int h1=0x1a , h2=0x7fff , h3=0xAa1B /* hexadecimal */
4

5 long l1=0x1al , l2=-33L; /* l or L */
6

7 unsigned u1=33u, u2=45U; /* u or U */
8 unsigned long ul1=33uL , ul2 =123lU; /* l and u */

If neither u or l is specified, the first type that is big enough is
taken:

1 int
2 unsigned int – in case of hexa and octal constants
3 long
4 unsigned long

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 13 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Integer constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Specifying integer constants

1 int i1=0, i2=123, i4=-33; /* decimal */
2 int o1=012, o2 =01234567; /* octal */
3 int h1=0x1a , h2=0x7fff , h3=0xAa1B /* hexadecimal */
4

5 long l1=0x1al , l2=-33L; /* l or L */
6

7 unsigned u1=33u, u2=45U; /* u or U */
8 unsigned long ul1=33uL , ul2 =123lU; /* l and u */

If neither u or l is specified, the first type that is big enough is
taken:

1 int
2 unsigned int – in case of hexa and octal constants
3 long
4 unsigned long

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 13 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Why do we need to know the limits of number
representations? DEPARTMENT OF

NETWORKED SYSTEMS
AND SERVICES

Let’s determine the following value!(
15
12

)
=

15!
12! · (15 − 12)!

(What is the number of possibilities of selecting 12 out of 15
different chocolates?)

The value of the numerator is 15! = 1 307 674 368 000
The value of the denominator is 12! · 3! = 2 874 009 600
None of them can be represented as a 32 bits int!
But with simplifying the expression

15 · 14 · 13
3 · 2 · 1

=
2730

6
= 455

all parts can be calculated without any problem, even on 12
bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 14 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Why do we need to know the limits of number
representations? DEPARTMENT OF

NETWORKED SYSTEMS
AND SERVICES

Let’s determine the following value!(
15
12

)
=

15!
12! · (15 − 12)!

(What is the number of possibilities of selecting 12 out of 15
different chocolates?)

The value of the numerator is 15! = 1 307 674 368 000

The value of the denominator is 12! · 3! = 2 874 009 600
None of them can be represented as a 32 bits int!
But with simplifying the expression

15 · 14 · 13
3 · 2 · 1

=
2730

6
= 455

all parts can be calculated without any problem, even on 12
bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 14 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Why do we need to know the limits of number
representations? DEPARTMENT OF

NETWORKED SYSTEMS
AND SERVICES

Let’s determine the following value!(
15
12

)
=

15!
12! · (15 − 12)!

(What is the number of possibilities of selecting 12 out of 15
different chocolates?)

The value of the numerator is 15! = 1 307 674 368 000
The value of the denominator is 12! · 3! = 2 874 009 600

None of them can be represented as a 32 bits int!
But with simplifying the expression

15 · 14 · 13
3 · 2 · 1

=
2730

6
= 455

all parts can be calculated without any problem, even on 12
bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 14 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Why do we need to know the limits of number
representations? DEPARTMENT OF

NETWORKED SYSTEMS
AND SERVICES

Let’s determine the following value!(
15
12

)
=

15!
12! · (15 − 12)!

(What is the number of possibilities of selecting 12 out of 15
different chocolates?)

The value of the numerator is 15! = 1 307 674 368 000
The value of the denominator is 12! · 3! = 2 874 009 600
None of them can be represented as a 32 bits int!

But with simplifying the expression

15 · 14 · 13
3 · 2 · 1

=
2730

6
= 455

all parts can be calculated without any problem, even on 12
bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 14 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Why do we need to know the limits of number
representations? DEPARTMENT OF

NETWORKED SYSTEMS
AND SERVICES

Let’s determine the following value!(
15
12

)
=

15!
12! · (15 − 12)!

(What is the number of possibilities of selecting 12 out of 15
different chocolates?)

The value of the numerator is 15! = 1 307 674 368 000
The value of the denominator is 12! · 3! = 2 874 009 600
None of them can be represented as a 32 bits int!
But with simplifying the expression

15 · 14 · 13
3 · 2 · 1

=
2730

6
= 455

all parts can be calculated without any problem, even on 12
bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 14 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representing characters – The ASCII table DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

128 characters, that can be indexed with numbers 0x00–0x7f

Code 00 10 20 30 40 50 60 70
+00 NUL DLE ␣ 0 @ P ‘ p
+01 SOH DC1 ! 1 A Q a q
+02 STX DC2 " 2 B R b r
+03 ETX DC3 # 3 C S c s
+04 EOT DC4 $ 4 D T d t
+05 ENQ NAK % 5 E U e u
+06 ACK SYN & 6 F V f v
+07 BEL ETB ’ 7 G W g w
+08 BS CAN (8 H X h x
+09 HT EM) 9 I Y i y
+0a LF SUB * : J Z j z
+0b VT ESC + ; K [k {
+0c FF FS , < L \ l |
+0d CR GS - = M] m }
+0e SO RS . > N ^ n ~
+0f SI US / ? O _ o DEL

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 15 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Storing, printing and reading characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Characters (indexes of the ASCII table) are stored in char type
Printing of the elements of the ASCII table is done with %c
format code.

1 char ch = 0x61; /* hex 61 = dec 97 */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1; /* its value will be hex 62 = dec 98 */
4 printf("%d: %c\n", ch, ch);

Output of the program
97: a
98: b

Does it mean we have to learn the ASCII-codes to be able to
print characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 16 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Storing, printing and reading characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Characters (indexes of the ASCII table) are stored in char type
Printing of the elements of the ASCII table is done with %c
format code.

1 char ch = 0x61; /* hex 61 = dec 97 */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1; /* its value will be hex 62 = dec 98 */
4 printf("%d: %c\n", ch, ch);

Output of the program
97: a
98: b

Does it mean we have to learn the ASCII-codes to be able to
print characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 16 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Storing, printing and reading characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Characters (indexes of the ASCII table) are stored in char type
Printing of the elements of the ASCII table is done with %c
format code.

1 char ch = 0x61; /* hex 61 = dec 97 */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1; /* its value will be hex 62 = dec 98 */
4 printf("%d: %c\n", ch, ch);

Output of the program
97: a
98: b

Does it mean we have to learn the ASCII-codes to be able to
print characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 16 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A character placed between apostrophes is equivalent to its
ASCII-code

1 char ch = ’a’; /* 0x61 ASCII -code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);

97: a
98: b

Beware! ’0’ ̸= 0 !

1 char n = ’0’; /* 0x30 ASCII -code is copied to ch !!! */
2 printf("%d: %c\n", n, n);

48: 0

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 17 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A character placed between apostrophes is equivalent to its
ASCII-code

1 char ch = ’a’; /* 0x61 ASCII -code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);

97: a
98: b

Beware! ’0’ ̸= 0 !

1 char n = ’0’; /* 0x30 ASCII -code is copied to ch !!! */
2 printf("%d: %c\n", n, n);

48: 0

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 17 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A character placed between apostrophes is equivalent to its
ASCII-code

1 char ch = ’a’; /* 0x61 ASCII -code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);

97: a
98: b

Beware! ’0’ ̸= 0 !

1 char n = ’0’; /* 0x30 ASCII -code is copied to ch !!! */
2 printf("%d: %c\n", n, n);

48: 0

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 17 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A character placed between apostrophes is equivalent to its
ASCII-code

1 char ch = ’a’; /* 0x61 ASCII -code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);

97: a
98: b

Beware! ’0’ ̸= 0 !

1 char n = ’0’; /* 0x30 ASCII -code is copied to ch !!! */
2 printf("%d: %c\n", n, n);

48: 0

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 17 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character constants DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Special character constants – that would be hard to type. . .

0x00 \0 null character (NUL)
0x07 \a bell (BEL)
0x08 \b backspace (BS)
0x09 \t tabulator (HT)
0x0a \n line feed (LF)
0x0b \v vertical tab (VT)
0x0c \f form feed (FF)
0x0d \r carriage return (CR)
0x22 \” quotation mark
0x27 \’ apostrophe
0x5c \\ backslash

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 18 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character or integer number? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C language characters are equivalent to integer numbers

It will be decided only at the moment of displaying how an
integer value is printed: as a number or as a character (%d or
%c)
We can perform the same operations on characters as on
integers (adding, subtracting, etc.. . .)
But what is the point in adding-subtracting characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 19 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character or integer number? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C language characters are equivalent to integer numbers
It will be decided only at the moment of displaying how an
integer value is printed: as a number or as a character (%d or
%c)

We can perform the same operations on characters as on
integers (adding, subtracting, etc.. . .)
But what is the point in adding-subtracting characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 19 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character or integer number? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C language characters are equivalent to integer numbers
It will be decided only at the moment of displaying how an
integer value is printed: as a number or as a character (%d or
%c)
We can perform the same operations on characters as on
integers (adding, subtracting, etc.. . .)

But what is the point in adding-subtracting characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 19 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Character or integer number? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C language characters are equivalent to integer numbers
It will be decided only at the moment of displaying how an
integer value is printed: as a number or as a character (%d or
%c)
We can perform the same operations on characters as on
integers (adding, subtracting, etc.. . .)
But what is the point in adding-subtracting characters?

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 19 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Operations with characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program, that reads characters as long as a new line
character has not arrived. After this the program should print out
the sum of the read (scanned) digits.

1 char c;
2 int sum = 0;
3 do
4 {
5 scanf("%c", &c); /* reading */
6 if (c >= ’0’ && c <= ’9’) /* if numerical digit */
7 sum = sum + (c-’0’); /* summing */
8 }
9 while (c != ’\n’); /* stop condition */

10 printf("The sum is: %d\n", sum);

The airplane has landed at 12:35 this afternoon
The sum is: 11

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 20 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Operations with characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program, that reads characters as long as a new line
character has not arrived. After this the program should print out
the sum of the read (scanned) digits.

1 char c;
2 int sum = 0;
3 do
4 {
5 scanf("%c", &c); /* reading */
6 if (c >= ’0’ && c <= ’9’) /* if numerical digit */
7 sum = sum + (c-’0’); /* summing */
8 }
9 while (c != ’\n’); /* stop condition */

10 printf("The sum is: %d\n", sum);

The airplane has landed at 12:35 this afternoon
The sum is: 11

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 20 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Operations with characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program, that reads characters as long as a new line
character has not arrived. After this the program should print out
the sum of the read (scanned) digits.

1 char c;
2 int sum = 0;
3 do
4 {
5 scanf("%c", &c); /* reading */
6 if (c >= ’0’ && c <= ’9’) /* if numerical digit */
7 sum = sum + (c-’0’); /* summing */
8 }
9 while (c != ’\n’); /* stop condition */

10 printf("The sum is: %d\n", sum);

The airplane has landed at 12:35 this afternoon
The sum is: 11

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 20 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Operations with characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a function, that converts the lowercase letters of the
English alphabet to uppercase, but leaves all other characters
unchanged.

1 char toupper(char c)
2 {
3 if (c >= ’a’ && c <= ’z’) /* if lowercase */
4 {
5 return c - ’a’ + ’A’;
6 }
7 return c;
8 }

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 21 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Operations with characters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a function, that converts the lowercase letters of the
English alphabet to uppercase, but leaves all other characters
unchanged.

1 char toupper(char c)
2 {
3 if (c >= ’a’ && c <= ’z’) /* if lowercase */
4 {
5 return c - ’a’ + ’A’;
6 }
7 return c;
8 }

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 21 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Normal form

23.2457 = (−1)0 · 2.3245700 · 10+001

−0.001822326 = (−1)1 · 1.8223260 · 10−003

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent

1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the decimal comma),

because of normalization, the first digit is ≥ 1
3 exponent (or order, characteristic): signed integer

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 22 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Normal form

23.2457 = (−1)0 · 2.3245700 · 10+001

−0.001822326 = (−1)1 · 1.8223260 · 10−003

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent

1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the decimal comma),

because of normalization, the first digit is ≥ 1
3 exponent (or order, characteristic): signed integer

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 22 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Normal form

23.2457 = (−1)0 · 2.3245700 · 10+001

−0.001822326 = (−1)1 · 1.8223260 · 10−003

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent
1 sign bit: 0–positive, 1–negative

2 mantissa: unsigned integer (without the decimal comma),
because of normalization, the first digit is ≥ 1

3 exponent (or order, characteristic): signed integer

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 22 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Normal form

23.2457 = (−1)0 · 2.3245700 · 10+001

−0.001822326 = (−1)1 · 1.8223260 · 10−003

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent
1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the decimal comma),

because of normalization, the first digit is ≥ 1

3 exponent (or order, characteristic): signed integer

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 22 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Normal form

23.2457 = (−1)0 · 2.3245700 · 10+001

−0.001822326 = (−1)1 · 1.8223260 · 10−003

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent
1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the decimal comma),

because of normalization, the first digit is ≥ 1
3 exponent (or order, characteristic): signed integer

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 22 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary normal form

5.0 = 1.25 · 4 = (−1)0 · 1.0100b · 2010b

0 0100 010

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent

1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the binary comma),

because of normalization, the first digit is = 1, so we don’t
store it4.

3 exponent: signed integer

4the leading bit is implicit
© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 23 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary normal form

5.0 = 1.25 · 4 = (−1)0 · 1.0100b · 2010b

0 0100 010

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent

1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the binary comma),

because of normalization, the first digit is = 1, so we don’t
store it4.

3 exponent: signed integer

4the leading bit is implicit
© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 23 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary normal form

5.0 = 1.25 · 4 = (−1)0 · 1.0100b · 2010b

0 0100 010

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent
1 sign bit: 0–positive, 1–negative

2 mantissa: unsigned integer (without the binary comma),
because of normalization, the first digit is = 1, so we don’t
store it4.

3 exponent: signed integer

4the leading bit is implicit
© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 23 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary normal form

5.0 = 1.25 · 4 = (−1)0 · 1.0100b · 2010b

0 0100 010

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent
1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the binary comma),

because of normalization, the first digit is = 1, so we don’t
store it4.

3 exponent: signed integer

4the leading bit is implicit
© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 23 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary normal form

5.0 = 1.25 · 4 = (−1)0 · 1.0100b · 2010b

0 0100 010

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent
1 sign bit: 0–positive, 1–negative
2 mantissa: unsigned integer (without the binary comma),

because of normalization, the first digit is = 1, so we don’t
store it4.

3 exponent: signed integer

4the leading bit is implicit
© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 23 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Floating-point types of C

typical values
type bits mantissa exponent printf/scanf
float 32 bits 23 bits 8 bits %f
double 64 bits 52 bits 11 bits %f/%lf
long double 128 bits 112 bits 15 bits %Lf

Floating-point constants

1 float f1 =12.3f , f2=12.F , f3=.5f , f4=1.2e-3F ;
2 double d1=12.3 , d2=12. , d3=.5 , d4=1.2e-3 ;
3 long double l1 =12.3l , l2=12.L , l3=.5l , l4=1.2e-3L ;

In C we use decimal point and not a comma!

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 24 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Floating-point types in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Floating-point types of C

typical values
type bits mantissa exponent printf/scanf
float 32 bits 23 bits 8 bits %f
double 64 bits 52 bits 11 bits %f/%lf
long double 128 bits 112 bits 15 bits %Lf

Floating-point constants

1 float f1 =12.3f , f2=12.F , f3=.5f , f4=1.2e-3F ;
2 double d1=12.3 , d2=12. , d3=.5 , d4=1.2e-3 ;
3 long double l1 =12.3l , l2=12.L , l3=.5l , l4=1.2e-3L ;

In C we use decimal point and not a comma!

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 24 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of integer types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0 1 2 3 4 5 6

ϵ

Absolute accuracy of number representation

It is the maximal ϵ error of representing an arbitrary real number
with the closest integer

The absolute accuracy of representing with integer types is 0.5

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 25 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of integer types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

0 1 2 3 4 5 6

ϵ

Absolute accuracy of number representation

It is the maximal ϵ error of representing an arbitrary real number
with the closest integer

The absolute accuracy of representing with integer types is 0.5

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 25 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of floating-point numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1.000b

8/8
1024

1.001b

9/8
1152

1.010b

10/8
1280

1.011b

11/8
1408

1.100b

12/8
1536

1.101b

13/8
1664

ϵ

mantissa

expon. = 20

expon. = 210

in this example

The (absolute) representation accuracy of the mantissa is 1/16
If the exponent is 20, the representation accuracy is 1/16
If the exponent is 210, the representation accuracy is
210/16 = 64

There is no absolute, only relative accuracy, that is, in this
present case, 3 bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 26 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of floating-point numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1.000b

8/8
1024

1.001b

9/8
1152

1.010b

10/8
1280

1.011b

11/8
1408

1.100b

12/8
1536

1.101b

13/8
1664

ϵ

mantissa

expon. = 20

expon. = 210

in this example
The (absolute) representation accuracy of the mantissa is 1/16

If the exponent is 20, the representation accuracy is 1/16
If the exponent is 210, the representation accuracy is
210/16 = 64

There is no absolute, only relative accuracy, that is, in this
present case, 3 bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 26 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of floating-point numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1.000b

8/8
1024

1.001b

9/8
1152

1.010b

10/8
1280

1.011b

11/8
1408

1.100b

12/8
1536

1.101b

13/8
1664

ϵ

mantissa

expon. = 20

expon. = 210

in this example
The (absolute) representation accuracy of the mantissa is 1/16
If the exponent is 20, the representation accuracy is 1/16

If the exponent is 210, the representation accuracy is
210/16 = 64

There is no absolute, only relative accuracy, that is, in this
present case, 3 bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 26 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of floating-point numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1.000b

8/8
1024

1.001b

9/8
1152

1.010b

10/8
1280

1.011b

11/8
1408

1.100b

12/8
1536

1.101b

13/8
1664

ϵ

mantissa

expon. = 20

expon. = 210

in this example
The (absolute) representation accuracy of the mantissa is 1/16
If the exponent is 20, the representation accuracy is 1/16
If the exponent is 210, the representation accuracy is
210/16 = 64

There is no absolute, only relative accuracy, that is, in this
present case, 3 bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 26 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Representation accuracy of floating-point numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1.000b

8/8
1024

1.001b

9/8
1152

1.010b

10/8
1280

1.011b

11/8
1408

1.100b

12/8
1536

1.101b

13/8
1664

ϵ

mantissa

expon. = 20

expon. = 210

in this example
The (absolute) representation accuracy of the mantissa is 1/16
If the exponent is 20, the representation accuracy is 1/16
If the exponent is 210, the representation accuracy is
210/16 = 64

There is no absolute, only relative accuracy, that is, in this
present case, 3 bits.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 26 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Consequences of finite number representation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

As the floating-point number representation is not accurate,
we must not check the equality of results of operations!

22
7

+
3
7
̸= 25

7

instead ∣∣∣∣22
7

+
3
7
− 25

7

∣∣∣∣ < ε

The exponent will magnify the rounding error of the finite long
mantissa, thus the large numbers are much less accurate than
small numbers. The errors of the large numbers can ”eat up”
the small ones:

A+ a− A ̸= a

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 27 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Consequences of finite number representation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

As the floating-point number representation is not accurate,
we must not check the equality of results of operations!

22
7

+
3
7
̸= 25

7

instead ∣∣∣∣22
7

+
3
7
− 25

7

∣∣∣∣ < ε

The exponent will magnify the rounding error of the finite long
mantissa, thus the large numbers are much less accurate than
small numbers. The errors of the large numbers can ”eat up”
the small ones:

A+ a− A ̸= a

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 27 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Consequences of the binary representation of numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A decimal finite number might not be finite in binary form, eg.:

0.1d = 0.00011b

How many times will be this cycle repeated?
1 double d;
2 for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
3 {
4 ...
5 }

The good solution is:
1 double d;
2 double eps = 1e-3; /* what is the right eps for here? */
3 for (d = 0.0; d < 1.0-eps; d = d+0.1) /* 10 times */
4 {
5 ...
6 }

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 28 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Consequences of the binary representation of numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A decimal finite number might not be finite in binary form, eg.:

0.1d = 0.00011b

How many times will be this cycle repeated?
1 double d;
2 for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
3 {
4 ...
5 }

The good solution is:
1 double d;
2 double eps = 1e-3; /* what is the right eps for here? */
3 for (d = 0.0; d < 1.0-eps; d = d+0.1) /* 10 times */
4 {
5 ...
6 }

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 28 / 34

Arithmetic types Implicit type conversion Intr. Integers Characters Real

Consequences of the binary representation of numbers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A decimal finite number might not be finite in binary form, eg.:

0.1d = 0.00011b

How many times will be this cycle repeated?
1 double d;
2 for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
3 {
4 ...
5 }

The good solution is:
1 double d;
2 double eps = 1e-3; /* what is the right eps for here? */
3 for (d = 0.0; d < 1.0-eps; d = d+0.1) /* 10 times */
4 {
5 ...
6 }

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 28 / 34

Arithmetic types Implicit type conversion

Chapter 2

Implicit type conversion

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 29 / 34

Arithmetic types Implicit type conversion

What is that? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In some cases the C-program needs to convert the type of our
expressions.

1 long func(float f) {
2 return f;
3 }
4

5 int main(void) {
6 int i = 2;
7 short s = func(i);
8 return 0;
9 }

In this example: int → float → long → short

int → float rounding, if the number is large
float → long may cause overflow, rounding to integer
long → short may cause overflow

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 30 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle

preserve the value, if possible
In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value

at calling a function (when actualising the formal parameters)
Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)
evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 31 / 34

Arithmetic types Implicit type conversion

Conversion with two operands DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The conversion of the two operands to the same, common type
happens according to these rules (from top to bottom)

operand one the other operand common, new type
long double anything long double
double anything double
float anything float
unsigned long anything unsigned long
long anything (int, unsigned) long
unsigned anything (int) unsigned
int anything (int) int

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 32 / 34

Arithmetic types Implicit type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 33 / 34

Arithmetic types Implicit type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0

2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 33 / 34

Arithmetic types Implicit type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2

3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 33 / 34

Arithmetic types Implicit type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 33 / 34

Arithmetic types Implicit type conversion

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Arithmetic types 18 September, 2024 34 / 34

	Arithmetic types of C
	Introduction
	Integers
	Characters
	Real

	Implicit type conversion

