Arithmetic types in C Basics of Programming 1

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

18 September, 2024

© based on slides by Zsóka, Fiala, Vitéz

Arithmetic types

18 September, 2024

1 Arithmetic types of C

- Introduction
- Integers

- Characters
- Real
- 2 Implicit type conversion

Chapter 1

Arithmetic types of C

- Set of values
- Operations

- Set of values
- Operations

- In a real computer the set of values is limited
 - We can not represent arbitrary large numbers

- Set of values
- Operations

- In a real computer the set of values is limited
 - We can not represent arbitrary large numbers
 - We can not represent numbers with arbitrary accuracy $\pi \neq 3.141592654$

- Set of values
- Operations
- Representation
- In a real computer the set of values is limited
 - We can not represent arbitrary large numbers
 - We can not represent numbers with arbitrary accuracy $\pi \neq 3.141592654$
 - We must know the limits of what can be represented, in order to store our data

- Set of values
- Operations
- Representation
- In a real computer the set of values is limited
 - We can not represent arbitrary large numbers
 - We can not represent numbers with arbitrary accuracy $\pi \neq 3.141592654$
 - We must know the limits of what can be represented, in order to store our data
 - without any loss of information or

- Set of values
- Operations
- Representation
- In a real computer the set of values is limited
 - We can not represent arbitrary large numbers
 - We can not represent numbers with arbitrary accuracy $\pi \neq 3.141592654$
 - We must know the limits of what can be represented, in order to store our data
 - without any loss of information or
 - with an acceptable level of information loss, without wasting memory

Types of C language

- void
- scalar
 - arithmetic
 - integer: integer, character, enumerated
 - floating-point
 - pointer
- function
- union
- compound
 - array
 - structure

Types of C language

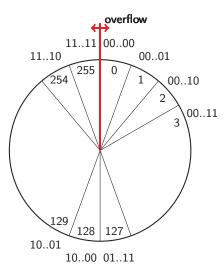
- void
- scalar
 - arithmetic
 - integer: integer, character, enumerated
 - floating-point
 - pointer
- function
- union
- compound
 - array
 - structure
- Today we will learn about them

Binary representation of integers

Binary representation of unsigned integers stored in 8 bits

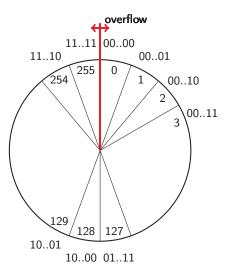
dec	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	2 ⁰	hex
0	0	0	0	0	0	0	0	0	0x00
1	0	0	0	0	0	0	0	1	0x01
2	0	0	0	0	0	0	1	0	0x02
3	0	0	0	0	0	0	1	1	0x03
÷	:							÷	÷
127	0	1	1	1	1	1	1	1	0x7F
128	1	0	0	0	0	0	0	0	0x80
129	1	0	0	0	0	0	0	1	0x81
÷	:							÷	÷
253	1	1	1	1	1	1	0	1	0xFD
254	1	1	1	1	1	1	1	0	0×FE
255	1	1	1	1	1	1	1	1	0×FF

The overflow



 In case of unsigned integers stored in 8 bits

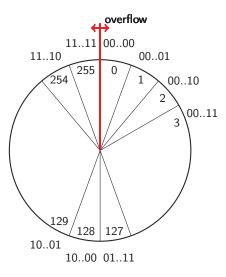
The overflow



 In case of unsigned integers stored in 8 bits

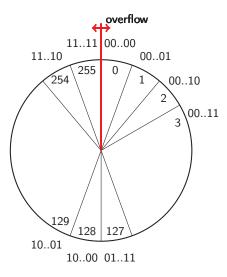
■ 255+1 = 0

The overflow



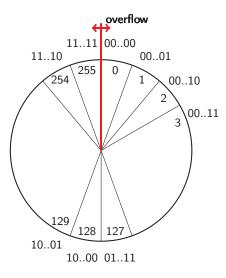
 In case of unsigned integers stored in 8 bits

The overflow



 In case of unsigned integers stored in 8 bits

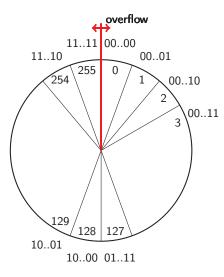
The overflow



- In case of unsigned integers stored in 8 bits
 - **255+1 = 0**

"modulo 256 arithmetic"

The overflow



- In case of unsigned integers stored in 8 bits
 - **255+1 = 0**

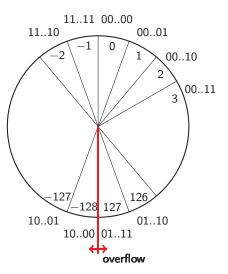
- "modulo 256 arithmetic"
 - We always see the remainder of the result divided by 256

Two's complement representation of integers

 Two's complement representation of signed integers stored in 8 bits

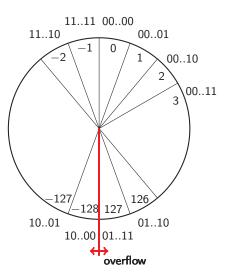
dec	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	2 ⁰	hex
0	0	0	0	0	0	0	0	0	0x00
1	0	0	0	0	0	0	0	1	0x01
2	0	0	0	0	0	0	1	0	0x02
3	0	0	0	0	0	0	1	1	0x03
÷	:							÷	:
127	0	1	1	1	1	1	1	1	0x7F
-128	1	0	0	0	0	0	0	0	0x80
-127	1	0	0	0	0	0	0	1	0x81
÷	:							÷	:
-3	1	1	1	1	1	1	0	1	0xFD
-2	1	1	1	1	1	1	1	0	0×FE
-1	1	1	1	1	1	1	1	1	0×FF

The overflow



In case of signed integers stored in 8 bits

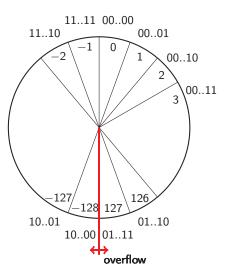
The overflow



In case of signed integers stored in 8 bits

■ 127+1 = -128

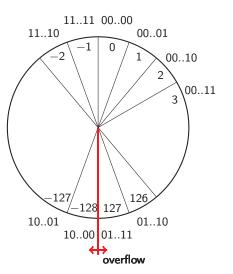
The overflow



In case of signed integers stored in 8 bits

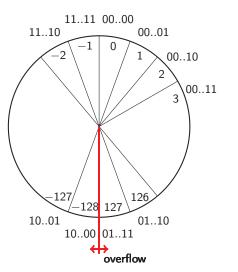
■ 127+2 = -127

The overflow



- In case of signed integers stored in 8 bits
 - 127+1 = -128
 - 127+2 = -127
 - -127-3 = 126

The overflow

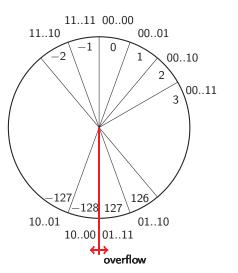


In case of signed integers stored in 8 bits

- 127+1 = -128
- 127+2 = -127
- -127-3 = 126

on the other hand

The overflow



In case of signed integers stored in 8 bits

- 127+1 = -128
- 127+2 = -127
- -127-3 = 126

on the other hand

Integer types in C

type	bit^1	lim:	printf	
signed char	8	CHAR_MIN	CHAR_MAX	%hhd ²
unsigned char	8	0	UCHAR_MAX	%hhu ²
signed short int	16	SHRT_MIN	SHRT_MAX	%hd
unsigned short int	16	0	USHRT_MAX	%hu
signed int	32	INT_MIN	INT_MAX	%d
unsinged int	32	0	UINT_MAX	%u
signed long int	32	LONG_MIN	LONG_MAX	%ld
unsigned long int	32	0	ULONG_MAX	%lu
signed long long int ²	64	LLONG_MIN	LLONG_MAX	%lld
unsigned long long int^2	64	0	ULLONG_MAX	%llu

¹Typical values, the standard only determines the minimum $\frac{2}{3}$

²since the C99 standard

© based on slides by Zsóka, Fiala, Vitéz

Arithmetic types

Declaration of integers

Defaults

1

The signed sign-specifier can be omitted

L	int i;	/*	signed	int *	< /	
2	long int l;	/*	signed	long	int	*/

Declaration of integers

	 Defaults The signed 	sign-specifier can be omitted
1 2	•	/* signed int */ /* signed long int */
		gn- or length-modifier, the int can be omitted.
1 2	unsigned u; short s;	/* unsigned int */ /* signed short int */

 An example on how to use the previous table: a program that runs for a very long time³

```
#include <limits.h> /* for integer limits */
1
   #include <stdio.h> /* for printf */
2
3
   int main(void)
4
   { /* almost all long long int */
5
     long long i;
6
7
     for (i = LLONG_MIN; i < LLONG_MAX; i = i+1)</pre>
8
       printf("%lld\n", i);
9
10
     return 0;
11
12
```

 $^3 provided that long long int is 64 bit long, the program runs for 585 000 years if the computer prints 1 million numbers per second$

link

Integer constants

Specifying integer constants

```
/* decimal */
  int i1=0, i2=123, i4=-33;
1
  int o1=012, o2=01234567;
                                   /* octal */
2
  int h1=0x1a, h2=0x7fff, h3=0xAa1B /* hexadecimal */
3
4
  long 11=0x1al, 12=-33L;
                                    /* 1 or L */
5
6
  unsigned u1=33u, u2=45U; /* u or U */
7
  unsigned long ul1=33uL, ul2=123lU; /* l and u */
8
```

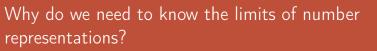
Integer constants

Specifying integer constants

```
int i1=0, i2=123, i4=-33;
                                   /* decimal */
1
  int o1=012, o2=01234567;
                               /* octal */
2
  int h1=0x1a, h2=0x7fff, h3=0xAa1B /* hexadecimal */
3
4
                                    /* 1 or L */
  long l1=0x1al, l2=-33L;
5
6
  unsigned u1=33u, u2=45U; /* u or U */
7
  unsigned long ul1=33uL, ul2=1231U; /* l and u */
8
```

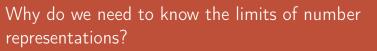
If neither u or l is specified, the first type that is big enough is taken:

int
 unsigned int - in case of hexa and octal constants
 long
 unsigned long



$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(What is the number of possibilities of selecting 12 out of 15 different chocolates?)



$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(What is the number of possibilities of selecting 12 out of 15 different chocolates?)

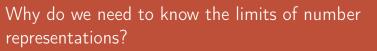
■ The value of the numerator is 15! = 1 307 674 368 000



$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(What is the number of possibilities of selecting 12 out of 15 different chocolates?)

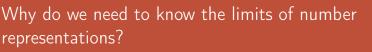
- The value of the numerator is 15! = 1 307 674 368 000
- The value of the denominator is $12! \cdot 3! = 2\ 874\ 009\ 600$



$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(What is the number of possibilities of selecting 12 out of 15 different chocolates?)

- The value of the numerator is 15! = 1 307 674 368 000
- The value of the denominator is $12! \cdot 3! = 2\ 874\ 009\ 600$
- None of them can be represented as a 32 bits int!



$$\binom{15}{12} = \frac{15!}{12! \cdot (15 - 12)!}$$

(What is the number of possibilities of selecting 12 out of 15 different chocolates?)

- The value of the numerator is 15! = 1 307 674 368 000
- The value of the denominator is $12! \cdot 3! = 2\ 874\ 009\ 600$
- None of them can be represented as a 32 bits int!
- But with simplifying the expression

$$\frac{15 \cdot 14 \cdot 13}{3 \cdot 2 \cdot 1} = \frac{2730}{6} = 455$$

all parts can be calculated without any problem, even on 12 bits.

© based on slides by Zsóka, Fiala, Vitéz

Representing characters – The ASCII table

128 characters, that can be indexed with numbers 0x00-0x7f

Code	00	10	20	30	40	50	60	70
+00	NUL	DLE	Ц	0	Q	Р	٢	р
+01	SOH	DC1	!	1	Α	Q	a	q
+02	STX	DC2	"	2	В	R	b	r
+03	ETX	DC3	#	3	С	S	с	s
+04	EOT	DC4	\$	4	D	Т	d	t
+05	ENQ	NAK	%	5	Е	U	е	u
+06	ACK	SYN	&	6	F	V	f	v
+07	BEL	ETB	,	7	G	W	g	W
+08	BS	CAN	(8	Η	Х	h	x
+09	HT	EM)	9	I	Y	i	У
+0a	LF	SUB	*	:	J	Ζ	j	z
+0b	VT	ESC	+	;	Κ	Γ	k	{
+0c	FF	FS	,	<	L	\	1	I
+0d	CR	GS	-	=	М]	m	}
+0e	SO	RS		>	Ν	^	n	~
+0f	SI	US	/	?	0	_	0	DEL

Storing, printing and reading characters

- Characters (indexes of the ASCII table) are stored in char type
- Printing of the elements of the ASCII table is done with %c format code.

```
1 char ch = 0x61; /* hex 61 = dec 97 */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1; /* its value will be hex 62 = dec 98 */
4 printf("%d: %c\n", ch, ch);
```

Storing, printing and reading characters

- Characters (indexes of the ASCII table) are stored in char type
- Printing of the elements of the ASCII table is done with %c format code.

```
1 char ch = 0x61; /* hex 61 = dec 97 */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1; /* its value will be hex 62 = dec 98 */
4 printf("%d: %c\n", ch, ch);
```

Output of the program

97: a 98: b

Storing, printing and reading characters

- Characters (indexes of the ASCII table) are stored in char type
- Printing of the elements of the ASCII table is done with %c format code.

```
1 char ch = 0x61; /* hex 61 = dec 97 */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1; /* its value will be hex 62 = dec 98 */
4 printf("%d: %c\n", ch, ch);
```

Output of the program

97: a 98: b

Does it mean we have to learn the ASCII-codes to be able to print characters?

 A character placed between apostrophes is equivalent to its ASCII-code

```
1 char ch = 'a'; /* 0x61 ASCII-code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);
```


 A character placed between apostrophes is equivalent to its ASCII-code

```
1 char ch = 'a'; /* 0x61 ASCII-code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);
```

97: a 98: b

 A character placed between apostrophes is equivalent to its ASCII-code

```
1 char ch = 'a'; /* 0x61 ASCII-code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);
```

97:	a		
98:	b		

Beware! '0' \neq 0 !

1 char n = '0'; /* 0x30 ASCII-code is copied to ch !!! */
2 printf("%d: %c\n", n, n);

 A character placed between apostrophes is equivalent to its ASCII-code

```
1 char ch = 'a'; /* 0x61 ASCII-code is copied to ch */
2 printf("%d: %c\n", ch, ch);
3 ch = ch+1;
4 printf("%d: %c\n", ch, ch);
```

97: a 98: b

Beware! '0' \neq 0 !

```
1 char n = '0'; /* 0x30 ASCII-code is copied to ch !!! */
2 printf("%d: %c\n", n, n);
```

48: 0

Special character constants – that would be hard to type...

0x00 null character (NUL) \0 0x07 bell (BEL) \a backspace (BS) 0x08 \b 0x09 \t tabulator (HT) 0x0a line feed (LF) \n 0x0b vertical tab (VT) \v 0x0c form feed (FF) \f 0x0d ١r carriage return (CR) \" quotation mark 0x22 0x27 \' apostrophe backslash 0x5c $\backslash \backslash$

In C language characters are equivalent to integer numbers

- In C language characters are equivalent to integer numbers
- It will be decided only at the moment of displaying how an integer value is printed: as a number or as a character (%d or %c)

- In C language characters are equivalent to integer numbers
- It will be decided only at the moment of displaying how an integer value is printed: as a number or as a character (%d or %c)
- We can perform the same operations on characters as on integers (adding, subtracting, etc....)

- In C language characters are equivalent to integer numbers
- It will be decided only at the moment of displaying how an integer value is printed: as a number or as a character (%d or %c)
- We can perform the same operations on characters as on integers (adding, subtracting, etc....)
- But what is the point in adding-subtracting characters?

Let's write a program, that reads characters as long as a new line character has not arrived. After this the program should print out the sum of the read (scanned) digits.

Let's write a program, that reads characters as long as a new line character has not arrived. After this the program should print out the sum of the read (scanned) digits.

```
char c;
1
  int sum = 0;
2
  do
3
  ł
4
5 scanf("%c", &c);
                               /* reading */
    if (c >= '0' && c <= '9') /* if numerical digit */
6
      sum = sum + (c-'0'); /* summing */
7
  }
8
  while (c != ' \setminus n');
                           /* stop condition */
9
  printf("The sum is: %d\n", sum);
```


Let's write a program, that reads characters as long as a new line character has not arrived. After this the program should print out the sum of the read (scanned) digits.

```
char c;
1
 int sum = 0;
2
  do
3
  ł
4
5 scanf("%c", &c);
                          /* reading */
  if (c >= '0' && c <= '9') /* if numerical digit */
6
   7
  }
8
  while (c != ' n');
                 /* stop condition */
9
  printf("The sum is: %d\n", sum);
  The airplane has landed at 12:35 this afternoon
  The sum is: 11
```


Let's write a function, that converts the lowercase letters of the English alphabet to uppercase, but leaves all other characters unchanged.

Let's write a function, that converts the lowercase letters of the English alphabet to uppercase, but leaves all other characters unchanged.

```
1 char toupper(char c)
2 {
3    if (c >= 'a' && c <= 'z') /* if lowercase */
4    {
5       return c - 'a' + 'A';
6    }
7    return c;
8 }</pre>
```


Normal form

23.2457 =
$$(-1)^{0} \cdot 2.3245700 \cdot 10^{+001}$$

-0.001822326 = $(-1)^{1} \cdot 1.8223260 \cdot 10^{-003}$

Normal form

$$23.2457 = (-1)^{0} \cdot 2.3245700 \cdot 10^{+001}$$
$$-0.001822326 = (-1)^{1} \cdot 1.8223260 \cdot 10^{-003}$$

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent

Normal form

 $23.2457 = (-1)^{0} \cdot 2.3245700 \cdot 10^{+001}$ $-0.001822326 = (-1)^{1} \cdot 1.8223260 \cdot 10^{-003}$

Representation of the normal form

Floating-point fractional = sign bit + mantissa + exponent
 sign bit: 0-positive, 1-negative

Normal form

 $23.2457 = (-1)^{0} \cdot 2.3245700 \cdot 10^{+001}$ $-0.001822326 = (-1)^{1} \cdot 1.8223260 \cdot 10^{-003}$

Representation of the normal form

- Floating-point fractional = sign bit + mantissa + exponent
 - **1** sign bit: 0-positive, 1-negative
 - 2 mantissa: unsigned integer (without the decimal comma), because of normalization, the first digit is ≥ 1

Normal form

 $23.2457 = (-1)^{0} \cdot 2.3245700 \cdot 10^{+001}$ $-0.001822326 = (-1)^{1} \cdot 1.8223260 \cdot 10^{-003}$

Representation of the normal form

- Floating-point fractional = sign bit + mantissa + exponent
 - **1** sign bit: 0-positive, 1-negative
 - 2 mantissa: unsigned integer (without the decimal comma), because of normalization, the first digit is ≥ 1
 - **3** exponent (or order, characteristic): signed integer

Binary normal form

$$5.0 = 1.25 \cdot 4 = (-1)^{0} \cdot 1.0100_{b} \cdot 2^{010_{b}}$$

⁴the leading bit is implicit

Binary normal form

$$5.0 = 1.25 \cdot 4 = (-1)^{0} \cdot 1.0100_{\rm b} \cdot 2^{010_{\rm b}}$$

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent

⁴the leading bit is implicit

© based on slides by Zsóka, Fiala, Vitéz

Arithmetic types

Binary normal form

$$5.0 = 1.25 \cdot 4 = (-1)^{0} \cdot 1.0100_{\rm b} \cdot 2^{010_{\rm b}}$$

Representation of binary normal form

Floating-point fractional = sign bit + mantissa + exponent

1 sign bit: 0-positive, 1-negative

⁴the leading bit is implicit

Binary normal form

$$5.0 = 1.25 \cdot 4 = (-1)^{0} \cdot 1.0100_{\rm b} \cdot 2^{010_{\rm b}}$$

0 0100 010

Representation of binary normal form

- Floating-point fractional = sign bit + mantissa + exponent
 - **1** sign bit: 0–positive, 1–negative
 - 2 mantissa: unsigned integer (without the binary comma), because of normalization, the first digit is = 1, so we don't store it⁴.

⁴the leading bit is implicit

Binary normal form

$$5.0 = 1.25 \cdot 4 = (-1)^{0} \cdot 1.0100_{\rm b} \cdot 2^{010_{\rm b}}$$

0 0100 010

Representation of binary normal form

- Floating-point fractional = sign bit + mantissa + exponent
 - **1** sign bit: 0–positive, 1–negative
 - 2 mantissa: unsigned integer (without the binary comma), because of normalization, the first digit is = 1, so we don't store it⁴.
 - **3** exponent: signed integer

⁴the leading bit is implicit

Floating-point types in C

Floating-point types of C

	-			
type	bits	mantissa	exponent	printf/scanf
float	32 bits	23 bits	8 bits	%f
double	64 bits	52 bits	11 bits	%f/%lf
long double	128 bits	112 bits	15 bits	%Lf

Floating-point types in C

Floating-point types of C

type	bits	mantissa	exponent	printf/scanf
float	32 bits	23 bits	8 bits	%f
double	64 bits	52 bits	11 bits	%f/%lf
long double	128 bits	112 bits	15 bits	%Lf

Floating-point constants

1	float	;	f1 = 12.3 f	,	f2 = 12.F	,	f3 = .5f	,	f4=1.2e-3F	;
2	doubl	e	d1=12.3	,	d2=12.	,	d3=.5	,	d4=1.2e-3	;
3	long	double	11=12.31	,	12=12.L	,	13=.51	,	14=1.2e-3L	;

In C we use decimal point and not a comma!

Representation accuracy of integer types

Absolute accuracy of number representation

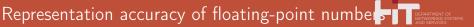
It is the maximal ϵ error of representing an arbitrary real number with the closest integer

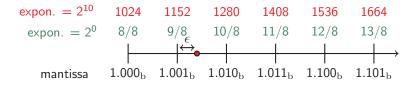
Representation accuracy of integer types

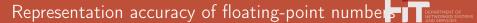
Absolute accuracy of number representation

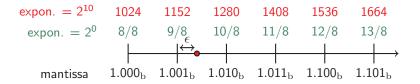
It is the maximal ϵ error of representing an arbitrary real number with the closest integer

■ The absolute accuracy of representing with integer types is 0.5

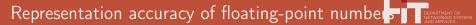


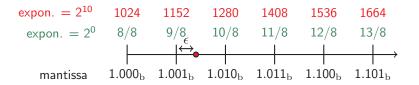




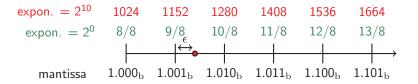


- in this example
 - The (absolute) representation accuracy of the mantissa is 1/16

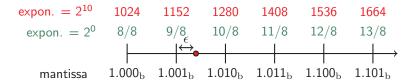




- in this example
 - The (absolute) representation accuracy of the mantissa is 1/16
 - If the exponent is 2⁰, the representation accuracy is 1/16



- in this example
 - The (absolute) representation accuracy of the mantissa is 1/16
 - If the exponent is 2⁰, the representation accuracy is 1/16
 - If the exponent is 2^{10} , the representation accuracy is $2^{10}/16 = 64$



- in this example
 - The (absolute) representation accuracy of the mantissa is 1/16
 - If the exponent is 2⁰, the representation accuracy is 1/16
 - If the exponent is 2^{10} , the representation accuracy is $2^{10}/16 = 64$
- There is no absolute, only relative accuracy, that is, in this present case, 3 bits.

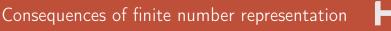


As the floating-point number representation is not accurate, we must not check the equality of results of operations!

$$\frac{22}{7} + \frac{3}{7} \neq \frac{25}{7}$$

instead

$$\left|\frac{22}{7} + \frac{3}{7} - \frac{25}{7}\right| < \varepsilon$$



As the floating-point number representation is not accurate, we must not check the equality of results of operations!

$$\frac{22}{7} + \frac{3}{7} \neq \frac{25}{7}$$

instead

$$\left|\frac{22}{7} + \frac{3}{7} - \frac{25}{7}\right| < \varepsilon$$

The exponent will magnify the rounding error of the finite long mantissa, thus the large numbers are much less accurate than small numbers. The errors of the large numbers can "eat up" the small ones:

$$A + a - A \neq a$$

Consequences of the binary representation of number entry and the second second

A decimal finite number might not be finite in binary form, eg.:

 $0.1_{\rm d}=0.0\overline{0011}_{\rm b}$

Consequences of the binary representation of num by representation

A decimal finite number might not be finite in binary form, eg.:

 $0.1_{\rm d}=0.0\overline{0011}_{\rm b}$

How many times will be this cycle repeated?

```
1 double d;
2 for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
3 {
4 ...
5 }
```

Consequences of the binary representation of number representation

A decimal finite number might not be finite in binary form, eg.:

 $0.1_{\rm d}=0.0\overline{0011}_{\rm b}$

How many times will be this cycle repeated?

```
double d;
1
  for (d = 0.0; d < 1.0; d = d+0.1) /* 10? 11? */
2
  {
3
4
  . . .
  }
5
    The good solution is:
1 double d;
  double eps = 1e-3; /* what is the right eps for here? */
2
  for (d = 0.0; d < 1.0-eps; d = d+0.1) /* 10 times */
3
  ſ
4
5
  . . .
  }
6
```

Chapter 2

Implicit type conversion

What is that?

In some cases the C-program needs to convert the type of our expressions.

```
1 long func(float f) {
2   return f;
3 }
4
5 int main(void) {
6   int i = 2;
7   short s = func(i);
8   return 0;
9 }
```

In this example: int \rightarrow float \rightarrow long \rightarrow short

- \blacksquare int \rightarrow float rounding, if the number is large
- float \rightarrow long may cause overflow, rounding to integer
- \blacksquare long \rightarrow short may cause overflow

Basic principle

Basic principle

preserve the value, if possible

Basic principle

- preserve the value, if possible
- In case of overflow

Basic principle

- preserve the value, if possible
- In case of overflow
 - the result is theoretically undefined

- Basic principle
 - preserve the value, if possible
- In case of overflow
 - the result is theoretically undefined

Conversion with one operand (we have seen that)

- Basic principle
 - preserve the value, if possible
- In case of overflow
 - the result is theoretically undefined

Conversion with one operand (we have seen that)at assignment of value

- Basic principle
 - preserve the value, if possible
- In case of overflow
 - the result is theoretically undefined

- Conversion with one operand (we have seen that)
 - at assignment of value
 - at calling a function (when actualising the formal parameters)

- Basic principle
 - preserve the value, if possible
- In case of overflow
 - the result is theoretically undefined

- Conversion with one operand (we have seen that)
 - at assignment of value
 - at calling a function (when actualising the formal parameters)
- Conversion with two operands (eg. 2/3.4)

- Basic principle
 - preserve the value, if possible
- In case of overflow
 - the result is theoretically undefined

- Conversion with one operand (we have seen that)
 - at assignment of value
 - at calling a function (when actualising the formal parameters)
- Conversion with two operands (eg. 2/3.4)
 - evaluating an operation

Conversion with two operands

DEPARTMENT OF NETWORKED SYSTEMS AND SERVICES

The conversion of the two operands to the same, common type happens according to these rules (from top to bottom)

operand one	the other operand	common, new type	
long double	anything	long double	
double	anything	double	
float	anything	float	
unsigned long	anything	unsigned long	
long	anything (int, unsigned)	long	
unsigned	anything (int)	unsigned	
int	anything (int)	int	

Example for conversion

1	int $a = 3;$	
2	double b =	2.4
3	a = a*b;	

Example for conversion

1	in	t	a	=	3;	
2	do	ub	le	b	=	2.4;
3	a	=	a*	b;		

$1 \hspace{.15cm} 3 \hspace{.15cm} \rightarrow \hspace{.15cm} 3.0$

Example for conversion

1
$$3 \rightarrow 3.0$$

2 $3.0 * 2.4 \rightarrow 7.2$

Example for conversion

1
$$3 \rightarrow 3.0$$

2 $3.0 * 2.4 \rightarrow 7.2$
3 $7.2 \rightarrow 7$

Thank you for your attention.