Structures, Operators

Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horvath, A.B. Nagy, Z. Zséka, P. Fiala, A. Vitéz

9 October, 2024

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 1/38

Content

Typename-assignment

Structures Operators
m Motivation m Definitions
m Definition m Operators
m Assignment of value m Precedence

2/ 38

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024

Structures Motivation D on Assignment of value

Chapter 1

Structures

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 3/38

Structures

User defined types

Built-in types of C language sometimes are not appropriate for
storing more complex data.

Types introduced by the user (programmer)

m Enumeration

m Structures
m Bitfields

m Union

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 4 /38

Structures

User defined types

Built-in types of C language sometimes are not appropriate for
storing more complex data.

Types introduced by the user (programmer)

m Enumeration

m Structures < today's topic
= Bitfields

m Union

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 4 /38

Structures Motivation

Data elements that are coupled

m Storing date

1 int year;
2 int month;
3 int day;

based on slides by Zséka, Fiala, Vitéz Structures, Operators

9 October, 2024

5 /38

Structures Motivation

Data elements that are coupled

m Storing date m Storing student data

1 int year; 1 char neptun[6];

2 int month; 2 unsigned int smalltests;
3 int day; 3 unsigned int missings;

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 5 /38

Structures

Data elements that are

Motivation

coupled

m Storing date

1 int year;
2 int month;
3 int day;

SEEfRiGAE

(© based on slides by Zséka, Fiala, Vitéz

Structures, Operators

m Storing student data

1 char neptun[6];
2 unsigned int smalltests;
3 unsigned int missings;

m Data of a chess game
(white player, black player,
when, where, moves, result)

9 October, 2024 5 /38

Structures

Data elements that are

Motivation

coupled

m Storing date

1 int year;
2 int month;
3 int day;

SEEfRiGAE

(© based on slides by Zséka, Fiala, Vitéz

Structures, Operators

m Storing student data

1 char neptun[6];
2 unsigned int smalltests;
3 unsigned int missings;

m Data of a chess game
(white player, black player,
when, where, moves, result)

9 October, 2024 5 /38

Structures Motivation Definition As

Data elements that are coupled

m Storing date m Storing student data

1 int year; 1 char neptun[6];

2 int month; 2 unsigned int smalltests;
3 int day; 3 unsigned int missings;

m Data of a chess game
(white player, black player,
when, where, moves, result)

u-
ii

itig
PERLINELE

-3
if

m Data of one move
(chess piece, from where, where
to)

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 5 /38

Structures Motivation Definition As

Data elements that are coupled

m Storing date m Storing student data

1 int year; 1 char neptun[6];

2 int month; 2 unsigned int smalltests;
3 int day; 3 unsigned int missings;

m Data of a chess game
(white player, black player,
when, where, moves, result)

u-
ii

itig
PERLINELE

-3
if

m Data of one move
(chess piece, from where, where
to)

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 5 /38

Structures Motivation Definition Assignment of value

Data elements that are coupled |'| I
m Storing date m Storing student data
1 int year; 1 char neptun[6];
2 int month; 2 unsigned int smalltests;
3 int day; 3 unsigned int missings;

m Data of a chess game
(white player, black player,
when, where, moves, result)

m Data of one move
(chess piece, from where, where
to)

m Data of one square of the board
(column, row)

SEEfRiGAE

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 5 /38

Structures Motivation

Storing data elements that are coupled |'|T

m Let's write a function to calculate scalar product (dot product)
of 2D vectors!

1 double v_scalarproduct (double x1, double yi,
2 double x2, double y2)
3 o

4

5

How shall we pass coupled parameters?
The number of parameters may become too large

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 6 /38

Structures Motivation Definition Assignment of value

Storing data elements that are coupled |'|T

m Let's write a function to calculate scalar product (dot product)
of 2D vectors!

1 double v_scalarproduct (double x1, double yi,
2 double x2, double y2)
3 o

4

5

How shall we pass coupled parameters?
The number of parameters may become too large
m Let's write a function to calculate difference of two vectors!

1 777777 v_difference(double x1, double yi,
double x2, double y2)

o WN

How does the function returns with coupled data?

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 6 /38

Structures Motivation Definition Assignment of value

Encapsulation

Structure

compound data type consisting of data elements (maybe of
different types) that are coupled (belong together)

student
neptun

m data elements are called fields or members

m can be copied with one assignment

small test results :
m can be parameter of function

missings

m can be return value of function
m This is the most effective type of C language

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 7/ 38

Structures Motivation Definition Assignment of value

Structures in C |'|

struct vector { /* definition of structure type */
double x; double y;
}s

struct vector b) {

1
2
3
4
5 struct vector v_difference(struct vector a,
6
7 struct vector c;

8

9

cC.Xx = a.x - b.x;
c.y = a.y - b.y;
10 return c;
11}
12
13 int main(void) {
14 struct vector vi, v2, v3;
15 vi.x = 1.0; vi.y = 2.0;
16 v2 = vi;
17 v3 = v_difference(vl, v2);
18 return O;
19 }

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 8 /38

Structures Definition

Syntax of structures

Declaration of structures

struct [<structure label>] .,
{<structure member declarations>}
[<variable identifiers>],.:;

/* structure type for storing date */
struct date {

int year;

int month;

int day;
} d1, d2; /* two instances (variables) */

1
2
3
4
5
6

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 9 /38

Structures Definition

Syntax of structures

Declaration of structures

struct [<structure label>].,:
{<structure member declarations>}
[<variable identifiers>],.:;

/* structure type for storing date */
struct date {

int year;

int month;

int day;
} d1, d2; /* two instances (variables) */

1
2
3
4
5
6

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 9 /38

Structures Motivation Definition Assignment of value

Syntax of structures

Declaration of structures

struct [<structure label>].:
{<structure member declarations>}
[<variable identifiers>]|..:;

/* structure type for storing date */
struct date {

int year;

int month;

int day;
} d1, d2; /* two instances (variables) */

1
2
3
4
5
6

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 9 /38

Structures Definition

Syntax of structures

Declaration of structures

struct [<structure label>] .,
{<structure member declarations>}
[<variable identifiers>],p:;

/* structure type for storing date */
struct date {

int year;

int month;

int day;
} di, d2; /* two instances (variables) */

1
2
3
4
5
6

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 9 /38

Structures Motivation Definition Assignment of value

Syntax of structures |'|

Declaration of structures

struct [<structure label>] .,
{<structure member declarations>}
[<variable identifiers>],.:;

/* structure type for storing date */
struct date {

int year;

int month;

int day;
} d1, d2; /* two instances (variables) */

o A W N R

m [<structure label>]..
can be omitted if we don't refer to it later

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 9 /38

Structures Motivation Definition Assignment of value

Syntax of structures |'|

Declaration of structures

struct [<structure label>] .,
{<structure member declarations>}
[<variable identifiers>],.:;

/* structure type for storing date */
struct date {

int year;

int month;

int day;
} d1, d2; /* two instances (variables) */

o A W N R

m [<structure label>]..
can be omitted if we don't refer to it later

m [<variable identifiers>] .

declaration of variables of structure type

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 9 /38

Structures Definition

Syntax of structures

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Definition

Syntax of structures

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Definition

Syntax of structures

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Definition

Syntax of structures

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

m Accessing structure members
<structure identifier>.<member identifier>

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Definition

Syntax of structures I'IT

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

m Accessing structure members
<structure identifier>.<member identifier>

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Definition

Syntax of structures

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

m Accessing structure members
<structure identifier>.<member identifier>

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Motivation Definition Assignment of value

Syntax of structures |'|

Using structure type
m Declaration of variables
struct <structure label> <variable identifiers>;

m Accessing structure members
<structure identifier>.<member identifier>

m Structure members can be used in the same way as variables

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Motivation Definition Assignment of value

Syntax of structures

Using structure type

m Declaration of variables
struct <structure label> <variable identifiers>;

m Accessing structure members
<structure identifier>.<member identifier>

m Structure members can be used in the same way as variables

struct date di, d2;
dl.year = 2012;

d2.year = dl.year;
scanf ("%d", &d2.month);

A W N R

m Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011, 5, 2};

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 10 / 38

Structures Assignment of value

Assignment of value to structures |'|T

m Value of a structure variable (value of all members) can be
updated with one single assignment.

1 struct date d3 = {2013, 10, 22}, d4;
> d4 = d3;

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 11 / 38

Chapter 2

Typename-assignment

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 12 / 38

Typedef

Definition

m We can rename types in C
1 typedef int rabbit;

2

3 rabbit main() {

4 rabbit i = 3;

5 return i;

6

}

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 13/ 38

Typedef

Definition

m We can rename types in C

typedef int rabbit;

1
2

3 rabbit main() {
4 rabbit i = 3;
5 return i;

6

}

Typename-assignment

m typedef assigns a nickname to the type.

m |t does not create a new type, the type of all variables created
with the nicname will be the original type.

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 13 /38

Typedef

What is the use of it?

m More meaningful source code, more easy to read

typedef double voltage;

voltage V1
double ¢ =
voltage V2

.0;

1
30K
G

oA W N R
s n

* V1,

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 14 / 38

Typedef

What is the use of it?

m More meaningful source code, more easy to read

typedef long double voltage; /* we need more accuracy */

voltage V1
double ¢ =
voltage V2

.0;

1
30K
G

oA W N R
s n

* V1,

m Easy to maintain

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 14 / 38

Typedef

What is the use of it?

m More meaningful source code, more easy to read

1 typedef float voltage; /* we need a smaller x*/
2

3 voltage V1 = 1.0;

4 double c¢c = 2.0;

5 voltage V2 = c * V1;

m Easy to maintain

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 14 / 38

Typedef

What is the use of it?

m More meaningful source code, more easy to read

1 typedef float voltage; /* we need a smaller x*/
2

3 voltage V1 = 1.0;

4 double c¢c = 2.0;

5 voltage V2 = c * V1;

m Easy to maintain

m We can get rid of typenames of more than one word

1 typedef struct vector vector;

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 14 / 38

Typedef

Vector example with typedef

1 struct vector { /* new structure type */
2 double x; double y;

3 };

4 typedef struct vector vector; /* renaming */
5

6 vector v_difference(vector a, vector b) {
7 vector c;

8 cC.Xx = a.x - b.x;

9 c.y = a.y - b.y;

10 return c;

11}

12

13 int main(void) {

14 vector v1, v2, v3;

15 vi.x = 1.0; vi.y = 2.0;

16 v2 = vi;

17 v3 = v_difference(vl, v2);

18 return O;

19 }

Structures, Operators 9 October, 2024 15 / 38

Typedef

Vector example with typedef

1 typedef struct vector { /* done in one step */
2 double x; double y;

3 } vector;

4

5

6 vector v_difference(vector a, vector b) {
7 vector c;

8 cC.Xx = a.x - b.x;

9 c.y = a.y - b.y;

10 return c;

11}

12

13 int main(void) {

14 vector v1, v2, v3;

15 vi.x = 1.0; vi.y = 2.0;

16 v2 = vi;

17 v3 = v_difference(vl, v2);

18 return O;

19 }

Structures, Operators 9 October, 2024 15 / 38

Typedef

Vector example with typedef

1 typedef struct { /* we can omit the label */
2 double x; double y;

3 } vector;

4

5

6 vector v_difference(vector a, vector b) {
7 vector c;

8 cC.Xx = a.x - b.x;

9 c.y = a.y - b.y;

10 return c;

11}

12

13 int main(void) {

14 vector v1, v2, v3;

15 vi.x = 1.0; vi.y = 2.0;

16 v2 = vi;

17 v3 = v_difference(vl, v2);

18 return O;

19 }

Structures, Operators 9 October, 2024 15 / 38

Typedef

A more complex structure

typedef struct {
double x;
double y;

} vector;

typedef struct {
vector centrepoint;
double radius;

} circle;

x

1
2
3
4
5
6
7
8
9

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 16 / 38

Typedef

A more complex structure

typedef struct {
double x;
double y;

} vector; N

typedef struct { \n /
vector centrepoint;
double radius;

} circle;

x

1
2
3
4
5
6
7
8
9

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 16 / 38

Typedef

A more complex structure

1 typedef struct {

2 double x;

3 double y;)

4 } vector; TN

: 10
6 typedef struct { & /
7 vector centrepoint; ~7 X
8 double radius;

9 } circle;

1 circle k = {{3.0, 2.0}, 1.5};
> vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 16 / 38

Typedef

A more complex structure

typedef struct {
double x;
double y;

} vector;

typedef struct {
vector centrepoint;
double radius; TN

} circle; /, \

x

1
2
3
4
5 v
6
7
8
9

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 16 / 38

Operators Definitions Operators Prec.

Chapter 3

Operators

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 17 / 38

Operators Definitions

Operations

m Denoted with operators (special symbols)
m They work with operands

m They result a data with type

20]) 3.0

0.6

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 18 / 38

Operators Definitions

Operations

m Denoted with operators (special symbols)
m They work with operands
m They result a data with type
m Polymorphic: have different behaviour on different operand
types
20J) 1 3.0 2] 13
/ /
0.6 01l

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 18 / 38

Operators Definitions

Expressions and operators

m Expressions

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 19 / 38

Operators Definitions

Expressions and operators

m Expressions
meg 8+ 5< -a-2

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 19 / 38

Operators Definitions

Expressions and operators

m Expressions
meg 8+ 5< -a-2
m Built up of constants, variable references and operations
a (3)

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 19 / 38

Operators Definitions

Expressions and operators

m Expressions
meg 8+ 5< -a-2
m Built up of constants, variable references and operations
a (3)

FALSE

m by evaluating them the result is one data element with type.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 19 / 38

Operators Definitions

Types of operators

m Considering the number of operands

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Definitions

Types of operators

m Considering the number of operands

m unary — with one operand
-a

based on slides by Zséka, Fiala, Vitéz Structures, Operators

9 October, 2024

20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2

based on slides by Zséka, Fiala, Vitéz Structures, Operators

9 October, 2024

20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2

m Considering the interpretation of the operand

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2
m Considering the interpretation of the operand
m arithmetic

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2
m Considering the interpretation of the operand

m arithmetic
= relational

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2
m Considering the interpretation of the operand
m arithmetic
m relational
m logical

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2
m Considering the interpretation of the operand
arithmetic
relational

logical
bitwise

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Definitions

Types of operators

m Considering the number of operands
m unary — with one operand
-a
m binary — with two operands
1+2

m Considering the interpretation of the operand
m arithmetic

relational

logical

bitwise

misc

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 20 / 38

Operators Operators

Arithmetic operators

operation syntax

unary plus +<expression>

unary minus —-<expression>

addition <expression> + <expression>
subtraction <expression> - <expression>

multiplication <expression> * <expression>

division <expression> / <expression>
type of the result depends on type of the operands, if
both are integer, then it is an integer division

. 0 .
modulus <expression> J, <expression>

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 21 /38

Operators Definitions Operators Prec

True or false — Boolean in C (repeated)

m Every boolean like result is int type, and its value is

m O, if false
m 1, if true

1 printf ("%d\t%d", 2<3, 2==3);

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 22 /38

Operators Definitions Operators Prec

True or false — Boolean in C (repeated)

m Every boolean like result is int type, and its value is

m O, if false
m 1, if true

1 printf ("%d\t%d", 2<3, 2==3);

m A value interpreted as boolean is

m false, if its value is represented with 0 bits only
m true, if its value is represented with not only 0 bits

1 while (1) { /* infinite loop */ }
2 while (-3.0) { /% infinite loop */ }
3 while (0) { /* this here is never executed */ }

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 22 /38

Operators Operators

Relational operators

operation syntax

<left value> < <expression>
) <left value> <= <expression>
relational operators
<left value> > <expression>

<left value> >= <expression>

checking equality <left value> == <expression>

checking non-equality <left value> != <expression>

They give logical value (int, 0 or 1) as result.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 23 /38

Operators Operators

Logical operators

operation syntax

logical NOT (complement) !<expression>

1 int a = 0xb5c; /* 0101 1100, true */
2 int b = l!a; /* 0000 0000, false */
3 dint ¢ = !b; /* 0000 0001, true */

m Conlusion: !!a # a, only if we look at their boolean value.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 24 / 38

Operators Definitions Operators Prec

Logical operators |'|

operation syntax

logical NOT (complement) !<expression>

1 int a = 0xb5c; /* 0101 1100, true */
2 int b = la; /* 0000 0000, false */
3 int ¢ = !b; /* 0000 0001, true */

m Conlusion: !!a # a, only if we look at their boolean value.

1 int finish = O0;

> while (!finish) {
3 int b;

4 scanf ("%d4d", &b);
5 if (b == 0)

6 finish = 1;
7}

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 24 / 38

Operators Operators

Logical operators

operation syntax

logical AND <expression> && <expression>

logical OR <expression> H <expression>

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 25 / 38

Operators Operators

Logical operators

operation syntax

logical AND <expression> && <expression>

logical OR <expression> H <expression>

Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 25 / 38

Operators Definitions Operators Prec

Logical operators T

operation syntax

logical AND <expression> && <expression>

logical OR <expression> H <expression>

Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.
We make use of this feature very often.

int al[5] = {1, 2, 3, 4, 5};

1
2 int i = 0;

3 while (i < 5 && al[il < 20)

4 i = i+1; /* no over-indexing */

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024

25 / 38

Operators Operators

Some more operators

We have used them so far, but never have called them operators

before.
operation syntax
function call <function> (<actual arguments>)
array reference <array> [<index>]

structure-reference <structure>.<member>

1 ¢ = sin(3.2); /* () x/
> al[28] = 3; /* [1 %/
3 v.x = 2.0; /* . */

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 26 / 38

Operators Operators

Operators with side effects I-|T

m Some operators have side effects

m main effect: calculating the result of evaluation
m side effect: the value of the operand is modified

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 27 / 38

Operators Operators

Operators with side effects

m Some operators have side effects

m main effect: calculating the result of evaluation
m side effect: the value of the operand is modified

m Simple assignment operator = a 2
m In C language, assignment is an expression!
m its side effect is the assignment (a is
modified) 2

m its main effect is the new value of a

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 27 / 38

Operators Definitions Operators Prec

Operators with side effects

m Some operators have side effects
m main effect: calculating the result of evaluation
m side effect: the value of the operand is modified

m Simple assignment operator = a 2
m In C language, assignment is an expression!
m its side effect is the assignment (a is
modified) 2

m its main effect is the new value of a
m Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

m Db is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

9 October, 2024 27 / 38

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators

Operators Operators

Left-value

m Assignement operator modifies value of the left side operand.
There can be only "modifiable entity” on the left side.

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 28 / 38

Operators Operators

Left-value

m Assignement operator modifies value of the left side operand.
There can be only "modifiable entity” on the left side.

Left-value (Ivalue)

An expression that can appear on the left side of the assignment.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 28 / 38

Operators Operators

Left-value |'|T

m Assignement operator modifies value of the left side operand.
There can be only "modifiable entity” on the left side.

Left-value (Ivalue)

An expression that can appear on the left side of the assignment.

m As far as we know now, left-value can be

m a variable reference a =2
m element of an array array[3] = 2
m member of a structure V.X =2
| .

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 28 / 38

Operators Operators

Left-value

m Assignement operator modifies value of the left side operand.
There can be only "modifiable entity” on the left side.

Left-value (Ivalue)

An expression that can appear on the left side of the assignment.

m As far as we know now, left-value can be

m a variable reference a =2
m element of an array array[3] = 2
m member of a structure V.X =2
| .

m Examples for non-left-value expressions

® constant 3 = 2 error
m arithmetic expression a+d = 2 error
m logical expression a>3 = 2 error
m function value sin(2.0) = 2 error

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 28 / 38

Operators Operators

Expression or statement? |'|T

An operation that has side effect can be a statement in a program.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 29 / 38

Operators Operators

Expression or statement?

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

m Expression is evaluated, but the result is thrown away (but all
side effects are completed).

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 29 / 38

Operators Operators

Expression or statement?

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

m Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /x expression, its value is 2, it has side effect */

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 29 / 38

Operators Operators

Expression or statement?

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

m Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /x expression, its value is 2, it has side effect */
1 a = 2; /*x statement, it has no value */
2 /* generates a side effect */

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 29 / 38

Operators Definitions Operators Prec

Expression or statement? |'|

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

m Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /x expression, its value is 2, it has side effect */
1 a = 2; /*x statement, it has no value */
2 /* generates a side effect */

m As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement, it generates nothing */

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 29 / 38

Operators

Assignement operators

expression

syntax

Operators

compound assignment

<left-value>
<left-value>
<left-value>
<left-value>

<left-value>

/

%=

<expression>
<expression>
<expression>
<expression>

<expression>

based on slides by Zséka, Fiala, Vitéz

Structures, Operators

9 October, 2024

30 / 38

Operators Operators

Assignement operators

expression syntax

<left-value> += <expression>
<left-value> -= <expression>
compound assignment <left-value> *= <expression>
<left-value> /= <expression>

0 .
<left-value> %= <expression>

m Almost: <left-value>=<left-value><op><expression>

1 a += 2; /¥ a = a + 2; */
2 t[rand ()] += 2; /* NOT t[rand()] = t[rand ()] + 2; */

Left-value is evaluated only once.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 30/ 38

Operators Operators

Other operators with side effects

expression syntax

post increment <left-value> ++
post decrement <left-value> --

it is increased/decreased by one after evaluation

pre increment ++<left-value>
pre decrement --<left-value>

it is increased/decreased by one before evaluation

= a++; /* b = a; a += 1; x/
++a; /* a += 1; b = a;

N
o o
]

1 for (i = 0; i < 5; ++i) { /* five times */ }

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024

31 /38

Operators Operators

Other operators

operation syntax
modifying type
yimne (<type>)<expression>
(casting)
size for storage (in bytes) sizeof <expression>

the expression is not evaluated

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 32 /38

Operators Operators

Other operators

operation syntax
modifying type
(<type>) <expression>
(casting)
size for storage (in bytes) sizeof <expression>
the expression is not evaluated
1 int al=2, a2=3, storagesize;
2 double b;
3 b = al/(double)a2;
4 storagesize = sizeof 3/al;
5 storagesize = sizeof (double)al;
6 storagesize = sizeof (double);

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 32 /38

Operators Definitions Operators Prec

Other operators |'|

operation syntax
modifying type
(<type>) <expression>
(casting)
size for storage (in bytes) sizeof <expression>
the expression is not evaluated
1 int al=2, a2=3, storagesize;
2 double b;
3 b = al/(double)a?2;
4 storagesize = sizeof 3/al;
5 storagesize = sizeof (double)al;
6 storagesize = sizeof (double);

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 32 /38

Operators Definitions Operators Prec

Other operators |'|

operation syntax
modifying type
(<type>) <expression>
(casting)
size for storage (in bytes) sizeof <expression>
the expression is not evaluated
1 int al=2, a2=3, storagesize;
2 double b;
3 b = al/(double)a2;
4 storagesize = sizeof 3/al;
5 storagesize = sizeof (double)al;
6 storagesize = sizeof (double);

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 32 /38

Operators Definitions Operators Prec

Other operators |'|

operation syntax
modifying type
(<type>) <expression>
(casting)
size for storage (in bytes) sizeof <expression>
the expression is not evaluated
1 int al=2, a2=3, storagesize;
2 double b;
3 b = al/(double)a2;
4 storagesize = sizeof 3/al;
5 storagesize = sizeof (double)al;
6 storagesize = sizeof (double);

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 32 /38

Operators Definitions Operators Prec

Other operators |'|

operation syntax
modifying type
(<type>) <expression>
(casting)
size for storage (in bytes) sizeof <expression>
the expression is not evaluated
1 int al=2, a2=3, storagesize;
2 double b;
3 b = al/(double)a2;
4 storagesize = sizeof 3/al;
5 storagesize = sizeof (double)al;
6 storagesize = sizeof (double);

) based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 32 /38

Operators Operators

Other operators

operation syntax

comma <expression> , <expression>

m Operands are evaluated from left to right.

m Value of first expression is thrown away.

m Value and type of the entire expression is the value and type of
the second expression.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 33 /38

Operators Operators

Other operators

operation syntax

comma <expression> , <expression>

m Operands are evaluated from left to right.
m Value of first expression is thrown away.

m Value and type of the entire expression is the value and type of
the second expression.

1 int step, j;

2 /* two-digit numbers with increasing step size x/
3 for(step=1,j=10; j<100; j+=step, step++)

4 printf ("%d\n", j);

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 33 /38

Operators Operators

Other operators

operation syntax

comma <expression> , <expression>

m Operands are evaluated from left to right.
m Value of first expression is thrown away.

m Value and type of the entire expression is the value and type of
the second expression.

int step, j;
/* two-digit numbers with increasing step size */
for(step=1,j=10; j<100; j+=step, step++)

printf ("%d\n", j);

A W N R

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 33 /38

Operators Operators

Other operators |'|T

operation syntax

(ternary) conditional expr. <cond.> 7 <expr.1> : <expr.2>

m if <cond.> is true, then <expr.1>, otherwise <expr.2>.
m only one of <expr.1> and <expr.2> is evaluated.

m It does not subtitute the if statement.

1 e =

a <0 7? -a: a; /* determining absolute value x*/

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 34 /38

Operators

Features of operations performed on data |'|T

Precedence

If there are different operations, which is evaluated first?

1 int a = 2 + 3 *x 4; /x 2 + (3 * 4) */

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 35 /38

Operators

Features of operations performed on data |'|T

Precedence

If there are different operations, which is evaluated first?

1 int a = 2 + 3 % 4; /% 2 + (3 x 4) x/

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 x/

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 35 /38

Operators

Features of operations performed on data |'|T

Precedence

If there are different operations, which is evaluated first?

1 int a = 2 + 3 % 4; /% 2 + (3 x 4) x/

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 x/

Instead of memorizing the rules, use parentheses!

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 35 /38

List of operators in C I'lT

© © N O O A W N R

L i =l =
A W N R O

15

Operators Definitions Operators Prec.

Operateors are listed top to bottom, in descending precedence
(operators in the same row have the same precedence)

O

!
*

A A+
Il A

) &2

[1 . -> /% highest x/

T4+ -- + - * & (<type>) sizeof

!/ h

>>

<= > o>=

1= /* forbidden to learn! */
/* use parentheses! x*/

+= _= *= /= %: &= S= |= <<= >>=

Structures, Operators 9 October, 2024

36 / 38

Operators

Operators of C language

Summarized

m A lot of effective operators

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 37 /38

Operators

Operators of C language

Summarized

m A lot of effective operators

m Some operators have side effects that will occur during
evaluation

based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 37 /38

Operators

Operators of C language

Summarized
m A lot of effective operators

m Some operators have side effects that will occur during
evaluation

m We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:

1 ¢ -= 2; /* means the same */
2 ++i; /* not less effective x*/
3 t[i] = func(c); /* and I will understand it tomorrow too *

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 37 /38

Operators Definitions Operators Prec.

Thank you for your attention.

(© based on slides by Zséka, Fiala, Vitéz Structures, Operators 9 October, 2024 38 /38

	Structures
	Motivation
	Definition
	Assignment of value

	Typename-assignment
	Operators
	Definitions
	Operators
	Precedence

