
Pointers Strings

Pointers – Strings
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

16 October, 2024

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 1 / 34



Pointers Strings

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Pointers
Definition of pointers
Passing parameters as
address

Pointer-arithmetics
Pointers and arrays

2 Strings
Strings

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 2 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Chapter 1

Pointers

Fundamental Theorem of Software Engineering (FTSE)

“We can solve any problem
by introducing an extra level of indirection.”

Andrew Koenig

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 3 / 34

http://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering


Pointers Strings Def. Func.param. Arithmetics Arrays

Where are the variables? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program that lists the address and value of variables

1 int a = 2;
2 double b = 8.0;
3 printf("address of a: %p, its value: %d\n", &a, a);
4 printf("address of b: %p, its value: %f\n", &b, b);

address of a: 0x7fffa3a4225c, its value: 2
address of b: 0x7fffa3a42250, its value: 8.000000

address of variable: starting address of ”memory block”
containing the variable, expressed in bytes
with the address-of operator we can create address of any
variables1 like this &<reference>

1more precisely left-values
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 4 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Where are the variables? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program that lists the address and value of variables

1 int a = 2;
2 double b = 8.0;
3 printf("address of a: %p, its value: %d\n", &a, a);
4 printf("address of b: %p, its value: %f\n", &b, b);

address of a: 0x7fffa3a4225c, its value: 2
address of b: 0x7fffa3a42250, its value: 8.000000

address of variable: starting address of ”memory block”
containing the variable, expressed in bytes
with the address-of operator we can create address of any
variables1 like this &<reference>

1more precisely left-values
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 4 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

The pointer type DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The pointer type is for storing memory addresses

Declaration of pointer

<pointed type> * <identifier>;

1 int* p; /* p stores the address of one int data */
2 double* q; /* q stores the address of one double data */
3 char* r; /* r stores the address of one char data */

it is the same, even if arranged in a different way

1 int *p; /* p stores the address of one int data */
2 double *q; /* q stores the address of one double data */
3 char *r; /* r stores the address of one char data */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 5 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

The pointer type DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The pointer type is for storing memory addresses

Declaration of pointer

<pointed type> * <identifier>;

1 int* p; /* p stores the address of one int data */
2 double* q; /* q stores the address of one double data */
3 char* r; /* r stores the address of one char data */

it is the same, even if arranged in a different way

1 int *p; /* p stores the address of one int data */
2 double *q; /* q stores the address of one double data */
3 char *r; /* r stores the address of one char data */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 5 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”

If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1004

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1004

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 5 0x1004

p:0x1004

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 6 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Address-of and indirection – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operator operation description
& address-of assigns its address to the variable
* indirection assigns variable to the address

Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 7 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Address-of and indirection – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operator operation description
& address-of assigns its address to the variable
* indirection assigns variable to the address

Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 7 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Address-of and indirection – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operator operation description
& address-of assigns its address to the variable
* indirection assigns variable to the address

Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 7 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

????0x1FF8:
????0x1FF4:
????0x1FF0:
????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

????0x1FF8:
????0x1FF4:
????0x1FF0:
????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
30x1FF8:
20x1FF4:
150x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
3y 0x1FF8:
2x 0x1FF4:
150x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
3y 0x1FF8:
2x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
3y 0x1FF8:
3x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
2y 0x1FF8:
3x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
2y 0x1FF8:
3x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
20x1FF8:
30x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
20x1FF8:
30x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
3b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 8 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Application – returning value as parameter DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If a function has to calculate several values, then. . .
. . . we can use structures, but sometimes this seems rather
unnecessary.

Instead. . .

1 int inverse(double x, double *py)
2 {
3 if (abs(x) < 1e-10) return 0;
4 *py = 1.0 / x;
5 return 1;
6 } link x

y

1 double y; /* memory allocation for result */
2 if (inverse (5.0, &y) == 1)
3 printf("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf("Reciprocal does not exist"); link

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 9 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/inverse.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Application – returning value as parameter DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If a function has to calculate several values, then. . .
. . . we can use structures, but sometimes this seems rather
unnecessary.
Instead. . .

1 int inverse(double x, double *py)
2 {
3 if (abs(x) < 1e-10) return 0;
4 *py = 1.0 / x;
5 return 1;
6 } link x

y

1 double y; /* memory allocation for result */
2 if (inverse (5.0, &y) == 1)
3 printf("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf("Reciprocal does not exist"); link

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 9 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/inverse.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Application – returning value as parameter DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If a function has to calculate several values, then. . .
. . . we can use structures, but sometimes this seems rather
unnecessary.
Instead. . .

1 int inverse(double x, double *py)
2 {
3 if (abs(x) < 1e-10) return 0;
4 *py = 1.0 / x;
5 return 1;
6 } link x

y

1 double y; /* memory allocation for result */
2 if (inverse (5.0, &y) == 1)
3 printf("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf("Reciprocal does not exist"); link

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 9 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/inverse.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Application – return values as parameters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Now we understand what this means
1 int n, p;
2 /* return value as parameter */
3 scanf("%d%d", &n, &p); /* we pass the addresses */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 10 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?

Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!
The operator of indirection (*)

makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 11 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?
Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!

The operator of indirection (*)
makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 11 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?
Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!
The operator of indirection (*)

makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 11 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?
Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!
The operator of indirection (*)

makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 11 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p: ????

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p: ????

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p: ????

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1004

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1004

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning
p+1 pointer points to the next element
p-1 pointer points to the previous element
q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 12 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointer-arithmetic DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In the above example pointer-arithmetic is strange, as we don’t
know what is before or after variable a in the memory.
This operation is meaningful, when we have variables of the
same type, stored in the memory one afte the other.
This is the case for arrays.

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 13 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing an array can be done with pointer-arithmetics.

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", *(p+i));

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example *(p+i) is the same as t[i], because
p points to the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 14 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing an array can be done with pointer-arithmetics.

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", *(p+i));

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example *(p+i) is the same as t[i], because
p points to the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 14 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing an array can be done with pointer-arithmetics.

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", *(p+i));

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example *(p+i) is the same as t[i], because
p points to the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 14 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to *(p+i)

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example p[i] is the same as t[i], because p points to
the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 15 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to *(p+i)

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example p[i] is the same as t[i], because p points to
the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 15 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to *(p+i)

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example p[i] is the same as t[i], because p points to
the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 15 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Arrays can be taken as pointers.
The identifier (name) of array is the starting address of the
array, in other words the value of expression t is &t[0]

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = t; /* &t[0] */
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

Pointer-arithmetics work for arrays too:
t+i is identical to &t[i]

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 16 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Arrays can be taken as pointers.
The identifier (name) of array is the starting address of the
array, in other words the value of expression t is &t[0]

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = t; /* &t[0] */
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

Pointer-arithmetics work for arrays too:
t+i is identical to &t[i]

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 16 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Arrays can be taken as pointers.
The identifier (name) of array is the starting address of the
array, in other words the value of expression t is &t[0]

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = t; /* &t[0] */
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

Pointer-arithmetics work for arrays too:
t+i is identical to &t[i]

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 16 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.

index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 17 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.

Differences:
Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 17 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.

Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 17 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 17 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 17 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!

Passing an array:
Address of first element double*
Size of the array typedef unsigned int size_t3

1 double first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return array[i];
7

8 return 0; /* all are non -negative */
9 } link

1 double myarray [3] = {3.0, 1.0, -2.0};
2 double neg = first_negative(myarray , 3); link

3defined in stdio.h
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 18 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
Passing an array:

Address of first element double*
Size of the array typedef unsigned int size_t3

1 double first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return array[i];
7

8 return 0; /* all are non -negative */
9 } link

1 double myarray [3] = {3.0, 1.0, -2.0};
2 double neg = first_negative(myarray , 3); link

3defined in stdio.h
© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 18 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
Passing an array:

Address of first element double*
Size of the array typedef unsigned int size_t3

1 double first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return array[i];
7

8 return 0; /* all are non -negative */
9 } link

1 double myarray [3] = {3.0, 1.0, -2.0};
2 double neg = first_negative(myarray , 3); link
3defined in stdio.h

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 18 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

To distinguish arrays and pointers in the parameter list, we can
use the array-notation when passing an array.

1 double first_negative(double array[], size_t size)
2 /* (double *array , size_t size) */
3 {
4 ...
5 }

In the formal parameter list double a[] is
identical to double *a.
In the formal parameter list we can use only empty [], and
size should be passed as a separate parameter!

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 19 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

To distinguish arrays and pointers in the parameter list, we can
use the array-notation when passing an array.

1 double first_negative(double array[], size_t size)
2 /* (double *array , size_t size) */
3 {
4 ...
5 }

In the formal parameter list double a[] is
identical to double *a.
In the formal parameter list we can use only empty [], and
size should be passed as a separate parameter!

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 19 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
The return value should be the address of the element found.

1 double *first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return &array[i];
7

8 return NULL; /* all are non -negative */
9 } link

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 20 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative_ptr.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
The return value should be the address of the element found.

1 double *first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return &array[i];
7

8 return NULL; /* all are non -negative */
9 } link

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 20 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/firstnegative_ptr.c


Pointers Strings Def. Func.param. Arithmetics Arrays

Null pointer DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The null pointer (NULL)

It stores the 0x0000 address
Agreed that it ”points to nowhere”

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 21 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Null pointer DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The null pointer (NULL)
It stores the 0x0000 address

Agreed that it ”points to nowhere”

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 21 / 34



Pointers Strings Def. Func.param. Arithmetics Arrays

Null pointer DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The null pointer (NULL)
It stores the 0x0000 address
Agreed that it ”points to nowhere”

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 21 / 34



Pointers Strings Def.

Chapter 2

Strings

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 22 / 34



Pointers Strings Def.

Strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C, text is stored in character arrays with termination sign,
called as strings.

The termination sign is the character with 0 ASCII-code ’\0’,
the null-character.
’S’ ’o’ ’m’ ’e’ ’ ’ ’t’ ’e’ ’x’ ’t’ ’\0’

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 23 / 34



Pointers Strings Def.

Strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C, text is stored in character arrays with termination sign,
called as strings.
The termination sign is the character with 0 ASCII-code ’\0’,
the null-character.
’S’ ’o’ ’m’ ’e’ ’ ’ ’t’ ’e’ ’x’ ’t’ ’\0’

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 23 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 24 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 24 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 24 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can allocate memory for a longer string than needed now,
thus we have an overhead.

1 char s[10] = "Hello"; /* s array , (const.addr. 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005
? 0x1006
? 0x1007
? 0x1008
? 0x1009

Modification:
1 s[5] = s[6] = ’!’;
2 s[7] = ’\0’; /* must be terminated */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 25 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can allocate memory for a longer string than needed now,
thus we have an overhead.

1 char s[10] = "Hello"; /* s array , (const.addr. 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004
’!’ 0x1005
’!’ 0x1006

’\0’ 0x1007
? 0x1008
? 0x1009

Modification:
1 s[5] = s[6] = ’!’;
2 s[7] = ’\0’; /* must be terminated */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 25 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.
We can modify value of s, however it is not recommended,
because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 26 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.

We can modify value of s, however it is not recommended,
because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 26 / 34



Pointers Strings Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.
We can modify value of s, however it is not recommended,
because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 26 / 34



Pointers Strings Def.

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?
1 char s[] = "A"; /* two bytes: {’A’, ’\0’} */
2 char c = ’A’; /* one byte: ’A’ */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {’\0’} */
2 char c = ’’; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 27 / 34



Pointers Strings Def.

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?
1 char s[] = "A"; /* two bytes: {’A’, ’\0’} */
2 char c = ’A’; /* one byte: ’A’ */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {’\0’} */
2 char c = ’’; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 27 / 34



Pointers Strings Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Strings are read and displayed with format code %s

1 char s[100] = "Hello";
2 printf("%s\n", s);
3 printf("Enter a word not longer than 99 characters: ");
4 scanf("%s", s);
5 printf("%s\n", s);

Hello
Enter a word not longer than 99 characters: ghostbusters
ghostbusters

Why don’t we have to pass the size for printf?
Why don’t we need the & in the scanf function?

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 28 / 34



Pointers Strings Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Strings are read and displayed with format code %s

1 char s[100] = "Hello";
2 printf("%s\n", s);
3 printf("Enter a word not longer than 99 characters: ");
4 scanf("%s", s);
5 printf("%s\n", s);

Hello
Enter a word not longer than 99 characters: ghostbusters
ghostbusters

Why don’t we have to pass the size for printf?
Why don’t we need the & in the scanf function?

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 28 / 34



Pointers Strings Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

scanf reads only until the first whitespace character. To read
text consisting of several words, use the gets function:

1 char s[100];
2 printf("Enter a text - max. 99 characters long: ");
3 gets(s);
4 printf("%s\n", s);

Enter a text - max. 99 characters long: this is text
this is text

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 29 / 34



Pointers Strings Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: comparison of strings

1 char *s = "Hello";
2 char *r = "Hello";
3 if (s == r) /* what do we compare? */
4 ...

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000
’H’ 0x13E8
’e’ 0x13E9
’l’ 0x13EA
’l’ 0x13EB
’o’ 0x13EC

’\0’ 0x13ED

r:0x13E8

The same mistake happens if defined as arrays

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 30 / 34



Pointers Strings Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: comparison of strings

1 char *s = "Hello";
2 char *r = "Hello";
3 if (s == r) /* what do we compare? */
4 ...

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000
’H’ 0x13E8
’e’ 0x13E9
’l’ 0x13EA
’l’ 0x13EB
’o’ 0x13EC

’\0’ 0x13ED

r:0x13E8

The same mistake happens if defined as arrays

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 30 / 34



Pointers Strings Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?
Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 31 / 34



Pointers Strings Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?

Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 31 / 34



Pointers Strings Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?
Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 31 / 34



Pointers Strings Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: string copy attempt

1 char *s = "Hello";
2 char *r = "Apple";
3 r = s; /* what do we copy */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x13E8

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x1000

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 32 / 34



Pointers Strings Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: string copy attempt

1 char *s = "Hello";
2 char *r = "Apple";
3 r = s; /* what do we copy */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x1000

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 32 / 34



Pointers Strings Def.

Other string functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

#include <string.h>
strlen length of string (without \0)
strcmp comparing strings
strcpy copying string
strcat concatenating strings
strchr search for character in string
strstr search for string in string

strcpy and strcat functions copy ’without thinking’, the user
must provide the allocated memory for the resulting string!

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 33 / 34



Pointers Strings Def.

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Pointers – Strings 16 October, 2024 34 / 34


	Pointers
	Definition of pointers
	Passing parameters as address
	Pointer-arithmetics
	Pointers and arrays

	Strings
	Strings


