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Strings
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Strings Dynamic Def.

Strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C, text is stored in character arrays with termination sign,
called as strings.

The termination sign is the character with 0 ASCII-code ’\0’,
the null-character.
’S’ ’o’ ’m’ ’e’ ’ ’ ’t’ ’e’ ’x’ ’t’ ’\0’
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Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */
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Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can allocate memory for a longer string than needed now,
thus we have an overhead.

1 char s[10] = "Hello"; /* s array , (const.addr. 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005
? 0x1006
? 0x1007
? 0x1008
? 0x1009

Modification:
1 s[5] = s[6] = ’!’;
2 s[7] = ’\0’; /* must be terminated */
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Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.
We can modify value of s, however it is not recommended,
because this stores the address of our string.
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Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?
1 char s[] = "A"; /* two bytes: {’A’, ’\0’} */
2 char c = ’A’; /* one byte: ’A’ */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {’\0’} */
2 char c = ’’; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 8 / 26



Strings Dynamic Def.

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?
1 char s[] = "A"; /* two bytes: {’A’, ’\0’} */
2 char c = ’A’; /* one byte: ’A’ */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {’\0’} */
2 char c = ’’; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 8 / 26



Strings Dynamic Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Strings are read and displayed with format code %s

1 char s[100] = "Hello";
2 printf("%s\n", s);
3 printf("Enter a word not longer than 99 characters: ");
4 scanf("%s", s);
5 printf("%s\n", s);

Hello
Enter a word not longer than 99 characters: ghostbusters
ghostbusters

Why don’t we have to pass the size for printf?
Why don’t we need the & in the scanf function?
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Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

scanf reads only until the first whitespace character. To read
text consisting of several words, use the gets function:

1 char s[100];
2 printf("Enter a text - max. 99 characters long: ");
3 gets(s);
4 printf("%s\n", s);

Enter a text - max. 99 characters long: this is text
this is text
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Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: comparison of strings

1 char *s = "Hello";
2 char *r = "Hello";
3 if (s == r) /* what do we compare? */
4 ...

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000
’H’ 0x13E8
’e’ 0x13E9
’l’ 0x13EA
’l’ 0x13EB
’o’ 0x13EC

’\0’ 0x13ED

r:0x13E8

The same mistake happens if defined as arrays
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String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?
Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!
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Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: string copy attempt

1 char *s = "Hello";
2 char *r = "Apple";
3 r = s; /* what do we copy */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x13E8

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x1000
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Other string functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

#include <string.h>
strlen length of string (without \0)
strcmp comparing strings
strcpy copying string
strcat concatenating strings
strchr search for character in string
strstr search for string in string

strcpy and strcat functions copy ’without thinking’, the user
must provide the allocated memory for the resulting string!
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Chapter 2

Dynamic memory management
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Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!

The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers
3 We read and store the numbers, and print them in reversed

order
4 We give back (hand over) the reserved memory place to the

operating system
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Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

p[0]
p[1]
p[2]
p[3]
p[4]

20
bytes

0xACDC

p:0x????

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1
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The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *malloc(size_t size);

Allocates memory block of size bytes, and the address of the
block is returned as void* type value
The returned void* ”is only an address”, we cannot de-refer it.
We can use it only if converted (eg. to int*).

1 int *p; /* starting address of int array */
2 /* Memory allocation for 5 int */
3 p = (int *) malloc (5* sizeof(int));

If there is not enough memory avaible, the return value is
NULL. This must be checked always.

1 if (p != NULL)
2 {
3 /* using memory , and releasing it */
4 }
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The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);

Releases the memory block starting at address p
The size of the block is not needed, the op.system knows it
(it stored it just before the memory block, this is the reason
for calling it with the starting address)
free(NULL) is allowed (does not perform anything), so we can
do this:

1 int *p = (int *) malloc (5* sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p); /* works even if NULL */
7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a
pointer to NULL after usage, so we can see it is not in use.
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malloc – free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,

for each malloc there is a free
1 char *WiFi = (char *) malloc (20* sizeof(char ));
2 int *Tibet = (int *) malloc (23* sizeof(int ));
3 ...
4 free(WiFi);
5 free(Tibet );

If we don’t relelase the memory block, memory leak occurs
Good practice rules:

Release in the same function where allocated
Don’t modify the pointer that was returned by malloc,
if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about
this (comment)
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The calloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *calloc(size_t num, size_t size);

Allocates memory block for storing num pieces of elements,
each with size size, the allocated memory block is cleared
(set to zero), and the address of the block is returned as
void* type value
Usage is almost the same as of malloc, except this performs
the calculation num*size, and removes the garbage.
The allocated block must be released in the same way: with
free.

1 int *p = (int *) calloc(5, sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p);
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The realloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated
the new size can be smaller r larger than the earlier size
if needed, the earlier content is copied to the new place, the
elements are not initialized
its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int ));
2 p[0] = p[1] = p[2] = 8;
3 p = realloc(p, 5* sizeof(int ));
4 p[3] = p[4] = 8;
5 ...
6 free(p);
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Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,
2 allocates memory for the result,
3 copies the first string into the result string,
4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment
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Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 /* concatenate -- concatenating two strings
2 Dynamic allocation , returning with address.
3 */
4 char *concatenate(char *s1, char *s2){
5 size_t l1 = strlen(s1);
6 size_t l2 = strlen(s2);
7 char *s = (char *) malloc ((l1+l2+1)* sizeof(char ));
8 if (s != NULL) {
9 strcpy(s, s1);

10 strcpy(s+l1, s2); /* or strcat(s, s2) */
11 }
12 return s;
13 } link
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Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function

1 char word1[] = "partner", word2[] = "ship";
2

3 char *res1 = concatenate(word1 , word2 );
4 char *res2 = concatenate(word2 , word1 );
5 res2 [0] = ’w’;
6

7 printf("%s\n%s", res1 , res2);
8

9 /* The function did allocate memory , release it! */
10 free(res1);
11 free(res2); link

partnership
whippartner
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Thank you for your attention.
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