
Strings Dynamic

Strings – Dynamic memory management
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

30 October, 2024

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 1 / 26



Strings Dynamic

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Strings
Strings

2 Dynamic memory
management

Allocating and releasing
memory
String example

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 2 / 26



Strings Dynamic Def.

Chapter 1

Strings

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 3 / 26



Strings Dynamic Def.

Strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C, text is stored in character arrays with termination sign,
called as strings.

The termination sign is the character with 0 ASCII-code ’\0’,
the null-character.
’S’ ’o’ ’m’ ’e’ ’ ’ ’t’ ’e’ ’x’ ’t’ ’\0’

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 4 / 26



Strings Dynamic Def.

Strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C, text is stored in character arrays with termination sign,
called as strings.
The termination sign is the character with 0 ASCII-code ’\0’,
the null-character.
’S’ ’o’ ’m’ ’e’ ’ ’ ’t’ ’e’ ’x’ ’t’ ’\0’

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 4 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 5 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 5 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

The same in a more simple way
1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

’D’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’a’ 0x1004

’\0’ 0x1005

Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 5 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can allocate memory for a longer string than needed now,
thus we have an overhead.

1 char s[10] = "Hello"; /* s array , (const.addr. 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005
? 0x1006
? 0x1007
? 0x1008
? 0x1009

Modification:
1 s[5] = s[6] = ’!’;
2 s[7] = ’\0’; /* must be terminated */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 6 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can allocate memory for a longer string than needed now,
thus we have an overhead.

1 char s[10] = "Hello"; /* s array , (const.addr. 0x1000) */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004
’!’ 0x1005
’!’ 0x1006

’\0’ 0x1007
? 0x1008
? 0x1009

Modification:
1 s[5] = s[6] = ’!’;
2 s[7] = ’\0’; /* must be terminated */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 6 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.
We can modify value of s, however it is not recommended,
because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 7 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.

We can modify value of s, however it is not recommended,
because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 7 / 26



Strings Dynamic Def.

Defining strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000

Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.
We can modify value of s, however it is not recommended,
because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 7 / 26



Strings Dynamic Def.

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?
1 char s[] = "A"; /* two bytes: {’A’, ’\0’} */
2 char c = ’A’; /* one byte: ’A’ */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {’\0’} */
2 char c = ’’; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 8 / 26



Strings Dynamic Def.

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?
1 char s[] = "A"; /* two bytes: {’A’, ’\0’} */
2 char c = ’A’; /* one byte: ’A’ */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {’\0’} */
2 char c = ’’; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 8 / 26



Strings Dynamic Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Strings are read and displayed with format code %s

1 char s[100] = "Hello";
2 printf("%s\n", s);
3 printf("Enter a word not longer than 99 characters: ");
4 scanf("%s", s);
5 printf("%s\n", s);

Hello
Enter a word not longer than 99 characters: ghostbusters
ghostbusters

Why don’t we have to pass the size for printf?
Why don’t we need the & in the scanf function?

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 9 / 26



Strings Dynamic Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Strings are read and displayed with format code %s

1 char s[100] = "Hello";
2 printf("%s\n", s);
3 printf("Enter a word not longer than 99 characters: ");
4 scanf("%s", s);
5 printf("%s\n", s);

Hello
Enter a word not longer than 99 characters: ghostbusters
ghostbusters

Why don’t we have to pass the size for printf?
Why don’t we need the & in the scanf function?

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 9 / 26



Strings Dynamic Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

scanf reads only until the first whitespace character. To read
text consisting of several words, use the gets function:

1 char s[100];
2 printf("Enter a text - max. 99 characters long: ");
3 gets(s);
4 printf("%s\n", s);

Enter a text - max. 99 characters long: this is text
this is text

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 10 / 26



Strings Dynamic Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: comparison of strings

1 char *s = "Hello";
2 char *r = "Hello";
3 if (s == r) /* what do we compare? */
4 ...

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000
’H’ 0x13E8
’e’ 0x13E9
’l’ 0x13EA
’l’ 0x13EB
’o’ 0x13EC

’\0’ 0x13ED

r:0x13E8

The same mistake happens if defined as arrays

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 11 / 26



Strings Dynamic Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: comparison of strings

1 char *s = "Hello";
2 char *r = "Hello";
3 if (s == r) /* what do we compare? */
4 ...

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

s:0x1000
’H’ 0x13E8
’e’ 0x13E9
’l’ 0x13EA
’l’ 0x13EB
’o’ 0x13EC

’\0’ 0x13ED

r:0x13E8

The same mistake happens if defined as arrays

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 11 / 26



Strings Dynamic Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?
Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 12 / 26



Strings Dynamic Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?

Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 12 / 26



Strings Dynamic Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically
0, if they are identical
negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */
2 {
3 while (*s1 != ’\0’ && *s1 == *s2)
4 {
5 s1++;
6 s2++;
7 }
8 return *s1 - *s2;
9 }

Is it a problem, that s1 and s2 was changed during the check?
Remark: In the solution we made use of the information that
\0 is the 0 ASCII-code character!

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 12 / 26



Strings Dynamic Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: string copy attempt

1 char *s = "Hello";
2 char *r = "Apple";
3 r = s; /* what do we copy */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x13E8

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x1000

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 13 / 26



Strings Dynamic Def.

Strings – typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: string copy attempt

1 char *s = "Hello";
2 char *r = "Apple";
3 r = s; /* what do we copy */

’H’ 0x1000
’e’ 0x1001
’l’ 0x1002
’l’ 0x1003
’o’ 0x1004

’\0’ 0x1005

’A’ 0x13E8
’p’ 0x13E9
’p’ 0x13EA
’l’ 0x13EB
’e’ 0x13EC

’\0’ 0x13ED

s:0x1000

r:0x1000

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 13 / 26



Strings Dynamic Def.

Other string functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

#include <string.h>
strlen length of string (without \0)
strcmp comparing strings
strcpy copying string
strcat concatenating strings
strchr search for character in string
strstr search for string in string

strcpy and strcat functions copy ’without thinking’, the user
must provide the allocated memory for the resulting string!

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 14 / 26



Strings Dynamic malloc str example

Chapter 2

Dynamic memory management

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 15 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!

The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers
3 We read and store the numbers, and print them in reversed

order
4 We give back (hand over) the reserved memory place to the

operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!
The user will enter the number of the numbers to be read
(count).

Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers
3 We read and store the numbers, and print them in reversed

order
4 We give back (hand over) the reserved memory place to the

operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!
The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers
3 We read and store the numbers, and print them in reversed

order
4 We give back (hand over) the reserved memory place to the

operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!
The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)

2 We ask memory from the operating system for storing n
integer numbers

3 We read and store the numbers, and print them in reversed
order

4 We give back (hand over) the reserved memory place to the
operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!
The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers

3 We read and store the numbers, and print them in reversed
order

4 We give back (hand over) the reserved memory place to the
operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!
The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers
3 We read and store the numbers, and print them in reversed

order

4 We give back (hand over) the reserved memory place to the
operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s read integer numbers and print them in a reversed order!
The user will enter the number of the numbers to be read
(count).
Let’s not use more memory than needed!

1 We read the count (n)
2 We ask memory from the operating system for storing n

integer numbers
3 We read and store the numbers, and print them in reversed

order
4 We give back (hand over) the reserved memory place to the

operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 16 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

p[0]
p[1]
p[2]
p[3]
p[4]

20
bytes

0xACDC

p:0x????

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

p[0]
p[1]
p[2]
p[3]
p[4]

20
bytes

0xACDC

p:0x????

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

p[0]
p[1]
p[2]
p[3]
p[4]

20
bytes

0xACDC

p:0x????

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

p[0]
p[1]
p[2]
p[3]
p[4]

20
bytes

0xACDC

p:0x????

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

p[0]
p[1]
p[2]
p[3]
p[4]

20
bytes

0xACDC

p:0xACDC

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

1
4
2
5
8

20
bytes

0xACDC

p:0xACDC

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

1
4
2
5
8

20
bytes

0xACDC

p:0xACDC

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

1
4
2
5
8

20
bytes

0xACDC

p:0xACDC

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL;

1
4
2
5
8

20
bytes

0xACDC

p:0x0000

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;
2 int *p;
3

4 printf("How many numbers? ");
5 scanf("%d", &n);
6 p = (int*) malloc(n*sizeof(int));
7 if (p == NULL) return;
8

9 printf("Enter %d numbers :\n", n);
10 for (i = 0; i < n; ++i)
11 scanf("%d", &p[i]);
12

13 printf("Reversed :\n");
14 for (i = 0; i < n; ++i)
15 printf("%d ", p[n-i-1]);
16

17 free(p);
18 p = NULL; link

1
4
2
5
8

20
bytes

0xACDC

p:0x0000

How many numbers? 5
Enter 5 numbers!
1 4 2 5 8
Reversed:
8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 17 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect09/src/mallocexample.c


Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *malloc(size_t size);

Allocates memory block of size bytes, and the address of the
block is returned as void* type value
The returned void* ”is only an address”, we cannot de-refer it.
We can use it only if converted (eg. to int*).

1 int *p; /* starting address of int array */
2 /* Memory allocation for 5 int */
3 p = (int *) malloc (5* sizeof(int));

If there is not enough memory avaible, the return value is
NULL. This must be checked always.

1 if (p != NULL)
2 {
3 /* using memory , and releasing it */
4 }

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 18 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *malloc(size_t size);

Allocates memory block of size bytes, and the address of the
block is returned as void* type value

The returned void* ”is only an address”, we cannot de-refer it.
We can use it only if converted (eg. to int*).

1 int *p; /* starting address of int array */
2 /* Memory allocation for 5 int */
3 p = (int *) malloc (5* sizeof(int));

If there is not enough memory avaible, the return value is
NULL. This must be checked always.

1 if (p != NULL)
2 {
3 /* using memory , and releasing it */
4 }

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 18 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *malloc(size_t size);

Allocates memory block of size bytes, and the address of the
block is returned as void* type value
The returned void* ”is only an address”, we cannot de-refer it.
We can use it only if converted (eg. to int*).

1 int *p; /* starting address of int array */
2 /* Memory allocation for 5 int */
3 p = (int *) malloc (5* sizeof(int));

If there is not enough memory avaible, the return value is
NULL. This must be checked always.

1 if (p != NULL)
2 {
3 /* using memory , and releasing it */
4 }

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 18 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *malloc(size_t size);

Allocates memory block of size bytes, and the address of the
block is returned as void* type value
The returned void* ”is only an address”, we cannot de-refer it.
We can use it only if converted (eg. to int*).

1 int *p; /* starting address of int array */
2 /* Memory allocation for 5 int */
3 p = (int *) malloc (5* sizeof(int));

If there is not enough memory avaible, the return value is
NULL. This must be checked always.

1 if (p != NULL)
2 {
3 /* using memory , and releasing it */
4 }

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 18 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);

Releases the memory block starting at address p
The size of the block is not needed, the op.system knows it
(it stored it just before the memory block, this is the reason
for calling it with the starting address)
free(NULL) is allowed (does not perform anything), so we can
do this:

1 int *p = (int *) malloc (5* sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p); /* works even if NULL */
7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a
pointer to NULL after usage, so we can see it is not in use.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 19 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);
Releases the memory block starting at address p

The size of the block is not needed, the op.system knows it
(it stored it just before the memory block, this is the reason
for calling it with the starting address)
free(NULL) is allowed (does not perform anything), so we can
do this:

1 int *p = (int *) malloc (5* sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p); /* works even if NULL */
7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a
pointer to NULL after usage, so we can see it is not in use.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 19 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);
Releases the memory block starting at address p
The size of the block is not needed, the op.system knows it
(it stored it just before the memory block, this is the reason
for calling it with the starting address)

free(NULL) is allowed (does not perform anything), so we can
do this:

1 int *p = (int *) malloc (5* sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p); /* works even if NULL */
7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a
pointer to NULL after usage, so we can see it is not in use.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 19 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);
Releases the memory block starting at address p
The size of the block is not needed, the op.system knows it
(it stored it just before the memory block, this is the reason
for calling it with the starting address)
free(NULL) is allowed (does not perform anything), so we can
do this:

1 int *p = (int *) malloc (5* sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p); /* works even if NULL */
7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a
pointer to NULL after usage, so we can see it is not in use.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 19 / 26



Strings Dynamic malloc str example

The malloc and free functions – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);
Releases the memory block starting at address p
The size of the block is not needed, the op.system knows it
(it stored it just before the memory block, this is the reason
for calling it with the starting address)
free(NULL) is allowed (does not perform anything), so we can
do this:

1 int *p = (int *) malloc (5* sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p); /* works even if NULL */
7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a
pointer to NULL after usage, so we can see it is not in use.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 19 / 26



Strings Dynamic malloc str example

malloc – free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,

for each malloc there is a free
1 char *WiFi = (char *) malloc (20* sizeof(char ));
2 int *Tibet = (int *) malloc (23* sizeof(int ));
3 ...
4 free(WiFi);
5 free(Tibet );

If we don’t relelase the memory block, memory leak occurs
Good practice rules:

Release in the same function where allocated
Don’t modify the pointer that was returned by malloc,
if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about
this (comment)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 20 / 26



Strings Dynamic malloc str example

malloc – free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,
for each malloc there is a free

1 char *WiFi = (char *) malloc (20* sizeof(char ));
2 int *Tibet = (int *) malloc (23* sizeof(int ));
3 ...
4 free(WiFi);
5 free(Tibet );

If we don’t relelase the memory block, memory leak occurs
Good practice rules:

Release in the same function where allocated
Don’t modify the pointer that was returned by malloc,
if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about
this (comment)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 20 / 26



Strings Dynamic malloc str example

malloc – free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,
for each malloc there is a free

1 char *WiFi = (char *) malloc (20* sizeof(char ));
2 int *Tibet = (int *) malloc (23* sizeof(int ));
3 ...
4 free(WiFi);
5 free(Tibet );

If we don’t relelase the memory block, memory leak occurs

Good practice rules:
Release in the same function where allocated
Don’t modify the pointer that was returned by malloc,
if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about
this (comment)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 20 / 26



Strings Dynamic malloc str example

malloc – free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,
for each malloc there is a free

1 char *WiFi = (char *) malloc (20* sizeof(char ));
2 int *Tibet = (int *) malloc (23* sizeof(int ));
3 ...
4 free(WiFi);
5 free(Tibet );

If we don’t relelase the memory block, memory leak occurs
Good practice rules:

Release in the same function where allocated
Don’t modify the pointer that was returned by malloc,
if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about
this (comment)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 20 / 26



Strings Dynamic malloc str example

malloc – free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,
for each malloc there is a free

1 char *WiFi = (char *) malloc (20* sizeof(char ));
2 int *Tibet = (int *) malloc (23* sizeof(int ));
3 ...
4 free(WiFi);
5 free(Tibet );

If we don’t relelase the memory block, memory leak occurs
Good practice rules:

Release in the same function where allocated
Don’t modify the pointer that was returned by malloc,
if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about
this (comment)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 20 / 26



Strings Dynamic malloc str example

The calloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *calloc(size_t num, size_t size);

Allocates memory block for storing num pieces of elements,
each with size size, the allocated memory block is cleared
(set to zero), and the address of the block is returned as
void* type value
Usage is almost the same as of malloc, except this performs
the calculation num*size, and removes the garbage.
The allocated block must be released in the same way: with
free.

1 int *p = (int *) calloc(5, sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 21 / 26



Strings Dynamic malloc str example

The calloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *calloc(size_t num, size_t size);

Allocates memory block for storing num pieces of elements,
each with size size, the allocated memory block is cleared
(set to zero), and the address of the block is returned as
void* type value

Usage is almost the same as of malloc, except this performs
the calculation num*size, and removes the garbage.
The allocated block must be released in the same way: with
free.

1 int *p = (int *) calloc(5, sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 21 / 26



Strings Dynamic malloc str example

The calloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *calloc(size_t num, size_t size);

Allocates memory block for storing num pieces of elements,
each with size size, the allocated memory block is cleared
(set to zero), and the address of the block is returned as
void* type value
Usage is almost the same as of malloc, except this performs
the calculation num*size, and removes the garbage.

The allocated block must be released in the same way: with
free.

1 int *p = (int *) calloc(5, sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 21 / 26



Strings Dynamic malloc str example

The calloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *calloc(size_t num, size_t size);

Allocates memory block for storing num pieces of elements,
each with size size, the allocated memory block is cleared
(set to zero), and the address of the block is returned as
void* type value
Usage is almost the same as of malloc, except this performs
the calculation num*size, and removes the garbage.
The allocated block must be released in the same way: with
free.

1 int *p = (int *) calloc(5, sizeof(int ));
2 if (p != NULL)
3 {
4 /* using it */
5 }
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 21 / 26



Strings Dynamic malloc str example

The realloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated
the new size can be smaller r larger than the earlier size
if needed, the earlier content is copied to the new place, the
elements are not initialized
its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int ));
2 p[0] = p[1] = p[2] = 8;
3 p = realloc(p, 5* sizeof(int ));
4 p[3] = p[4] = 8;
5 ...
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 22 / 26



Strings Dynamic malloc str example

The realloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated

the new size can be smaller r larger than the earlier size
if needed, the earlier content is copied to the new place, the
elements are not initialized
its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int ));
2 p[0] = p[1] = p[2] = 8;
3 p = realloc(p, 5* sizeof(int ));
4 p[3] = p[4] = 8;
5 ...
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 22 / 26



Strings Dynamic malloc str example

The realloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated
the new size can be smaller r larger than the earlier size

if needed, the earlier content is copied to the new place, the
elements are not initialized
its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int ));
2 p[0] = p[1] = p[2] = 8;
3 p = realloc(p, 5* sizeof(int ));
4 p[3] = p[4] = 8;
5 ...
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 22 / 26



Strings Dynamic malloc str example

The realloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated
the new size can be smaller r larger than the earlier size
if needed, the earlier content is copied to the new place, the
elements are not initialized

its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int ));
2 p[0] = p[1] = p[2] = 8;
3 p = realloc(p, 5* sizeof(int ));
4 p[3] = p[4] = 8;
5 ...
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 22 / 26



Strings Dynamic malloc str example

The realloc function – <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated
the new size can be smaller r larger than the earlier size
if needed, the earlier content is copied to the new place, the
elements are not initialized
its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int ));
2 p[0] = p[1] = p[2] = 8;
3 p = realloc(p, 5* sizeof(int ));
4 p[3] = p[4] = 8;
5 ...
6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 22 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,
2 allocates memory for the result,
3 copies the first string into the result string,
4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 23 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,

2 allocates memory for the result,
3 copies the first string into the result string,
4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 23 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,
2 allocates memory for the result,

3 copies the first string into the result string,
4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 23 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,
2 allocates memory for the result,
3 copies the first string into the result string,

4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 23 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,
2 allocates memory for the result,
3 copies the first string into the result string,
4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 23 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s create a function that concatenates the strings received
as parameters. The function should allocate memory for the
resulting string, and should return with its address.

1 The function determines the length of the two strings,
2 allocates memory for the result,
3 copies the first string into the result string,
4 copies the second string after it.

Of course, this function cannot release the allocated memory,
this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 23 / 26



Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 /* concatenate -- concatenating two strings
2 Dynamic allocation , returning with address.
3 */
4 char *concatenate(char *s1, char *s2){
5 size_t l1 = strlen(s1);
6 size_t l2 = strlen(s2);
7 char *s = (char *) malloc ((l1+l2+1)* sizeof(char ));
8 if (s != NULL) {
9 strcpy(s, s1);

10 strcpy(s+l1, s2); /* or strcat(s, s2) */
11 }
12 return s;
13 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 24 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect09/src/concatenate.c


Strings Dynamic malloc str example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function

1 char word1[] = "partner", word2[] = "ship";
2

3 char *res1 = concatenate(word1 , word2 );
4 char *res2 = concatenate(word2 , word1 );
5 res2 [0] = ’w’;
6

7 printf("%s\n%s", res1 , res2);
8

9 /* The function did allocate memory , release it! */
10 free(res1);
11 free(res2); link

partnership
whippartner

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 25 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect09/src/concatenate.c


Strings Dynamic malloc str example

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 30 October, 2024 26 / 26


	Strings
	Strings

	Dynamic memory management
	Allocating and releasing memory
	String example


