
The enumerated type File handling

Enums – File handling
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

6 November, 2024

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 1 / 34

The enumerated type File handling

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 The enumerated type
Motivation
Syntax
Examples

2 File handling

Introduction
Text files
Standard streams
Binary files
Statusflag functions

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 2 / 34

The enumerated type File handling Motivation Syntax Examples

Chapter 1

The enumerated type

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 3 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We are writing a game, in which the user can control direction
of the player with 4 keys.

A S D

W

As the input from user needs to be read (checked) frequently,
we create a read_direction() function for this task.
This function reads from the keyboard and returns the
direction to the calling program segment.
What type should the function return with?

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 4 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 1: Let’s return with the key pressed.
(’a’,’s’,’w’,’d’):

1 char read_direction(void)
2 {
3 char ch;
4 scanf("%c", &ch);
5 return ch;
6 } link

Problems:
We have to decode characters into directions many times at
different parts of the source code.
If we change to use the arrow keys ← ↓ ↑ → for control, we
have to modify the source code a thousand time and place.

Solution:
We have to decode in place (inside the function), and should
return with direction.
But how can we do that?

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 5 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction_bad.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 1: Let’s return with the key pressed.
(’a’,’s’,’w’,’d’):

1 char read_direction(void)
2 {
3 char ch;
4 scanf("%c", &ch);
5 return ch;
6 } link

Problems:
We have to decode characters into directions many times at
different parts of the source code.
If we change to use the arrow keys ← ↓ ↑ → for control, we
have to modify the source code a thousand time and place.

Solution:
We have to decode in place (inside the function), and should
return with direction.
But how can we do that?

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 5 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction_bad.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 1: Let’s return with the key pressed.
(’a’,’s’,’w’,’d’):

1 char read_direction(void)
2 {
3 char ch;
4 scanf("%c", &ch);
5 return ch;
6 } link

Problems:
We have to decode characters into directions many times at
different parts of the source code.
If we change to use the arrow keys ← ↓ ↑ → for control, we
have to modify the source code a thousand time and place.

Solution:
We have to decode in place (inside the function), and should
return with direction.
But how can we do that?

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 5 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction_bad.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 2: Let’s return with int values 0,1,2,3:

’a’ 0 ←
’w’ 1 ↑
’d’ 2 →
’s’ 3 ↓

1 int read_direction(void) {
2 char ch;
3 scanf("%c", &ch);
4 switch (ch) {
5 case ’a’: return 0; /* left */
6 case ’w’: return 1; /* up */
7 case ’d’: return 2; /* right */
8 case ’s’: return 3; /* down */
9 }

10 return 0; /* default is left :) */
11 }

Problem:

In other parts of the program we have to use numbers 0-3 for
the directions, so the programmer must remember the
number-direction assignments.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 6 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 2: Let’s return with int values 0,1,2,3:

’a’ 0 ←
’w’ 1 ↑
’d’ 2 →
’s’ 3 ↓

1 int read_direction(void) {
2 char ch;
3 scanf("%c", &ch);
4 switch (ch) {
5 case ’a’: return 0; /* left */
6 case ’w’: return 1; /* up */
7 case ’d’: return 2; /* right */
8 case ’s’: return 3; /* down */
9 }

10 return 0; /* default is left :) */
11 }

Problem:
In other parts of the program we have to use numbers 0-3 for
the directions, so the programmer must remember the
number-direction assignments.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 6 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We need a type named direction, that can store
LEFT, RIGHT, UP, DOWN values.
We can do such thing in C!
Declaration of the appropriate enumerated type (enum):

1 enum direction {LEFT , RIGHT , UP , DOWN};

How to use the type:

1 enum direction d;
2 d = LEFT;

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 7 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The final solution with the new type

1 enum direction {LEFT , RIGHT , UP , DOWN};
2 typedef enum direction direction; /* simplification */
3

4 direction read_direction(void)
5 {
6 char ch;
7 scanf("%c", &ch);
8 switch (ch)
9 {

10 case ’a’: return LEFT;
11 case ’w’: return UP;
12 case ’d’: return RIGHT;
13 case ’s’: return DOWN;
14 }
15 return LEFT;
16 } link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 8 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function:

1 direction d = read_direction ();
2 if (d == RIGHT)
3 printf("You were eaten by a tiger\n"); link

Without the enumerated type, it would look like this:

1 int d = read_direction ();
2 if (d == 2) /* "magic" constant , what does it mean? */
3 printf("You were eaten by a tiger\n"); link

The enumerated type. . .
replaces ”magic constants” with informative code,
focuses on content instead of representation,
allows a higher level programming.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 9 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction_bad.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function:

1 direction d = read_direction ();
2 if (d == RIGHT)
3 printf("You were eaten by a tiger\n"); link

Without the enumerated type, it would look like this:

1 int d = read_direction ();
2 if (d == 2) /* "magic" constant , what does it mean? */
3 printf("You were eaten by a tiger\n"); link

The enumerated type. . .
replaces ”magic constants” with informative code,
focuses on content instead of representation,
allows a higher level programming.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 9 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction_bad.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function:

1 direction d = read_direction ();
2 if (d == RIGHT)
3 printf("You were eaten by a tiger\n"); link

Without the enumerated type, it would look like this:

1 int d = read_direction ();
2 if (d == 2) /* "magic" constant , what does it mean? */
3 printf("You were eaten by a tiger\n"); link

The enumerated type. . .
replaces ”magic constants” with informative code,
focuses on content instead of representation,
allows a higher level programming.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 9 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/direction_bad.c

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]opt
{ <enumeration list> }

[<variable identifiers>]opt;

1 enum direction {LEFT , RIGHT , UP , DOWN} dir1 , dir2;

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 10 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]opt
{ <enumeration list> }

[<variable identifiers>]opt;

1 enum direction {LEFT , RIGHT , UP , DOWN} dir1 , dir2;

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 10 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]opt
{ <enumeration list> }

[<variable identifiers>]opt;

1 enum direction {LEFT , RIGHT , UP, DOWN} dir1 , dir2;

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 10 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]opt
{ <enumeration list> }

[<variable identifiers>]opt;

1 enum direction {LEFT , RIGHT , UP , DOWN} dir1 , dir2;

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 10 / 34

The enumerated type File handling Motivation Syntax Examples

The enumerated type – Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]opt
{ <enumeration list> }

[<variable identifiers>]opt;

1 enum direction {LEFT , RIGHT , UP , DOWN} dir1 , dir2;

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 10 / 34

The enumerated type File handling Motivation Syntax Examples

enum examples DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 enum month {
2 JAN , /* 0 */
3 FEB , /* 1 */
4 MAR , /* 2 */
5 APR , /* 3 */
6 MAY , /* 4 */
7 JUNE , /* 5 */
8 JULY , /* 6 */
9 AUG , /* 7 */

10 SEPT , /* 8 */
11 OCT , /* 9 */
12 NOV , /* 10 */
13 DEC /* 11 */
14 };
15

16 enum month m=OCT; /*9*/

1 enum {
2 RED , /* 0 */
3 BLUE = 3, /* 3 */
4 GREEN , /* 4 */
5 YELLOW , /* 5 */
6 GRAY = 10 /* 10 */
7 } c;
8

9 c = GREEN;
10 printf("c: %d\n", c);

c: 4

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 11 / 34

The enumerated type File handling Motivation Syntax Examples

enum examples DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 enum month {
2 JAN , /* 0 */
3 FEB , /* 1 */
4 MAR , /* 2 */
5 APR , /* 3 */
6 MAY , /* 4 */
7 JUNE , /* 5 */
8 JULY , /* 6 */
9 AUG , /* 7 */

10 SEPT , /* 8 */
11 OCT , /* 9 */
12 NOV , /* 10 */
13 DEC /* 11 */
14 };
15

16 enum month m=OCT; /*9*/

1 enum {
2 RED , /* 0 */
3 BLUE = 3, /* 3 */
4 GREEN , /* 4 */
5 YELLOW , /* 5 */
6 GRAY = 10 /* 10 */
7 } c;
8

9 c = GREEN;
10 printf("c: %d\n", c);

c: 4

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 11 / 34

The enumerated type File handling Introduction text stdin/out binary status

Chapter 2

File handling

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 12 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.

Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way

File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file

2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading

3 Closing the file
Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:

Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:
Text file

Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

File
Data stored on a physical media (hard disk, CD, USB drive)

Data stored in a file is not lost after the program is finished, it
can be reloaded.
Independently of the media, files are handled in a uniform way
File handling:

1 Opening the file
2 Data writing / reading
3 Closing the file

Two types of files:
Text file
Binary file

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 13 / 34

The enumerated type File handling Introduction text stdin/out binary status

Text vs. Binary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Text file – contains text, divided into lines

txt, c, html, xml, rtf, svg
Binary file – contains binary coded data of arbitrary structure

exe, wav, mp3, jpg, avi, zip

As long as it makes sense, use a text file – it is more friendly.
It is a big advantage, if not only programs, but humans too are
able to read and edit our data.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 14 / 34

The enumerated type File handling Introduction text stdin/out binary status

Text vs. Binary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Text file – contains text, divided into lines
txt, c, html, xml, rtf, svg

Binary file – contains binary coded data of arbitrary structure

exe, wav, mp3, jpg, avi, zip

As long as it makes sense, use a text file – it is more friendly.
It is a big advantage, if not only programs, but humans too are
able to read and edit our data.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 14 / 34

The enumerated type File handling Introduction text stdin/out binary status

Text vs. Binary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Text file – contains text, divided into lines
txt, c, html, xml, rtf, svg

Binary file – contains binary coded data of arbitrary structure

exe, wav, mp3, jpg, avi, zip

As long as it makes sense, use a text file – it is more friendly.
It is a big advantage, if not only programs, but humans too are
able to read and edit our data.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 14 / 34

The enumerated type File handling Introduction text stdin/out binary status

Text vs. Binary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Text file – contains text, divided into lines
txt, c, html, xml, rtf, svg

Binary file – contains binary coded data of arbitrary structure
exe, wav, mp3, jpg, avi, zip

As long as it makes sense, use a text file – it is more friendly.
It is a big advantage, if not only programs, but humans too are
able to read and edit our data.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 14 / 34

The enumerated type File handling Introduction text stdin/out binary status

Text vs. Binary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Text file – contains text, divided into lines
txt, c, html, xml, rtf, svg

Binary file – contains binary coded data of arbitrary structure
exe, wav, mp3, jpg, avi, zip

As long as it makes sense, use a text file – it is more friendly.

It is a big advantage, if not only programs, but humans too are
able to read and edit our data.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 14 / 34

The enumerated type File handling Introduction text stdin/out binary status

Text vs. Binary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Text file – contains text, divided into lines
txt, c, html, xml, rtf, svg

Binary file – contains binary coded data of arbitrary structure
exe, wav, mp3, jpg, avi, zip

As long as it makes sense, use a text file – it is more friendly.
It is a big advantage, if not only programs, but humans too are
able to read and edit our data.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 14 / 34

The enumerated type File handling Introduction text stdin/out binary status

Writing into a text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 #include <stdio.h> /* fopen , fprintf , fclose */
2 int main(void)
3 {
4 FILE *fp;
5 int status;
6

7 fp = fopen("hello.txt", "w"); /* file open */
8 if (fp == NULL) /* no success */
9 return 1;

10

11 fprintf(fp, "Hello , World !\n"); /* writing */
12

13 status = fclose(fp); /* closing */
14 if (status != 0)
15 return 1;
16

17 return 0;
18 } link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 15 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fhelloworld.c

The enumerated type File handling Introduction text stdin/out binary status

Writing into a text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 #include <stdio.h> /* fopen , fprintf , fclose */
2 int main(void)
3 {
4 FILE *fp;
5 int status;
6

7 fp = fopen("hello.txt", "w"); /* file open */
8 if (fp == NULL) /* no success */
9 return 1;

10

11 fprintf(fp, "Hello , World !\n"); /* writing */
12

13 status = fclose(fp); /* closing */
14 if (status != 0)
15 return 1;
16

17 return 0;
18 } link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 15 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fhelloworld.c

The enumerated type File handling Introduction text stdin/out binary status

Writing into a text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 #include <stdio.h> /* fopen , fprintf , fclose */
2 int main(void)
3 {
4 FILE *fp;
5 int status;
6

7 fp = fopen("hello.txt", "w"); /* file open */
8 if (fp == NULL) /* no success */
9 return 1;

10

11 fprintf(fp, "Hello , World !\n"); /* writing */
12

13 status = fclose(fp); /* closing */
14 if (status != 0)
15 return 1;
16

17 return 0;
18 } link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 15 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fhelloworld.c

The enumerated type File handling Introduction text stdin/out binary status

Writing into a text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 #include <stdio.h> /* fopen , fprintf , fclose */
2 int main(void)
3 {
4 FILE *fp;
5 int status;
6

7 fp = fopen("hello.txt", "w"); /* file open */
8 if (fp == NULL) /* no success */
9 return 1;

10

11 fprintf(fp, "Hello , World !\n"); /* writing */
12

13 status = fclose(fp); /* closing */
14 if (status != 0)
15 return 1;
16

17 return 0;
18 } link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 15 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fhelloworld.c

The enumerated type File handling Introduction text stdin/out binary status

Writing into a text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 #include <stdio.h> /* fopen , fprintf , fclose */
2 int main(void)
3 {
4 FILE *fp;
5 int status;
6

7 fp = fopen("hello.txt", "w"); /* file open */
8 if (fp == NULL) /* no success */
9 return 1;

10

11 fprintf(fp, "Hello , World !\n"); /* writing */
12

13 status = fclose(fp); /* closing */
14 if (status != 0)
15 return 1;
16

17 return 0;
18 } link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 15 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fhelloworld.c

The enumerated type File handling Introduction text stdin/out binary status

Opening a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

FILE *fopen(char *fname, char *mode);

Opens the file whose name is specified in fname string,
according to the mode given in mode string
Main methods for text files:

mode description
"r" read reading, the file must exist
"w" write writing, overwrites, if needed a new is created
"a" append writing, continues at the end,

if needed a new is created
return value is a pointer to a FILE structure, this is the
identifier of the file
If opening was not successfull, it returns with NULL

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 16 / 34

The enumerated type File handling Introduction text stdin/out binary status

Opening a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

FILE *fopen(char *fname, char *mode);

Opens the file whose name is specified in fname string,
according to the mode given in mode string

Main methods for text files:

mode description
"r" read reading, the file must exist
"w" write writing, overwrites, if needed a new is created
"a" append writing, continues at the end,

if needed a new is created
return value is a pointer to a FILE structure, this is the
identifier of the file
If opening was not successfull, it returns with NULL

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 16 / 34

The enumerated type File handling Introduction text stdin/out binary status

Opening a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

FILE *fopen(char *fname, char *mode);

Opens the file whose name is specified in fname string,
according to the mode given in mode string
Main methods for text files:

mode description
"r" read reading, the file must exist
"w" write writing, overwrites, if needed a new is created
"a" append writing, continues at the end,

if needed a new is created

return value is a pointer to a FILE structure, this is the
identifier of the file
If opening was not successfull, it returns with NULL

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 16 / 34

The enumerated type File handling Introduction text stdin/out binary status

Opening a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

FILE *fopen(char *fname, char *mode);

Opens the file whose name is specified in fname string,
according to the mode given in mode string
Main methods for text files:

mode description
"r" read reading, the file must exist
"w" write writing, overwrites, if needed a new is created
"a" append writing, continues at the end,

if needed a new is created
return value is a pointer to a FILE structure, this is the
identifier of the file

If opening was not successfull, it returns with NULL

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 16 / 34

The enumerated type File handling Introduction text stdin/out binary status

Opening a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

FILE *fopen(char *fname, char *mode);

Opens the file whose name is specified in fname string,
according to the mode given in mode string
Main methods for text files:

mode description
"r" read reading, the file must exist
"w" write writing, overwrites, if needed a new is created
"a" append writing, continues at the end,

if needed a new is created
return value is a pointer to a FILE structure, this is the
identifier of the file
If opening was not successfull, it returns with NULL

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 16 / 34

The enumerated type File handling Introduction text stdin/out binary status

Closing a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int fclose(FILE *fp);

It closes the file referenced by the fp identifier
If the closing is successful1, it returns with 0, otherwise it
returns with EOF.

1closing a file may not be successful: for example somebody has removed
the pendrive while we were writing onto it.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 17 / 34

The enumerated type File handling Introduction text stdin/out binary status

Closing a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int fclose(FILE *fp);

It closes the file referenced by the fp identifier

If the closing is successful1, it returns with 0, otherwise it
returns with EOF.

1closing a file may not be successful: for example somebody has removed
the pendrive while we were writing onto it.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 17 / 34

The enumerated type File handling Introduction text stdin/out binary status

Closing a file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int fclose(FILE *fp);

It closes the file referenced by the fp identifier
If the closing is successful1, it returns with 0, otherwise it
returns with EOF.

1closing a file may not be successful: for example somebody has removed
the pendrive while we were writing onto it.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 17 / 34

The enumerated type File handling Introduction text stdin/out binary status

Writing onto screen / into text file / into string DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int printf(char *control, ...);
int fprintf(FILE *fp, char *control, ...);
int sprintf(char *str, char *control, ...);

The text given in the control string will be written
onto the screen
into a text file (previously opened for writing) with fp identifier
into a string with str identifier (string must be long enough)

Using of control character (eg. %d) is the same as with printf

Return value is the number of successfully written characters2,
it is negative in case of error

2If we write into a string, it automatically adds the terminating 0, but it is
not counted in the return value

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 18 / 34

The enumerated type File handling Introduction text stdin/out binary status

Writing onto screen / into text file / into string DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int printf(char *control, ...);
int fprintf(FILE *fp, char *control, ...);
int sprintf(char *str, char *control, ...);
The text given in the control string will be written

onto the screen
into a text file (previously opened for writing) with fp identifier
into a string with str identifier (string must be long enough)

Using of control character (eg. %d) is the same as with printf

Return value is the number of successfully written characters2,
it is negative in case of error

2If we write into a string, it automatically adds the terminating 0, but it is
not counted in the return value

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 18 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading from keyboard / text file / string DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int scanf(char *control, ...);
int fscanf(FILE *fp, char *control, ...);
int sscanf(char *str, char *control, ...);

Reads in the format specified in the control string from the
keyboard
a text file (previously opened for reading) with fp identifier
from a string with str identifier

Return value is the number of read elements, it is negative in
case of error

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 19 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading from keyboard / text file / string DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int scanf(char *control, ...);
int fscanf(FILE *fp, char *control, ...);
int sscanf(char *str, char *control, ...);
Reads in the format specified in the control string from the

keyboard
a text file (previously opened for reading) with fp identifier
from a string with str identifier

Return value is the number of read elements, it is negative in
case of error

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 19 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading from text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program, that prints (onto the screen) the content of
a text file

1 #include <stdio.h>
2 int main()
3 {
4 char c;
5 FILE *fp = fopen("file.txt", "r"); /* open file */
6 if (fp == NULL)
7 return -1; /* was not successfull */
8

9 /* reading until successful (we read 1 character) */
10 while (fscanf(fp, "%c", &c) == 1)
11 printf("%c", c);
12

13 fclose(fp); /* close file */
14 return 0;
15 } link

Memorize the way we read until the end of the file!

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 20 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fecho.c

The enumerated type File handling Introduction text stdin/out binary status

Reading from text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program, that prints (onto the screen) the content of
a text file

1 #include <stdio.h>
2 int main()
3 {
4 char c;
5 FILE *fp = fopen("file.txt", "r"); /* open file */
6 if (fp == NULL)
7 return -1; /* was not successfull */
8

9 /* reading until successful (we read 1 character) */
10 while (fscanf(fp, "%c", &c) == 1)
11 printf("%c", c);
12

13 fclose(fp); /* close file */
14 return 0;
15 } link

Memorize the way we read until the end of the file!
© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 20 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/fecho.c

The enumerated type File handling Introduction text stdin/out binary status

Reading from text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A text file contains the coordinates of 2D points. Each of its line
has the following format
x:1.2334, y:-23.3
Let’s write a program that reads and processes the coordinates!

1 FILE *fp;
2 double x, y;
3 ...
4 /* reading as long as it is successful */
5 /* (we read 2 numbers) */
6 while (fscanf(fp, "x:%lf , y:%lf", &x, &y) == 2)
7 {
8 /* processing */
9 }

Once again, take a look at how we read until the end of the
file!

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 21 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading from text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A text file contains the coordinates of 2D points. Each of its line
has the following format
x:1.2334, y:-23.3
Let’s write a program that reads and processes the coordinates!

1 FILE *fp;
2 double x, y;
3 ...
4 /* reading as long as it is successful */
5 /* (we read 2 numbers) */
6 while (fscanf(fp, "x:%lf , y:%lf", &x, &y) == 2)
7 {
8 /* processing */
9 }

Once again, take a look at how we read until the end of the
file!

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 21 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading from text file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A text file contains the coordinates of 2D points. Each of its line
has the following format
x:1.2334, y:-23.3
Let’s write a program that reads and processes the coordinates!

1 FILE *fp;
2 double x, y;
3 ...
4 /* reading as long as it is successful */
5 /* (we read 2 numbers) */
6 while (fscanf(fp, "x:%lf , y:%lf", &x, &y) == 2)
7 {
8 /* processing */
9 }

Once again, take a look at how we read until the end of the
file!

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 21 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)
stdin and stdout are text files
The type of perphery or other file that is assigned to it
depends on the operating system.
Its default interpretation is as in the figure.

keyboard (through a console application) → stdin
stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)

stdin and stdout are text files
The type of perphery or other file that is assigned to it
depends on the operating system.
Its default interpretation is as in the figure.

keyboard (through a console application) → stdin
stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)
stdin and stdout are text files

The type of perphery or other file that is assigned to it
depends on the operating system.
Its default interpretation is as in the figure.

keyboard (through a console application) → stdin
stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)
stdin and stdout are text files
The type of perphery or other file that is assigned to it
depends on the operating system.

Its default interpretation is as in the figure.

keyboard (through a console application) → stdin
stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)
stdin and stdout are text files
The type of perphery or other file that is assigned to it
depends on the operating system.
Its default interpretation is as in the figure.

keyboard (through a console application) → stdin
stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)
stdin and stdout are text files
The type of perphery or other file that is assigned to it
depends on the operating system.
Its default interpretation is as in the figure.

keyboard (through a console application) → stdin

stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Keyboard? Monitor? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 scanf("%c", &c);
2 printf("%c", c);

keyboard console stdin program stdout console monitor

The code segment above does not read directly from the
keyboard and does not write directly onto the screen, but it
reads from standard input (stdin), and writes to the standard
output (stdout)
stdin and stdout are text files
The type of perphery or other file that is assigned to it
depends on the operating system.
Its default interpretation is as in the figure.

keyboard (through a console application) → stdin
stdout → (through a console application) monitor

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 22 / 34

The enumerated type File handling Introduction text stdin/out binary status

Redirecting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If we start our program in the follwoing way, we can redirect
the standard output: it will not print on the monitor, but into
the out.txt text file

c:\>prog.exe > out.txt

keyboard console stdin program stdout out.txt

The standard input can also be redirected to a text file.
c:\>prog.exe < in.txt

in.txt stdin program stdout console monitor

Of course, the 2 can be combined
c:\>prog.exe < in.txt > out.txt

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 23 / 34

The enumerated type File handling Introduction text stdin/out binary status

Redirecting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If we start our program in the follwoing way, we can redirect
the standard output: it will not print on the monitor, but into
the out.txt text file

c:\>prog.exe > out.txt

keyboard console stdin program stdout out.txt

The standard input can also be redirected to a text file.
c:\>prog.exe < in.txt

in.txt stdin program stdout console monitor

Of course, the 2 can be combined
c:\>prog.exe < in.txt > out.txt

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 23 / 34

The enumerated type File handling Introduction text stdin/out binary status

Redirecting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If we start our program in the follwoing way, we can redirect
the standard output: it will not print on the monitor, but into
the out.txt text file

c:\>prog.exe > out.txt

keyboard console stdin program stdout out.txt

The standard input can also be redirected to a text file.
c:\>prog.exe < in.txt

in.txt stdin program stdout console monitor

Of course, the 2 can be combined
c:\>prog.exe < in.txt > out.txt

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 23 / 34

The enumerated type File handling Introduction text stdin/out binary status

stdin and stdout DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

stdin and stdout are text files that are automatically opened
when starting the program

the code segments below are equivalent

1 char c;
2 printf("Hello");
3 scanf("%c", &c);
4 printf("%c", c);

1 char c;
2 fprintf(stdout , "Hello");
3 fscanf(stdin , "%c", &c);
4 fprintf(stdout , "%c", c);

When writing data from a text file into a text file, instead of
opening a file, use the standard input and output, and the
redirection options of the operating system
We can read from the console also until the end of the file: we
can emulate the end of file by entering Ctrl+Z (windows) or
Ctrl+D (linux).

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 24 / 34

The enumerated type File handling Introduction text stdin/out binary status

stdin and stdout DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

stdin and stdout are text files that are automatically opened
when starting the program
the code segments below are equivalent

1 char c;
2 printf("Hello");
3 scanf("%c", &c);
4 printf("%c", c);

1 char c;
2 fprintf(stdout , "Hello");
3 fscanf(stdin , "%c", &c);
4 fprintf(stdout , "%c", c);

When writing data from a text file into a text file, instead of
opening a file, use the standard input and output, and the
redirection options of the operating system
We can read from the console also until the end of the file: we
can emulate the end of file by entering Ctrl+Z (windows) or
Ctrl+D (linux).

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 24 / 34

The enumerated type File handling Introduction text stdin/out binary status

stdin and stdout DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

stdin and stdout are text files that are automatically opened
when starting the program
the code segments below are equivalent

1 char c;
2 printf("Hello");
3 scanf("%c", &c);
4 printf("%c", c);

1 char c;
2 fprintf(stdout , "Hello");
3 fscanf(stdin , "%c", &c);
4 fprintf(stdout , "%c", c);

When writing data from a text file into a text file, instead of
opening a file, use the standard input and output, and the
redirection options of the operating system

We can read from the console also until the end of the file: we
can emulate the end of file by entering Ctrl+Z (windows) or
Ctrl+D (linux).

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 24 / 34

The enumerated type File handling Introduction text stdin/out binary status

stdin and stdout DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

stdin and stdout are text files that are automatically opened
when starting the program
the code segments below are equivalent

1 char c;
2 printf("Hello");
3 scanf("%c", &c);
4 printf("%c", c);

1 char c;
2 fprintf(stdout , "Hello");
3 fscanf(stdin , "%c", &c);
4 fprintf(stdout , "%c", c);

When writing data from a text file into a text file, instead of
opening a file, use the standard input and output, and the
redirection options of the operating system
We can read from the console also until the end of the file: we
can emulate the end of file by entering Ctrl+Z (windows) or
Ctrl+D (linux).

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 24 / 34

The enumerated type File handling Introduction text stdin/out binary status

stdout and stderr DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The output and the error messages of the program can be
separated by using the standard error output stderr

c:\>prog.exe 2> errlog.txt

keyboard console stdin program
stdout
stderr

console monitor

errlog.txt

1 if (error)
2 {
3 /* useful information for the user */
4 printf("Please , switch it off\n");
5 /* detailed information to the error output */
6 fprintf(stderr , "Error code 61\n");
7 }

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 25 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary file: The bit-by-bit copy of the content of the memory
onto a physical data media

The actual data depends on the inner representation
Use it only if storing as text would be very weird – and use it
in tasks if asked

Opening and closing the file is similar to the case of text files,
but now the b character must be used in the mode string3

mode description
"rb" read reading, the file must exist
"wb" write writing, overwrites, if needed a new is created
"ab" append writing, continues at the end,

if needed a new is created

3For the sake of analogy, in case of text file it is typical to use t (text), but
actually fopen will not care about it.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 26 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary file: The bit-by-bit copy of the content of the memory
onto a physical data media
The actual data depends on the inner representation

Use it only if storing as text would be very weird – and use it
in tasks if asked

Opening and closing the file is similar to the case of text files,
but now the b character must be used in the mode string3

mode description
"rb" read reading, the file must exist
"wb" write writing, overwrites, if needed a new is created
"ab" append writing, continues at the end,

if needed a new is created

3For the sake of analogy, in case of text file it is typical to use t (text), but
actually fopen will not care about it.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 26 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary file: The bit-by-bit copy of the content of the memory
onto a physical data media
The actual data depends on the inner representation
Use it only if storing as text would be very weird – and use it
in tasks if asked

Opening and closing the file is similar to the case of text files,
but now the b character must be used in the mode string3

mode description
"rb" read reading, the file must exist
"wb" write writing, overwrites, if needed a new is created
"ab" append writing, continues at the end,

if needed a new is created

3For the sake of analogy, in case of text file it is typical to use t (text), but
actually fopen will not care about it.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 26 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Binary file: The bit-by-bit copy of the content of the memory
onto a physical data media
The actual data depends on the inner representation
Use it only if storing as text would be very weird – and use it
in tasks if asked

Opening and closing the file is similar to the case of text files,
but now the b character must be used in the mode string3

mode description
"rb" read reading, the file must exist
"wb" write writing, overwrites, if needed a new is created
"ab" append writing, continues at the end,

if needed a new is created
3For the sake of analogy, in case of text file it is typical to use t (text), but

actually fopen will not care about it.
© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 26 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading and writing a binary file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

size_t fwrite (void *ptr, size_t size,
size_t count, FILE *fp);

Starting from address ptr, it writes count elements (that are
placed one after the other in the memory), each having size
size into a file with fp identifier
Return value is the number of written elements.

size_t fread (void *ptr, size_t size,
size_t count, FILE *fp);

It reads count elements, each having size size from the file
with fp identifier to the address ptr
Return value is the number of read elements

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 27 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading and writing a binary file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

size_t fwrite (void *ptr, size_t size,
size_t count, FILE *fp);

Starting from address ptr, it writes count elements (that are
placed one after the other in the memory), each having size
size into a file with fp identifier

Return value is the number of written elements.

size_t fread (void *ptr, size_t size,
size_t count, FILE *fp);

It reads count elements, each having size size from the file
with fp identifier to the address ptr
Return value is the number of read elements

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 27 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading and writing a binary file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

size_t fwrite (void *ptr, size_t size,
size_t count, FILE *fp);

Starting from address ptr, it writes count elements (that are
placed one after the other in the memory), each having size
size into a file with fp identifier
Return value is the number of written elements.

size_t fread (void *ptr, size_t size,
size_t count, FILE *fp);

It reads count elements, each having size size from the file
with fp identifier to the address ptr
Return value is the number of read elements

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 27 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading and writing a binary file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

size_t fwrite (void *ptr, size_t size,
size_t count, FILE *fp);

Starting from address ptr, it writes count elements (that are
placed one after the other in the memory), each having size
size into a file with fp identifier
Return value is the number of written elements.

size_t fread (void *ptr, size_t size,
size_t count, FILE *fp);

It reads count elements, each having size size from the file
with fp identifier to the address ptr
Return value is the number of read elements

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 27 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading and writing a binary file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

size_t fwrite (void *ptr, size_t size,
size_t count, FILE *fp);

Starting from address ptr, it writes count elements (that are
placed one after the other in the memory), each having size
size into a file with fp identifier
Return value is the number of written elements.

size_t fread (void *ptr, size_t size,
size_t count, FILE *fp);

It reads count elements, each having size size from the file
with fp identifier to the address ptr

Return value is the number of read elements

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 27 / 34

The enumerated type File handling Introduction text stdin/out binary status

Reading and writing a binary file DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

size_t fwrite (void *ptr, size_t size,
size_t count, FILE *fp);

Starting from address ptr, it writes count elements (that are
placed one after the other in the memory), each having size
size into a file with fp identifier
Return value is the number of written elements.

size_t fread (void *ptr, size_t size,
size_t count, FILE *fp);

It reads count elements, each having size size from the file
with fp identifier to the address ptr
Return value is the number of read elements

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 27 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

This dog_array array contains 5 dogs
1 typedef enum { BLACK , WHITE , RED } color_t;
2

3 typedef struct {
4 char name [11]; /* name max 10 chars + terminating */
5 color_t color; /* colour */
6 int nLegs; /* number of legs */
7 double height; /* height */
8 } dog;
9

10 dog dog_array [] = /* array for storing 5 dogs */
11 {
12 { "max", RED , 4, 1.12 },
13 { "cesar", BLACK , 3, 1.24 },
14 { "buddy", WHITE , 4, 0.23 },
15 { "spider", WHITE , 8, 0.45 },
16 { "daisy", BLACK , 4, 0.456 }
17 }; link

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 28 / 34

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/dog_full.c

The enumerated type File handling Introduction text stdin/out binary status

Binary files – examples DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Writing the dog_array array into a binary file is this easy!

1 fp = fopen("dogs.dat", "wb"); /* error handling !!! */
2 if (fwrite(dog_array , sizeof(dog), 5, fp) != 5)
3 {
4 /* error message */
5 }
6 fclose(fp); /* here also !!! */

Re-reading the dog_array array is not less easier too.

1 dog dogs [5]; /* allocating memory */
2 fp = fopen("dogs.dat", "rb");
3 if (fread(dogs , sizeof(dog), 5, fp) != 5)
4 {
5 /* error message */
6 }
7 fclose(fp);

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 29 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – examples DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Writing the dog_array array into a binary file is this easy!

1 fp = fopen("dogs.dat", "wb"); /* error handling !!! */
2 if (fwrite(dog_array , sizeof(dog), 5, fp) != 5)
3 {
4 /* error message */
5 }
6 fclose(fp); /* here also !!! */

Re-reading the dog_array array is not less easier too.

1 dog dogs [5]; /* allocating memory */
2 fp = fopen("dogs.dat", "rb");
3 if (fread(dogs , sizeof(dog), 5, fp) != 5)
4 {
5 /* error message */
6 }
7 fclose(fp);

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 29 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!

If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation

which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.

Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation

which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable

Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation

which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation

which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation

which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation
which bit is the LSB?

is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation
which bit is the LSB?
is it two-complement?

how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation
which bit is the LSB?
is it two-complement?
how long is mantissa?

are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation
which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?

etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation
which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary files – example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Do resist the temptation!
If the representation of any members of the dog structure is
different on mother’s computer, the saved data cannot be
re-read.
Writing (saving) data into binary files without thinking makes
our data non-portable
Of course if we think, saving the data will become more
difficult

1 We have to agree on the representation
which bit is the LSB?
is it two-complement?
how long is mantissa?
are the members of the structure aligned to words? And how
long is one word?
etc.

2 The data must be converted first, and then written (saved)

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 30 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary vs text DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Use text files, it is beneficial for everyone!

Writing the dog_array array into text file

1 for (i = 0; i < 5; ++i) {
2 dog d = dog_array[i];
3 fprintf(fp, "%s,%u,%d,%f\n",
4 d.name , d.color , d.nLegs , d.height);
5 }

Reading the dog_array array from text file4

1 dog dogs [5]; /* allocating memory */
2 for (i = 0; i < 5; ++i) {
3 dog d;
4 fscanf(fp, "%s,%u,%d,%lf",
5 d.name , &d.color , &d.nLegs , &d.height);
6 dogs[i] = d;
7 }

4we assume that the name of the dog has no whitespace characters in it
© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 31 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary vs text DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Use text files, it is beneficial for everyone!
Writing the dog_array array into text file

1 for (i = 0; i < 5; ++i) {
2 dog d = dog_array[i];
3 fprintf(fp, "%s,%u,%d,%f\n",
4 d.name , d.color , d.nLegs , d.height);
5 }

Reading the dog_array array from text file4

1 dog dogs [5]; /* allocating memory */
2 for (i = 0; i < 5; ++i) {
3 dog d;
4 fscanf(fp, "%s,%u,%d,%lf",
5 d.name , &d.color , &d.nLegs , &d.height);
6 dogs[i] = d;
7 }

4we assume that the name of the dog has no whitespace characters in it
© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 31 / 34

The enumerated type File handling Introduction text stdin/out binary status

Binary vs text DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Use text files, it is beneficial for everyone!
Writing the dog_array array into text file

1 for (i = 0; i < 5; ++i) {
2 dog d = dog_array[i];
3 fprintf(fp, "%s,%u,%d,%f\n",
4 d.name , d.color , d.nLegs , d.height);
5 }

Reading the dog_array array from text file4

1 dog dogs [5]; /* allocating memory */
2 for (i = 0; i < 5; ++i) {
3 dog d;
4 fscanf(fp, "%s,%u,%d,%lf",
5 d.name , &d.color , &d.nLegs , &d.height);
6 dogs[i] = d;
7 }

4we assume that the name of the dog has no whitespace characters in it
© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 31 / 34

The enumerated type File handling Introduction text stdin/out binary status

Statusflag functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

int feof(FILE *fp);

true if we have reached the end of file, false otherwise

int ferror(FILE *fp);

true if there was an error during read or write, false otherwise

Most of the time we don’t need them: we can use the return
value of read and write functions.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 32 / 34

The enumerated type File handling Introduction text stdin/out binary status

Statusflag functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake
1 while (!feof(fp))
2 {
3 /* read data element */
4

5 /* process data element */
6 }

elem elem elem EOF

feof() is true only if we already have read the end of file
symbol.
What have we learned about data series with termination?

1 /* read data element */
2 while (!feof(fp))
3 {
4 /* process data element */
5 /* read data element */
6 }

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 33 / 34

The enumerated type File handling Introduction text stdin/out binary status

Statusflag functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake
1 while (!feof(fp))
2 {
3 /* read data element */
4

5 /* process data element */
6 }

elem elem elem EOF
feof() is true only if we already have read the end of file
symbol.

What have we learned about data series with termination?
1 /* read data element */
2 while (!feof(fp))
3 {
4 /* process data element */
5 /* read data element */
6 }

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 33 / 34

The enumerated type File handling Introduction text stdin/out binary status

Statusflag functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake
1 while (!feof(fp))
2 {
3 /* read data element */
4

5 /* process data element */
6 }

elem elem elem EOF
feof() is true only if we already have read the end of file
symbol.
What have we learned about data series with termination?

1 /* read data element */
2 while (!feof(fp))
3 {
4 /* process data element */
5 /* read data element */
6 }

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 33 / 34

The enumerated type File handling Introduction text stdin/out binary status

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Enums – File handling 6 November, 2024 34 / 34

	The enumerated type
	Motivation
	Syntax
	Examples

	File handling
	Introduction
	Text files
	Standard streams
	Binary files
	Statusflag functions

