
nD array Recursion

Multi-dimensional array – Recursion
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

20 November, 2024

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 1 / 29

nD array Recursion

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Multi-dimensional arrays
Definition
Passing as argument to
function
Dynamic 2D array
Array of pointers

2 Recursion
Definition
Writing recursive programs
Recursion or iteration
Applications
Indirect recursion

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 2 / 29

nD array Recursion Def function 2D array pointerarray

Chapter 1

Multi-dimensional arrays

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 3 / 29

nD array Recursion Def function 2D array pointerarray

Multi-dimensional arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1D array Elements of the same type, stored in the memory
beside eachother

2D array 1D arrays of the same size and same type, stored in
the memory beside eachother

3D array 2D arrays of the same size and same type, stored in
the memory beside eachother

.

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 4 / 29

nD array Recursion Def function 2D array pointerarray

Multi-dimensional arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1D array Elements of the same type, stored in the memory
beside eachother

2D array 1D arrays of the same size and same type, stored in
the memory beside eachother

3D array 2D arrays of the same size and same type, stored in
the memory beside eachother

.

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 4 / 29

nD array Recursion Def function 2D array pointerarray

Multi-dimensional arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1D array Elements of the same type, stored in the memory
beside eachother

2D array 1D arrays of the same size and same type, stored in
the memory beside eachother

3D array 2D arrays of the same size and same type, stored in
the memory beside eachother

.

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 4 / 29

nD array Recursion Def function 2D array pointerarray

Multi-dimensional arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1D array Elements of the same type, stored in the memory
beside eachother

2D array 1D arrays of the same size and same type, stored in
the memory beside eachother

3D array 2D arrays of the same size and same type, stored in
the memory beside eachother

.

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 4 / 29

nD array Recursion Def function 2D array pointerarray

Two-dimensional DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of a 2D array:

1 char a[3][2]; /* 3row x 2column array of characters */
2 /* 3-sized array of 2-sized 1D arrays */

a[0][0] a[0][1]

a[1][0] a[1][1]

a[2][0] a[2][1]

In C language, storage is done row by row (the second index
changes quicker)

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

a[0] a[1] a[2]

a[0], a[1] and a[2] are 2-sized 1D arrays

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 5 / 29

nD array Recursion Def function 2D array pointerarray

Two-dimensional DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of a 2D array:

1 char a[3][2]; /* 3row x 2column array of characters */
2 /* 3-sized array of 2-sized 1D arrays */

a[0][0] a[0][1]

a[1][0] a[1][1]

a[2][0] a[2][1]

In C language, storage is done row by row (the second index
changes quicker)

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

a[0] a[1] a[2]

a[0], a[1] and a[2] are 2-sized 1D arrays

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 5 / 29

nD array Recursion Def function 2D array pointerarray

Two-dimensional DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of a 2D array:

1 char a[3][2]; /* 3row x 2column array of characters */
2 /* 3-sized array of 2-sized 1D arrays */

a[0][0] a[0][1]

a[1][0] a[1][1]

a[2][0] a[2][1]

In C language, storage is done row by row (the second index
changes quicker)

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

a[0] a[1] a[2]

a[0], a[1] and a[2] are 2-sized 1D arrays

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 5 / 29

nD array Recursion Def function 2D array pointerarray

Taking a 2D array row by row DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Filling a 1D array (row) with the given element
1 void fill_row(char row[], size_t size , char c)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i)
5 row[i] = c;
6 }

Filling a 2D array row by row
1 char a[3][2];
2 fill_row(a[0], 2, ’a’); /* row 0 is full of ’a’ */
3 fill_row(a[1], 2, ’b’); /* row 1 is full of ’b’ */
4 fill_row(a[2], 2, ’c’); /* row 2 is full of ’c’ */

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

a[0] a[1] a[2]

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 6 / 29

nD array Recursion Def function 2D array pointerarray

Taking a 2D array as one entity DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

taking as a 2D array – only if number of columns is known

1 void print_array(char array [][2] , size_t nrows)
2 {
3 size_t row , col;
4 for (row = 0; row < nrows; ++row)
5 {
6 for (col = 0; col < 2; ++col)
7 printf("%c", array[row][col]);
8 printf("\n");
9 }

10 }

Usage of the function

1 char a[3][2];
2 ...
3 print_array(a, 3); /* printing a 3-row array */

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 7 / 29

nD array Recursion Def function 2D array pointerarray

Taking a 2D array as one entity DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

taking 2D array as a pointer

1 void print_array(char *array , int nrows , int ncols)
2 {
3 int row , col;
4 for (row = 0; row < nrows; ++row)
5 {
6 for (col = 0; col < ncols; ++col)
7 printf("%c", array[row*ncols+col]);
8 printf("\n");
9 }

10 }

Usage of the function

1 char a[3][2];
2 ...
3 print_array((char *)a, 3, 2); /* 3 rows 2 columns */

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 8 / 29

nD array Recursion Def function 2D array pointerarray

Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s allocate memory for
a 2D array. We would like
to use the conventional
way of indexing for the
array d[i][j]

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[1][0]
d[1][1]
d[1][2]
d[1][3]

d[1]

d[2][0]
d[2][1]
d[2][2]
d[2][3]

d[2]

d

1 double **d =(double **) malloc (3* sizeof(double *));
2 d[0] = (double *) malloc (3*4* sizeof(double));
3 for (i = 1; i < 3; ++i)
4 d[i] = d[i-1] + 4;

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 9 / 29

nD array Recursion Def function 2D array pointerarray

Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s allocate memory for
a 2D array. We would like
to use the conventional
way of indexing for the
array d[i][j]

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[1][0]
d[1][1]
d[1][2]
d[1][3]

d[1]

d[2][0]
d[2][1]
d[2][2]
d[2][3]

d[2]

d

1 double **d =(double **) malloc (3* sizeof(double *));
2 d[0] = (double *) malloc (3*4* sizeof(double));
3 for (i = 1; i < 3; ++i)
4 d[i] = d[i-1] + 4;

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 9 / 29

nD array Recursion Def function 2D array pointerarray

Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s allocate memory for
a 2D array. We would like
to use the conventional
way of indexing for the
array d[i][j]

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[0][4]
d[0][5]
d[0][6]
d[0][7]

d[1]

d[0][8]
d[0][9]
d[0][10]
d[0][11]

d[2]

d

1 double **d =(double **) malloc (3* sizeof(double *));
2 d[0] = (double *) malloc (3*4* sizeof(double));
3 for (i = 1; i < 3; ++i)
4 d[i] = d[i-1] + 4;

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 9 / 29

nD array Recursion Def function 2D array pointerarray

Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s allocate memory for
a 2D array. We would like
to use the conventional
way of indexing for the
array d[i][j]

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[1][0]
d[1][1]
d[1][2]
d[1][3]

d[1]

d[2][0]
d[2][1]
d[2][2]
d[2][3]

d[2]

d

1 double **d =(double **) malloc (3* sizeof(double *));
2 d[0] = (double *) malloc (3*4* sizeof(double));
3 for (i = 1; i < 3; ++i)
4 d[i] = d[i-1] + 4;

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 9 / 29

nD array Recursion Def function 2D array pointerarray

Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Releasing the array

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[1][0]
d[1][1]
d[1][2]
d[1][3]

d[1]

d[2][0]
d[2][1]
d[2][2]
d[2][3]

d[2]

d

1 free(d[0]);
2 free(d);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 10 / 29

nD array Recursion Def function 2D array pointerarray

Array of pointers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining an array of pointers and passing it to a function
1 char *s[3] = {"Basics", "of", "programming"};
2 print_strings(s, 3);

B a s i c s \0

o f \0

P r o g r a m m i n g \0

s[0]
s[1]
s[2]

Taking an array of pointers with a function
1 void print_strings(char *strings[], size_t size)
2 /* char ** strings is also possible */
3 {
4 size_t i;
5 for (i = 0; i < size; ++i)
6 printf("%s\n", strings[i]);
7 }

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 11 / 29

nD array Recursion Def function 2D array pointerarray

Array of pointers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining an array of pointers and passing it to a function
1 char *s[3] = {"Basics", "of", "programming"};
2 print_strings(s, 3);

B a s i c s \0

o f \0

P r o g r a m m i n g \0

s[0]
s[1]
s[2]

Taking an array of pointers with a function
1 void print_strings(char *strings[], size_t size)
2 /* char ** strings is also possible */
3 {
4 size_t i;
5 for (i = 0; i < size; ++i)
6 printf("%s\n", strings[i]);
7 }

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 11 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Chapter 2

Recursion

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 12 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Many mathematical problems can be formulated recursively

Sum of sequence an

Sn =

{
Sn−1 + an n > 0
a0 n = 0

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Fibonacci numbers

Fn =

Fn−2 + Fn−1 n > 1
1 n = 1
0 n = 0

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 13 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Many mathematical problems can be formulated recursively
Sum of sequence an

Sn =

{
Sn−1 + an n > 0
a0 n = 0

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Fibonacci numbers

Fn =

Fn−2 + Fn−1 n > 1
1 n = 1
0 n = 0

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 13 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Many mathematical problems can be formulated recursively
Sum of sequence an

Sn =

{
Sn−1 + an n > 0
a0 n = 0

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Fibonacci numbers

Fn =

Fn−2 + Fn−1 n > 1
1 n = 1
0 n = 0

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 13 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Many mathematical problems can be formulated recursively
Sum of sequence an

Sn =

{
Sn−1 + an n > 0
a0 n = 0

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Fibonacci numbers

Fn =

Fn−2 + Fn−1 n > 1
1 n = 1
0 n = 0

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 13 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively

Is Albert Einstein my ancestor?

My ancestor? =

Ancestor of my father/mother?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 14 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively
Is Albert Einstein my ancestor?

My ancestor? =

Ancestor of my father/mother?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 14 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively
Is Albert Einstein my ancestor?

My ancestor? =

Ancestor of my father/mother?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 14 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively
Is Albert Einstein my ancestor?

My ancestor? =

Ancestor of my father/mother?
Is he my father?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 14 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively
Is Albert Einstein my ancestor?

My ancestor? =

Ancestor of my father/mother?
Is he my father?
Is she my mother?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 14 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively
Is Albert Einstein my ancestor?

My ancestor? =

Ancestor of my father/mother?
Is he my father?
Is she my mother?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 14 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas

Mathematical proof e.g., proof by induction
Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas
Mathematical proof e.g., proof by induction

Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas
Mathematical proof e.g., proof by induction

Definition e.g., Fibonacci numbers

Algorithm e.g., path finding algorithms
Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas
Mathematical proof e.g., proof by induction

Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas
Mathematical proof e.g., proof by induction

Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system

Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas
Mathematical proof e.g., proof by induction

Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals

We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas
Mathematical proof e.g., proof by induction

Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 15 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = 4! · 5

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = 4! · 5

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (3! · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (3! · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((2! · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((2! · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (((1! · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (((1! · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((((0! · 1) · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((((0! · 1) · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((((1 · 1) · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((((1 · 1) · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (((1 · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (((1 · 2) · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((2 · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = ((2 · 3) · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (6 · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = (6 · 4) · 5

Let us implement it to C!

1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = 24 · 5

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = 24 · 5

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = 120

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 16 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Some considerations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How to imagine recursive functions?

1 unsigned f0(void) { return 1; }
2 unsigned f1(void) { return f0() * 1; }
3 unsigned f2(void) { return f1() * 2; }
4 unsigned f3(void) { return f2() * 3; }
5 unsigned f4(void) { return f3() * 4; }
6 unsigned f5(void) { return f4() * 5; }
7 ...
8 unsigned f = f5();

Many different instances of the same function coexist
simultaneously
The instances were called with different parameters

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 17 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
0n 0x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
0n 0x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
0n 0x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

1register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
0n 0x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

1register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
0n 0x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

1register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

1register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

1register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
1n 0x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

1register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

2register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

2register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
2n 0x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

2register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

6register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

6register:

40x2000:
150x1FFC:
3n 0x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

6register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

24register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

24register:

4n 0x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

24register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

24register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 18 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The mechanism of the function calls in C is capable of writing
recursive functions

All the data (local variables, return addresses) of the calling
functions are stored in the stack
Whether the function calls itself or an other function makes no
difference
The maximal depth of recursive calls: given by the stack size

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 19 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The mechanism of the function calls in C is capable of writing
recursive functions
All the data (local variables, return addresses) of the calling
functions are stored in the stack

Whether the function calls itself or an other function makes no
difference
The maximal depth of recursive calls: given by the stack size

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 19 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The mechanism of the function calls in C is capable of writing
recursive functions
All the data (local variables, return addresses) of the calling
functions are stored in the stack
Whether the function calls itself or an other function makes no
difference

The maximal depth of recursive calls: given by the stack size

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 19 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The mechanism of the function calls in C is capable of writing
recursive functions
All the data (local variables, return addresses) of the calling
functions are stored in the stack
Whether the function calls itself or an other function makes no
difference
The maximal depth of recursive calls: given by the stack size

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 19 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration – factorial DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating n! recursively – elegant, but inefficient

1 unsigned fact_rec(unsigned n)
2 {
3 if (n == 0)
4 return 1;
5 return fact_rec(n-1) * n;
6 } link

and iteratively – boring, but efficient

1 unsigned fact_iter(unsigned n)
2 {
3 unsigned f = 1, i;
4 for (i = 2; i <= n; ++i)
5 f *= i;
6 return f;
7 } link

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 20 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/factorial.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/factorial.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration – factorial DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating n! recursively – elegant, but inefficient

1 unsigned fact_rec(unsigned n)
2 {
3 if (n == 0)
4 return 1;
5 return fact_rec(n-1) * n;
6 } link

and iteratively – boring, but efficient

1 unsigned fact_iter(unsigned n)
2 {
3 unsigned f = 1, i;
4 for (i = 2; i <= n; ++i)
5 f *= i;
6 return f;
7 } link

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 20 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/factorial.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/factorial.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration – Fibonacci DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating Fn recursively – elegant, but way too slow!
1 unsigned fib_rec(unsigned n)
2 {
3 if (n <= 1)
4 return n;
5 return fib_rec(n-1) + fib_rec(n-2);
6 } link

and iteratively – boring, but efficient
1 unsigned fib_iter(unsigned n)
2 {
3 unsigned f1 = 0, f2 = 1, f3, i;
4 for (i = 2; i <= n; ++i) {
5 f3 = f1 + f2;
6 f1 = f2;
7 f2 = f3;
8 }
9 return f2;

10 } link

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 21 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/fibonacci.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/fibonacci.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration – Fibonacci DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating Fn recursively – elegant, but way too slow!
1 unsigned fib_rec(unsigned n)
2 {
3 if (n <= 1)
4 return n;
5 return fib_rec(n-1) + fib_rec(n-2);
6 } link

and iteratively – boring, but efficient
1 unsigned fib_iter(unsigned n)
2 {
3 unsigned f1 = 0, f2 = 1, f3, i;
4 for (i = 2; i <= n; ++i) {
5 f3 = f1 + f2;
6 f1 = f2;
7 f2 = f3;
8 }
9 return f2;

10 } link
© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 21 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/fibonacci.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/fibonacci.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation
2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not efficient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 22 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation

2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not efficient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 22 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation
2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not efficient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 22 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation
2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not efficient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 22 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation
2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not efficient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 22 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Iterative algorithms recursively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing arrays recursively (without loops)

1 void print_array(int* array , int n)
2 {
3 if (n == 0)
4 return;
5 printf("%d ", array [0]);
6 print_array(array+1, n-1); /* recursive call */
7 }

Traversing strings recursively

1 void print_string(char* str)
2 {
3 if (str[0] == ’\0’)
4 return;
5 printf("%c", str [0]);
6 print_string(str +1); /* recursive call */
7 }

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 23 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Iterative algorithms recursively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing arrays recursively (without loops)

1 void print_array(int* array , int n)
2 {
3 if (n == 0)
4 return;
5 printf("%d ", array [0]);
6 print_array(array+1, n-1); /* recursive call */
7 }

Traversing strings recursively

1 void print_string(char* str)
2 {
3 if (str[0] == ’\0’)
4 return;
5 printf("%c", str [0]);
6 print_string(str +1); /* recursive call */
7 }

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 23 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Iterative algorithms recursively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing arrays recursively (without loops)

1 void print_array(int* array , int n)
2 {
3 if (n == 0)
4 return;
5 printf("%d ", array [0]);
6 print_array(array+1, n-1); /* recursive call */
7 }

Traversing strings recursively

1 void print_string(char* str)
2 {
3 if (str[0] == ’\0’)
4 return;
5 printf("%c", str [0]);
6 print_string(str +1); /* recursive call */
7 }

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 23 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Printing number in a given numeral system DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

recursively
1 void print_base_rec(unsigned n, unsigned base)
2 {
3 if (n >= base)
4 print_base_rec(n/base , base);
5 printf("%d", n%base);
6 } link

iteratively
1 void print_base_iter(unsigned n, unsigned base)
2 {
3 unsigned d; /* power of base not greater than n */
4 for (d = 1; d*base <= n; d*=base);
5 while (d > 0)
6 {
7 printf("%d", (n/d)%base);
8 d /= base;
9 }

10 } link

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 24 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/print_base.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/print_base.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

Printing number in a given numeral system DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

recursively
1 void print_base_rec(unsigned n, unsigned base)
2 {
3 if (n >= base)
4 print_base_rec(n/base , base);
5 printf("%d", n%base);
6 } link

iteratively
1 void print_base_iter(unsigned n, unsigned base)
2 {
3 unsigned d; /* power of base not greater than n */
4 for (d = 1; d*base <= n; d*=base);
5 while (d > 0)
6 {
7 printf("%d", (n/d)%base);
8 d /= base;
9 }

10 } link
© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 24 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/print_base.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/print_base.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

When the recursive algorithm is definitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The array below stores a labyrinth

1 char lab [9][9+1] = {
2 "+-------+",
3 "| |",
4 "+-+ ++ ++",
5 "| |",
6 "| + +-+ |",
7 "| | | |",
8 "+-+ +-+ |",
9 "| | |",

10 "+-----+-+"
11 }; link

Let us visit the entire labyrinth from start position (x,y)

1 traverse(lab , 1, 1);

We go in every possible direction and visit the yet unvisited parts of
the labyrinth

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 25 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/maze.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

When the recursive algorithm is definitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The array below stores a labyrinth

1 char lab [9][9+1] = {
2 "+-------+",
3 "| |",
4 "+-+ ++ ++",
5 "| |",
6 "| + +-+ |",
7 "| | | |",
8 "+-+ +-+ |",
9 "| | |",

10 "+-----+-+"
11 }; link

Let us visit the entire labyrinth from start position (x,y)

1 traverse(lab , 1, 1);

We go in every possible direction and visit the yet unvisited parts of
the labyrinth

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 25 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/maze.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

When the recursive algorithm is definitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The array below stores a labyrinth

1 char lab [9][9+1] = {
2 "+-------+",
3 "| |",
4 "+-+ ++ ++",
5 "| |",
6 "| + +-+ |",
7 "| | | |",
8 "+-+ +-+ |",
9 "| | |",

10 "+-----+-+"
11 }; link

Let us visit the entire labyrinth from start position (x,y)

1 traverse(lab , 1, 1);

We go in every possible direction and visit the yet unvisited parts of
the labyrinth

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 25 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/maze.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

When the recursive algorithm is definitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The simplicity of the recursive solution is striking

1 void traverse(char lab [][9+1] , int x, int y)
2 {
3 lab[x][y] = ’.’; /* mark that we were here */
4 if (lab[x-1][y] == ’ ’) /* go upwards , if needed */
5 traverse(lab , x-1, y);
6 if (lab[x+1][y] == ’ ’) /* go downwards , if needed */
7 traverse(lab , x+1, y);
8 if (lab[x][y-1] == ’ ’) /* go left , if needed */
9 traverse(lab , x, y-1);

10 if (lab[x][y+1] == ’ ’) /* go right , if needed */
11 traverse(lab , x, y+1);
12 } link

It is also possible to do with an iterative algorithm – but it is much
more complex

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 26 / 29

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/maze.c

nD array Recursion Def Implementation Rek/iter Applications Indirect

Indirect recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Indirect recursion: Functions mutually
call each other

function a

function b

1 /* forward declaration */
2 void b(int); /* name , return type , parameter types */
3

4 void a(int n) {
5 ...
6 b(n); /* b can be called due to the forward decl. */
7 ...
8 }
9

10 void b(int n) {
11 ...
12 a(n);
13 ...
14 }

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 27 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Forward declaration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Forward declaration will be necessary for recursive data structures

1 /* forward declaration */
2 struct child_s;
3

4 struct mother_s { /* mother type */
5 char name [50];
6 struct child_s *children [20]; /*pntr. arr. of children */
7 };
8

9 struct child_s { /* child type */
10 char name [50];
11 struct mother_s *mother; /* pointer to the mother */
12 };

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 28 / 29

nD array Recursion Def Implementation Rek/iter Applications Indirect

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 29 / 29

	Multi-dimensional arrays
	Definition
	Passing as argument to function
	Dynamic 2D array
	Array of pointers

	Recursion
	Definition
	Writing recursive programs
	Recursion or iteration
	Applications
	Indirect recursion

