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Chapter 1

Multi-dimensional arrays
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nD array Recursion Def function 2D array pointerarray

Multi-dimensional arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1D array Elements of the same type, stored in the memory
beside eachother

2D array 1D arrays of the same size and same type, stored in
the memory beside eachother

3D array 2D arrays of the same size and same type, stored in
the memory beside eachother

. . . . . .
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Two-dimensional DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of a 2D array:

1 char a[3][2]; /* 3row x 2column array of characters */
2 /* 3-sized array of 2-sized 1D arrays */

a[0][0] a[0][1]

a[1][0] a[1][1]

a[2][0] a[2][1]

In C language, storage is done row by row (the second index
changes quicker)

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

a[0] a[1] a[2]

a[0], a[1] and a[2] are 2-sized 1D arrays
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Taking a 2D array row by row DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Filling a 1D array (row) with the given element
1 void fill_row(char row[], size_t size , char c)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i)
5 row[i] = c;
6 }

Filling a 2D array row by row
1 char a[3][2];
2 fill_row(a[0], 2, ’a’); /* row 0 is full of ’a’ */
3 fill_row(a[1], 2, ’b’); /* row 1 is full of ’b’ */
4 fill_row(a[2], 2, ’c’); /* row 2 is full of ’c’ */

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

a[0] a[1] a[2]
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Taking a 2D array as one entity DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

taking as a 2D array – only if number of columns is known

1 void print_array(char array [][2] , size_t nrows)
2 {
3 size_t row , col;
4 for (row = 0; row < nrows; ++row)
5 {
6 for (col = 0; col < 2; ++col)
7 printf("%c", array[row][col]);
8 printf("\n");
9 }

10 }

Usage of the function

1 char a[3][2];
2 ...
3 print_array(a, 3); /* printing a 3-row array */
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Taking a 2D array as one entity DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

taking 2D array as a pointer

1 void print_array(char *array , int nrows , int ncols)
2 {
3 int row , col;
4 for (row = 0; row < nrows; ++row)
5 {
6 for (col = 0; col < ncols; ++col)
7 printf("%c", array[row*ncols+col]);
8 printf("\n");
9 }

10 }

Usage of the function

1 char a[3][2];
2 ...
3 print_array((char *)a, 3, 2); /* 3 rows 2 columns */
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Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s allocate memory for
a 2D array. We would like
to use the conventional
way of indexing for the
array d[i][j]

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[1][0]
d[1][1]
d[1][2]
d[1][3]

d[1]

d[2][0]
d[2][1]
d[2][2]
d[2][3]

d[2]

d

1 double **d =( double **) malloc (3* sizeof(double *));
2 d[0] = (double *) malloc (3*4* sizeof(double ));
3 for (i = 1; i < 3; ++i)
4 d[i] = d[i-1] + 4;
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Dynamic 2D array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Releasing the array

d[0][0]
d[0][1]
d[0][2]
d[0][3]

d[0]

d[1][0]
d[1][1]
d[1][2]
d[1][3]

d[1]

d[2][0]
d[2][1]
d[2][2]
d[2][3]

d[2]

d

1 free(d[0]);
2 free(d);
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Array of pointers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Defining an array of pointers and passing it to a function
1 char *s[3] = {"Basics", "of", "programming"};
2 print_strings(s, 3);

B a s i c s \0

o f \0

P r o g r a m m i n g \0

s[0]
s[1]
s[2]

Taking an array of pointers with a function
1 void print_strings(char *strings[], size_t size)
2 /* char ** strings is also possible */
3 {
4 size_t i;
5 for (i = 0; i < size; ++i)
6 printf("%s\n", strings[i]);
7 }
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Chapter 2

Recursion
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Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Many mathematical problems can be formulated recursively

Sum of sequence an

Sn =

{
Sn−1 + an n > 0
a0 n = 0

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

Fibonacci numbers

Fn =


Fn−2 + Fn−1 n > 1
1 n = 1
0 n = 0
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Recursion – definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively

Is Albert Einstein my ancestor?

My ancestor? =


Ancestor of my father/mother?

In general

Problem =

{
Simpler, similar problem(s)
Trivial case(es)
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Recursion – outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas

Mathematical proof e.g., proof by induction
Definition e.g., Fibonacci numbers
Algorithm e.g., path finding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals
We are going to study recursive data structures and recursive
algorithms
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Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0
1 n = 0

5! = 4! · 5

Let us implement it to C!
1 unsigned factorial(unsigned n)
2 {
3 if (n > 0)
4 return factorial(n-1) * n;
5 else
6 return 1;
7 }

Calling the function
1 unsigned f = factorial (5); /* it works! */
2 printf("%u\n", f);
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nD array Recursion Def Implementation Rek/iter Applications Indirect

Some considerations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How to imagine recursive functions?

1 unsigned f0(void) { return 1; }
2 unsigned f1(void) { return f0() * 1; }
3 unsigned f2(void) { return f1() * 2; }
4 unsigned f3(void) { return f2() * 3; }
5 unsigned f4(void) { return f3() * 4; }
6 unsigned f5(void) { return f4() * 5; }
7 ...
8 unsigned f = f5();

Many different instances of the same function coexist
simultaneously
The instances were called with different parameters
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1 /*
2 recursive factorial function
3 */
4 unsigned factorial(unsigned n)
5 {
6 if (n > 0)
7 return factorial(n-1) * n;
8 else
9 return 1;

10 }
11

12 int main(void)
13 {
14 ...
15 factorial (4);
16 ...
17 }

??register:

40x2000:
150x1FFC:
30x1FF8:
70x1FF4:
20x1FF0:
70x1FEC:
10x1FE8:
70x1FE4:
00x1FE0:
70x1FDC:
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Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The mechanism of the function calls in C is capable of writing
recursive functions

All the data (local variables, return addresses) of the calling
functions are stored in the stack
Whether the function calls itself or an other function makes no
difference
The maximal depth of recursive calls: given by the stack size
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Recursion or iteration – factorial DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating n! recursively – elegant, but inefficient

1 unsigned fact_rec(unsigned n)
2 {
3 if (n == 0)
4 return 1;
5 return fact_rec(n-1) * n;
6 } link

and iteratively – boring, but efficient

1 unsigned fact_iter(unsigned n)
2 {
3 unsigned f = 1, i;
4 for (i = 2; i <= n; ++i)
5 f *= i;
6 return f;
7 } link
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Recursion or iteration – Fibonacci DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating Fn recursively – elegant, but way too slow!
1 unsigned fib_rec(unsigned n)
2 {
3 if (n <= 1)
4 return n;
5 return fib_rec(n-1) + fib_rec(n-2);
6 } link

and iteratively – boring, but efficient
1 unsigned fib_iter(unsigned n)
2 {
3 unsigned f1 = 0, f2 = 1, f3, i;
4 for (i = 2; i <= n; ++i) {
5 f3 = f1 + f2;
6 f1 = f2;
7 f2 = f3;
8 }
9 return f2;

10 } link
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nD array Recursion Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation
2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not efficient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem
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Iterative algorithms recursively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing arrays recursively (without loops)

1 void print_array(int* array , int n)
2 {
3 if (n == 0)
4 return;
5 printf("%d ", array [0]);
6 print_array(array+1, n-1); /* recursive call */
7 }

Traversing strings recursively

1 void print_string(char* str)
2 {
3 if (str[0] == ’\0’)
4 return;
5 printf("%c", str [0]);
6 print_string(str +1); /* recursive call */
7 }
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Printing number in a given numeral system DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

recursively
1 void print_base_rec(unsigned n, unsigned base)
2 {
3 if (n >= base)
4 print_base_rec(n/base , base);
5 printf("%d", n%base);
6 } link

iteratively
1 void print_base_iter(unsigned n, unsigned base)
2 {
3 unsigned d; /* power of base not greater than n */
4 for (d = 1; d*base <= n; d*=base);
5 while (d > 0)
6 {
7 printf("%d", (n/d)%base);
8 d /= base;
9 }

10 } link
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When the recursive algorithm is definitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The array below stores a labyrinth

1 char lab [9][9+1] = {
2 "+-------+",
3 "| |",
4 "+-+ ++ ++",
5 "| |",
6 "| + +-+ |",
7 "| | | |",
8 "+-+ +-+ |",
9 "| | |",

10 "+-----+-+"
11 }; link

Let us visit the entire labyrinth from start position (x,y)

1 traverse(lab , 1, 1);

We go in every possible direction and visit the yet unvisited parts of
the labyrinth
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When the recursive algorithm is definitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The simplicity of the recursive solution is striking

1 void traverse(char lab [][9+1] , int x, int y)
2 {
3 lab[x][y] = ’.’; /* mark that we were here */
4 if (lab[x-1][y] == ’ ’) /* go upwards , if needed */
5 traverse(lab , x-1, y);
6 if (lab[x+1][y] == ’ ’) /* go downwards , if needed */
7 traverse(lab , x+1, y);
8 if (lab[x][y-1] == ’ ’) /* go left , if needed */
9 traverse(lab , x, y-1);

10 if (lab[x][y+1] == ’ ’) /* go right , if needed */
11 traverse(lab , x, y+1);
12 } link

It is also possible to do with an iterative algorithm – but it is much
more complex
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Indirect recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Indirect recursion: Functions mutually
call each other

function a

function b

1 /* forward declaration */
2 void b(int); /* name , return type , parameter types */
3

4 void a(int n) {
5 ...
6 b(n); /* b can be called due to the forward decl. */
7 ...
8 }
9

10 void b(int n) {
11 ...
12 a(n);
13 ...
14 }
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Forward declaration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Forward declaration will be necessary for recursive data structures

1 /* forward declaration */
2 struct child_s;
3

4 struct mother_s { /* mother type */
5 char name [50];
6 struct child_s *children [20]; /*pntr. arr. of children */
7 };
8

9 struct child_s { /* child type */
10 char name [50];
11 struct mother_s *mother; /* pointer to the mother */
12 };
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Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Recursion – Union 20 November, 2024 29 / 29


	Multi-dimensional arrays
	Definition
	Passing as argument to function
	Dynamic 2D array
	Array of pointers

	Recursion
	Definition
	Writing recursive programs
	Recursion or iteration
	Applications
	Indirect recursion


