Binary trees Basics of Programming 1

Department of Networked Systems and Services G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

27 November, 2024

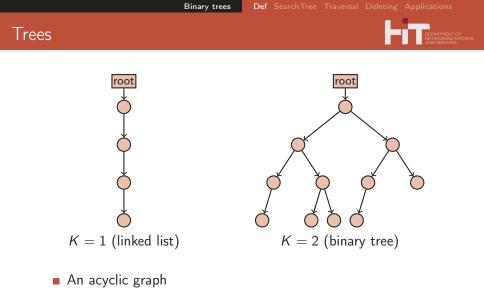
1 Binary trees

- Definition
- Binary search trees

- Traversal
- Deleting
- Further applications

Chapter 1

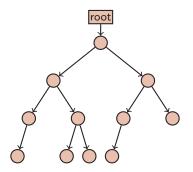
Binary trees



- Every node has exactly one incoming edge
- *K*-ary tree: every node has at most *K* outgoing edges

Binary trees

Binary trees



Declaration of the binary tree data structure

```
1 typedef struct tree {
2   int data;
3   struct tree *left, *right;
4 } tree_elem, *tree_ptr;
```

Typically we typedef not only the struct, but also the pointer

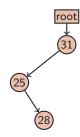
link

31 25 28 42 12 35 11 48 30 33 26

- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!

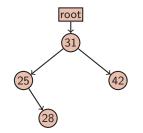
31 25 28 42 12 35 11 48 30 33 26

- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!



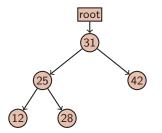
31 25 28 42 12 35 11 48 30 33 26

- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!



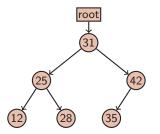
31 25 28 42 12 35 11 48 30 33 26

- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!



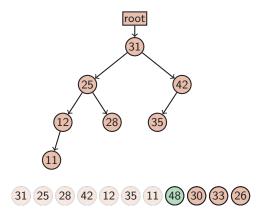
31 25 28 42 12 35 11 48 30 33 26

- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!

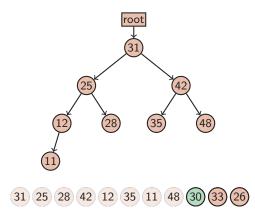


31 25 28 42 12 35 11 48 30 33 26

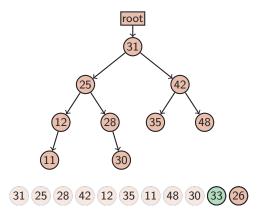
- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!



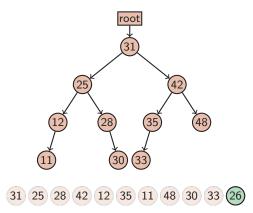
- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!



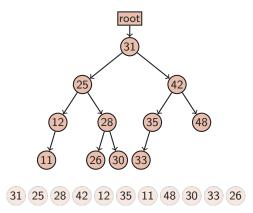
- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!



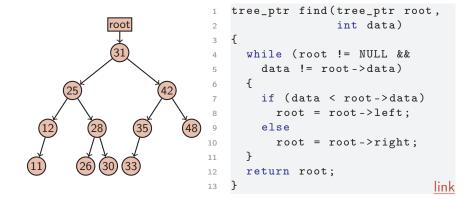
- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!

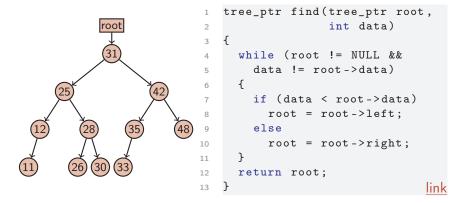


- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!

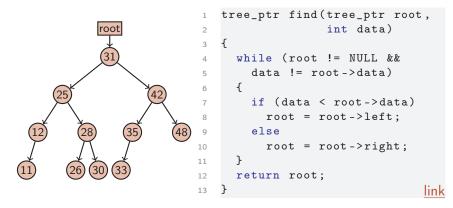


- Sub-tree to the left: only elements smaller than the node
- Sub-tree to the right: only elements greater than the node
- The structure of the tree depends on the insertion order of the elements!

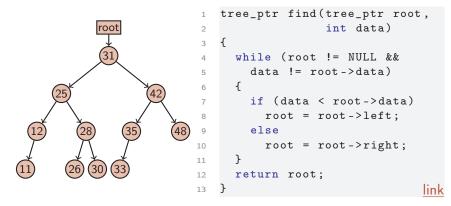




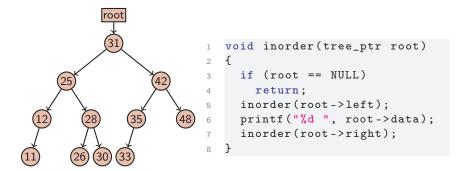
This is not recursive yet

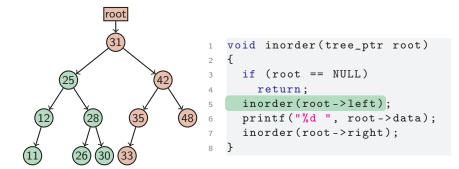


- This is not recursive yet
- In a depth-*d* tree the max. number of steps is *d*

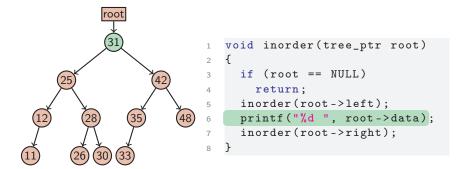


- This is not recursive yet
- In a depth-*d* tree the max. number of steps is *d*
- If the tree is balanced and has *n* elements $\Rightarrow \approx \log_2 n$ steps!

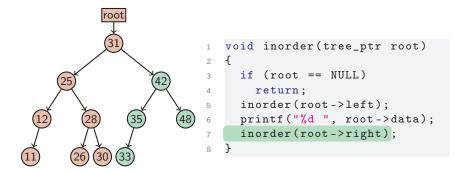




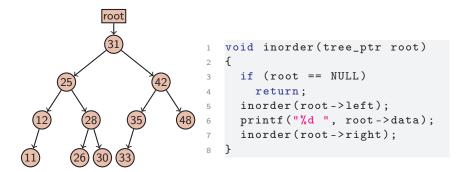
11 12 25 26 28 30



11 12 25 26 28 30 31



11 12 25 26 28 30 31 33 35 42 48



11 12 25 26 28 30 31 33 35 42 48

in-order traversal

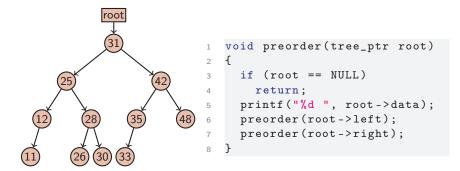
- 2 root element
- 3 right sub-tree

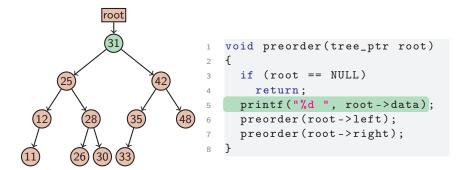
With this traversal the nodes are visited in increasing order of their values

An other implementation of the in-order traversal:

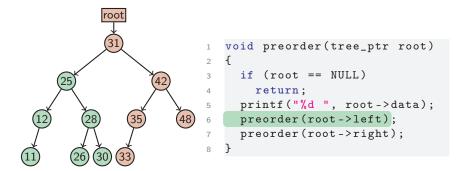
```
void inorder(tree_ptr root)
{
    if (root->left != NULL)
        inorder(root->left);
    printf("%d ", root->data);
    if (root->right != NULL)
        inorder(root->right);
    }
```

But in this case the caller has not make sure that root != NULL holds

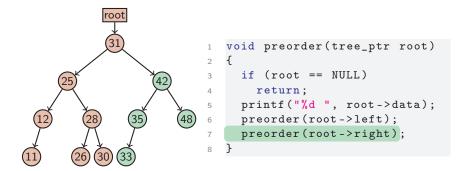




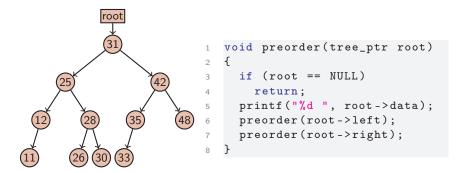
31



31 25 12 11 28 26 30

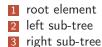


31 25 12 11 28 26 30 42 35 33 48



31 25 12 11 28 26 30 42 35 33 48

pre-order traversal



Saving the elements of the tree in this order, and building it again, the structure of the tree can be fully reconstructed.

Building a tree

Inserting a new node to the tree

```
tree_ptr insert(tree_ptr root, int data)
1
2
   ł
     if (root == NULL) {
3
       root = (tree_ptr)malloc(sizeof(tree_elem));
4
       root->data = data;
5
     }
6
     else if (data < root->data)
7
       root->left = insert(root->left, data);
8
     else
9
       root->right = insert(root->right, data);
10
     return root;
11
   }
12
```

link

Building a tree

Inserting a new node to the tree

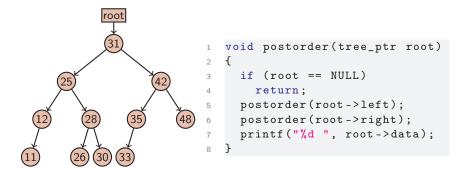
```
tree_ptr insert(tree_ptr root, int data)
1
2
   ł
     if (root == NULL) {
3
       root = (tree_ptr)malloc(sizeof(tree_elem));
4
       root->data = data;
5
     }
6
    else if (data < root->data)
7
       root->left = insert(root->left, data);
8
     else
9
       root->right = insert(root->right, data);
10
     return root;
11
12
   }
```

Usage of this function:

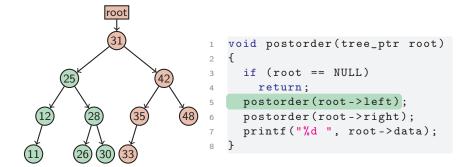
```
1 tree_ptr root = NULL;
2 root = insert(root, 2);
3 root = insert(root, 8);
4 ...
```

link

Post-order traversal

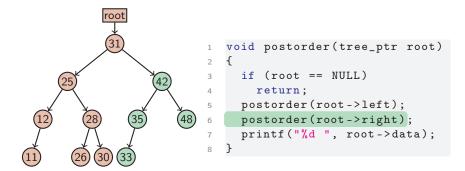


Post-order traversal



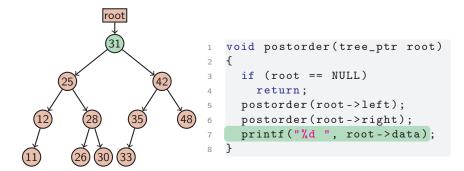
11 12 26 30 28 25

Post-order traversal



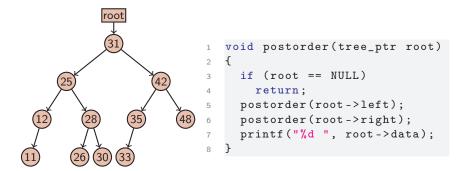
11 12 26 30 28 25 33 35 48 42

Post-order traversal



11 12 26 30 28 25 33 35 48 42 31

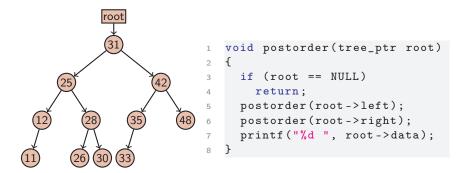
Post-order traversal



11 12 26 30 28 25 33 35 48 42 31

- post-order traversal
 - left sub-tree
 - 2 right sub-tree
 - 3 root element

Post-order traversal



11 12 26 30 28 25 33 35 48 42 31

- post-order traversal
 - left sub-tree
 - 2 right sub-tree
 - 3 root element

In this order the leaves of the tree are visited first \rightarrow application: releasing/deleting a tree

Deleting a tree by post-order traversal

```
void delete(tree_ptr root)
  ł
2
    if (root == NULL) /* empty tree: nothing to delete *
3
       return;
4
    delete(root->left); /* post-order traversal */
5
    delete(root->right);
6
    free(root);
7
8
  }
                                                          link
```

Deleting a tree by post-order traversal

```
void delete(tree_ptr root)
1
  ł
2
    if (root == NULL) /* empty tree: nothing to delete >
3
       return;
4
    delete(root->left); /* post-order traversal */
5
    delete(root->right);
6
    free(root);
7
8
  }
                                                          link
```

A program segment (without memory leaks):

```
tree_ptr root = NULL;
root = insert(root, 2);
root = insert(root, 8);
...
delete(root);
root = NULL;
```


Write a recursive function (max. 10 lines), that

Write a recursive function (max. 10 lines), that

determines the depth of a tree

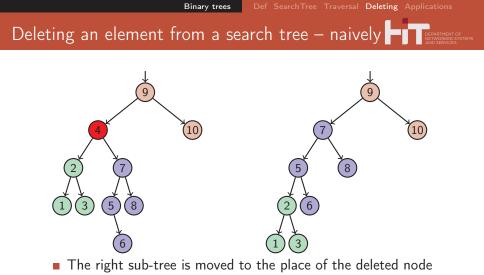
• Write a recursive function (max. 10 lines), that

- determines the depth of a tree
- calculates the count / the sum / the average of the values stored in the nodes of the tree

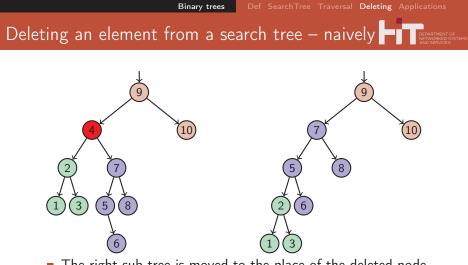
- Write a recursive function (max. 10 lines), that
 - determines the depth of a tree
 - calculates the count / the sum / the average of the values stored in the nodes of the tree
- Write a iterative function (max. 10 lines), that

- Write a recursive function (max. 10 lines), that
 - determines the depth of a tree
 - calculates the count / the sum / the average of the values stored in the nodes of the tree
- Write a iterative function (max. 10 lines), that
 - computes the minimum and the maximum of the values stored in the nodes

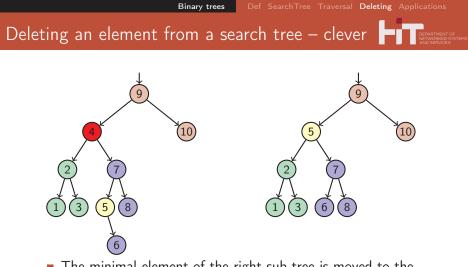
- Write a recursive function (max. 10 lines), that
 - determines the depth of a tree
 - calculates the count / the sum / the average of the values stored in the nodes of the tree
- Write a iterative function (max. 10 lines), that
 - computes the minimum and the maximum of the values stored in the nodes
 - returns the pointer to the node storing the maximal / minimal value of the tree



The left sub-tree is inserted to below the minimal element of the right sub-tree

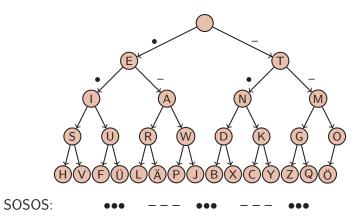


- The right sub-tree is moved to the place of the deleted node
- The left sub-tree is inserted to below the minimal element of the right sub-tree
- The tree is getting imbalanced!

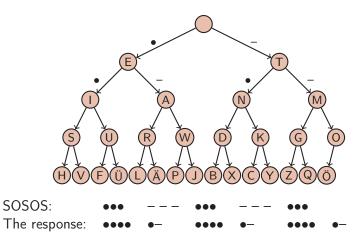


- The minimal element of the right sub-tree is moved to the place of the deleted node
- This element could have only a right sub-tree, it is moved one level up, to its old place

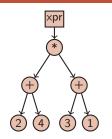
Morse decoding tree



Morse decoding tree

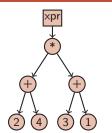


Evaluating mathematical expressions



- Storing math expressions in a tree
- Leaves \rightarrow numeric constants
- \blacksquare Branches \rightarrow two-operand operators
- In the example: (2+4) * (3+1)

Evaluating mathematical expressions



- Storing math expressions in a tree
- Leaves → numeric constants
- \blacksquare Branches \rightarrow two-operand operators
- In the example: (2+4) * (3+1)

```
int eval(tree_ptr xpr)
1
  ł
2
    char c = xpr->data;
3
    if (isdigit(c)) /* stopping condition */
4
      return c - '0';
5
    if (c == '+')
6
7
      return eval(xpr->left) + eval(xpr->right);
    if (c == '*')
8
      return eval(xpr->left) * eval(xpr->right);
9
```

link

Let us introduce variable x as a leaf node as well:

```
double feval(tree_ptr xpr, double x)
1
   ł
2
     char c = xpr->data;
3
     if (isdigit(c))
4
       return c - '0';
5
     if (c = 'x')
6
       return x;
7
     if (c == '+')
8
       return feval(xpr->left, x) + feval(xpr->right, x);
9
     if (c == '*')
10
       return feval(xpr->left, x) * feval(xpr->right, x);
11
   }
                                                            link
12
```

Evaluating the derivative of a function

Let us take the derivative of the function! The rules are:

```
c' = 0
     x' = 1
     (f + g)' = f' + g'
     (f \cdot g)' = f' \cdot g + f \cdot g'
   double deval(tree_ptr xpr, double x)
1
   ł
2
3
     char c = xpr->data;
     if (isdigit(c)) /* stopping condition */
4
       return 0.0;
5
     if (c == 'x')
                         /* stopping condition */
6
       return 1.0:
7
     if (c == '+')
8
       return deval(xpr->left, x) + deval(xpr->right, x);
9
     if (c == '*')
10
       return deval(xpr->left, x) * feval(xpr->right, x) +
11
          feval(xpr->left, x) * deval(xpr->right, x);
12
                                                           link
13
   }
```

© based on slides by Zsóka, Fiala, Vitéz

Thank you for your attention.