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Outline

 Aim of the lecture:

• To show how easy it is to work with the highly integrated 
microcontrollers available today

 Outline:

• Introducing Arduino

• The hardware

• How to program

• Sensors, peripherals

• Implementing the door lock

• The display

• The RFID reader

• The keypad

• The whole hardware

• The whole source code
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Arduino

 2005, Ivrea, Italy
 Purpose: simple prototyping
 It is a family of prototyping boards (http://arduino.cc)
 Common features:

• Atmel AVR 8 bit CPU (Harvard architecture!)
• Integrated flash memory to store the program
• Integrated RAM to be used as the main memory
• Integrated EEPROM to be used as a non-volatile memory
• Input/output capabilities:

• Digital
• Analog

• It can be programmed through an USB port (not all of them)
• C++-like language for software development
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The Arduino Family

Mega ADK:
€44

Micro:
€18

LilyPad:
$25

Uno:
€20
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The Arduino Family

 Differences:
• Number of input/output pins

• Size of the memory (flash/RAM/EEPROM)

• Some special features:

• The Mega ADK can be connected to Android devices

• The LilyPad can be sewn to fabric

CPU freq. Flash RAM EEPROM Digital I/O Analog I/O

Uno 16 MHz 32 kB 2.5 kB 1 kB 14 6

Mega ADK 16 MHz 256 kB 8 kB 4 kB 54 16

Micro 16 MHz 32 kB 2,5 kB 1 kB 20 12

LilyPad 8 MHz 32 kB 2 kB 1 kB 9 4
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Comparision

 Price
• €44, for a 8 bit CPU, 16 MHz freq., and a couple kB or memory?

• When there is the Raspberry Pi 3 for $35?

(4x1200 MHz 64 bit ARM CPU, 1 GB RAM, strong GPU, HD movie 
playback, HDMI output, Ethernet port, Bluetooth, WiFi, etc.)

 They have different purposes:
• Arduino: 

• Emphasis: I/O, all the time, as simply as possible

• When switched on, it is up and running in 1 second

• It is the largest model that costs €44, the cheap Leonardo is sufficient 
for most projects

• Raspberry Pi:

• Emphasis: general purpose computer (for teaching programming)

• It requires an operating system (Linux)! Booting process takes a while.

• It has input/output capabilities, but using them needs deep knowledge 
of the Linux kernel
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Arduino Mega ADK
Microcontroller

Reset buttonUSB for programming
And power supply

USB to be connected to Android

Alternative power supply
Power supply for I/O devices

Analog inputs

Digital
in- and
outputs

PWM outputs Serial ports
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Programming
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Programming

 Open-source cross-platform development environment (IDE)
(http://arduino.cc/en/Main/Software)

 Language: C++-like (file extension: .ino)
 Compilation process:

• IDE compiles AVR code (cross compiler)
• It writes the program to the flash memory of the microcontroller 

through the USB port

 Debugging:
• What the Arduino writes to its default serial port is transmitted to 

the PC through USB and displayed by the IDE

http://arduino.cc/en/Main/Software
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The development environment

Syntax check

Open file

Upload to Android

Save to file

Serial monitor

New file
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 Arduino calls the program a “sketch”
 Data types:

• int: 16 bit integer

• long: 32 bit integer

• boolean: logical type (true/false), occupies 1 bit only in the memory (C++ has 
no such data type)

• float: 32 bit floating point

• char: stores ASCII characters (1 byte)

• etc.

 Operators, loops, branches: like C++

 Class-es are allowed to use, and preprocessor directives as well

 There are two mandatory functions to write:
• void setup () { … } - this function is executed once, when Arduino starts up

• void loop () { … } - thus function runs after the initialization again and again 
(when it terminates, it is started again automatically)

The programming language
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Inputs/Outputs
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Digital in- and outputs

 Digital pins can act as both input and output direction
• But only one direction at a time

• To set it up:

• pinMode (4, INPUT); – pin 4 is set up to act as input

• pinMode (5, OUTPUT); – pin 5 is set up to act as output

 Putting digital signals to digital pins:
• digitalWrite (5, HIGH); – puts a logical 1 (5V) to pin 5

• digitalWrite (5, LOW); – puts a logical 0 (0V) to pin 5

 Reading digital inputs:
• int val;

• val=digitalRead (4); – reads digital value from pin 4

• if (val==HIGH) …, or if (val==LOW) …
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Analog inputs

 Does not detect only HIGH and LOW values
 ADC (Analog-Digital Converter) with 10 bit resolution

→ 1024 different voltage levels can be distinguished

 1024 levels between 0V and 5V  → 4.88 mV resolution
 Usage:

• int val;
• val = analogRead (3); - sample from analog input number 3
• val: from 0 (in case of 0V) to 1023 (5V)

 The 5V maximum reference can be adjusted by calling 
analogReference(), but the maximum is 5V
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PWM output

 It can not provide continuous analog output (e.g., 4.2V)

 But it can switch the output on and off very fast: it can produce 
any voltage in the “average” sense

→ PWM: Pulse Width Modulation

 This is done be calling
function analogWrite () 

 Parameters: pin number,
duty cycle (between 0…255)
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Serial input and output

 Serial communication needs only 2 wires at most:
• RX: for receiving bytes (if we need to receive bytes)
• TX: for transmitting (sending) bytes (if needed)

 The Arduino ADK has 4 serial ports
• The first one is used by the development environment for debugging purposes

 Usage: through class Serial
• Pre-defined instances: Serial, Serial1, Serial2, Serial3
• Initialization: Serial1.begin (9600); - open serial port 1 and set up speed to 9600 bps 
• Writing: Serial1.write (…); - sends a single byte, a NULL terminated string, or an 

array
• Writing: Serial1.print (...); - the parameter is converted to string, and sends it. 

Function Serial1.println (...); adds an extra line break at the end as well.
• Reading: int received=Serial1.read(); - obtains a byte received (-1, if no bytes 

received)
• Check data availability: int count = Serial1.available(); - gives back the number of 

bytes received
• Close port: Serial1.end (); - after closing the port, the pins can be used as general 

purpose in/out pins
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Memory
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Memory

 The microcontroller of Arduino has 3 kinds of memories
• Flash memory: stores the program

• Content is kept without power supply
• RAM: stores the variables and the stack

• Power supply is needed to keep content
• EEPROM: to store non-volatile data

• Content is kept without power supply

 AVR processors follow a Harvard architecture
• There are 2 address spaces:

• Instructions and constants are taken from the flash memory
• For variables and stack, the RAM is used

• And how to access the EEPROM?
• It is treated as a peripheral (an I/O device)
• There is a library to access it
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EEPROM

 The EEPROM library is a standard component
 #include <EEPROM.h>
 Writing it:

• EEPROM.write (address, data);

• Address is int

• Data is byte

 Reading it:
• byte a;

a = EEPROM.read (42);

• Reads the 42th byte from the EEPROM
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Connecting peripherals
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Digital output peripherals

 Example: 
Blinking LED

Components: LED, 220 Ohm resistor

It even works without components! 
Pin 13 has a built-in LED.

 Code:
const int ledPin = 13;
void setup () {
    pinMode (ledPin, OUTPUT);
}
void loop () {
    digitalWrite (ledPin, HIGH);
    delay (1000);
    digitalWrite (ledPin, LOW);
    delay (1000);
}
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Digital input peripherals

 Example:
Detecting the state of a button, and switching on the built-in LED 
accordingly

 Code:
const int buttonPin = 2;
const int ledPin =  13;
int buttonState = 0;
void setup () {
    pinMode (ledPin, OUTPUT);
    pinMode (buttonPin, INPUT);
}
void loop () {
    buttonState = digitalRead (buttonPin);
    digitalWrite (ledPin, buttonState);
}
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Analog input peripherals

 Example:
TMP36 temperature sensor

 Code:
const int sensorPin = 0;
void setup () {
    Serial.begin (9600);
}
void loop () {
    int reading = analogRead (sensorPin);   

    float voltage = reading * 5.0 / 1024.0;
    float temperature = (voltage - 0.5) * 100;
    Serial.println (temperature);
    delay(1000);
}
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Analog input peripherals

 The most interesting family of peripherals
• Dozens of cheap sensors:

• 3-axis accelerometer (uses 3 analog inputs)
• Alcohol gas sensor

• Carbon monoxide sensor
• Optical dust sensor

• Flex sensor
• Force sensitive sensor

• Vibration sensor
• Gyro-sensor (2 axis → uses 2 analog inputs)
• Proximity sensor (both infrared and ultrasonic)
• Temperature
• Humidity sensor

• Etc.

 They convert the physical quantity to analog signals
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PWM output peripherals

 Example:
LED fading

 Code:
const int ledPin = 9;
void setup ()  {
} 
void loop ()  { 
    for (int fadeValue = 0 ; fadeValue <= 255; fadeValue +=5) { 
        analogWrite (ledPin, fadeValue);
        delay (30);
    } 
    for (int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
        analogWrite (ledPin, fadeValue);
        delay (30);
    } 
}
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Peripherals connected through a serial port

 Peripherals that can be connected through serial ports:
• RFID modul: sends the card ID through a serial port

• GPS modul: sends the geospatial position through a serial 
port in regular intervals

• GSM/GPRS modul: can be controlled through serial ports, the 
received data and the data to transmit is sent on the serial 
line as well

• Etc.
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Shields

 Complete peripherals stacked over the Arduino
• There are dozens of shields available:

• GPS, LCD controller, SD card reader, WIFI, Bluetooth, 
ZigBee, GSM, ...

GPS Shield 
€18

MP3 Shield 
€25

2.8” TFT and touch sensor
€40
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Implementing the door-lock
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Door lock

 What components do we need?
• A display to interact with the user

• A numeric keypad

• A card reader – we use RFID based card reader

• A switch to open the door

• An Arduino from the family that is the most appropriate for us
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The display

 A cheap display with 2 rows and 16 cols (€8)

 Pins:
• Data bus: D0...D7, but it works in 4 bit mode as well, we use it that way:  

we connect only D4...D7
• RS: indicates the display if the character sent is a command or a symbol 

to display
• EN: enable signal, the display samples the data bus when receiving the 

enable signal
• RW: if we ask something from the display – we dont need it

• Power supply (5V)
• Contrast of the display (potmeter)
• Power supply of the backlight

 We use 6 wires for data transmission: RS, EN, D7, D6, D5, D4
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Using the display
 How to connect it:

Google „arduino display”

 Usage:
Instancing the LiquidCrystal class
(write(), setCursor(), blink(), clear(), etc.)

 Example:
#include <LiquidCrystal.h>
const int numRows = 2;
const int numCols = 16;
// tell it which pins we connected to the 6 wire required
LiquidCrystal lcd (12, 11, 5, 4, 3, 2); 
void setup () {
    lcd.begin (numCols,numRows);
}
void loop () {
    for (int thisLetter = 'a'; thisLetter <= 'z'; thisLetter++) {
        for (int thisRow = 0; thisRow < numRows; thisRow++) {
            for (int thisCol = 0; thisCol < numCols; thisCol++) {
                lcd.setCursor (thisCol, thisRow);
                lcd.write (thisLetter);
                delay (200);
            }
        }
    }
}
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The numeric keypad

 A 4x3 matrix of keys (€3)

 Pins:
• Has 7 pins, 4 for the rows and 3 for the columns

• If we push a button, it connects the corresponding column 
and row lines
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Using the numeric keypad
 Google „arduino keypad”
 Usage:

Instancing the Keypad class
(getKey(), waitForKey(), getState(), etc.)

 Example:
#include <Keypad.h>
const byte ROWS = 4;
const byte COLS = 3;
char keys[ROWS][COLS] = {  {'1','2','3'},   {'4','5','6'},   {'7','8','9'},   {'*','0','#'}};
byte rowPins[ROWS] = {32, 22, 24, 28}; // where did we connect the row pins
byte colPins[COLS] = { 30, 34, 26 };  // where did we connect the column pins

Keypad keyPad = Keypad ( makeKeymap (keys), rowPins, colPins, ROWS, COLS );

#define ledpin 13
void setup () {
    digitalWrite (ledpin, HIGH);
}
void loop () {
    char key = keyPad.getKey();
    if(key)  {
        switch (key)  {
            case '*':
                digitalWrite(ledpin, LOW);
                break;
            case '#':
                digitalWrite(ledpin, HIGH);
                break;
        }
    }
}
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The RFID card reader

 Radio-frequency identification

 Each card has a unique code consisting 12 hex digits

 Reader: we have an expensive one (€25), because we could find only that one

 Tags: cheap (€1 each, cards, buttons, etc.)

 Communicates through serial port

 Pins:
• Power supply (5V)

• External antenna (we use the internal one)

• Format selection (we use the ASCII format)

• 2 wires for data transmission (we use only one of them, as a serial line)

• LED/buzzer at card reading (we dont need it)

• Reset

 Connects to Arduino with only 2 wires: 

• Reset (to digital pin), D0 (to serial RX pin)
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Using the RFID reader
 Google „arduino id-12”

 Usage: 
as a serial device

 Example: (reset: pin 2, D0: pin RX1)
const int RFIDResetPin = 2;   // Reset pin of the reader is connected to digital pin 2
char userID[13];     // Card ID will be stored in this array
void setup () { 
    Serial.begin(9600);     // set up serial port 0 to 9600 bps (for debug)
    Serial1.begin(9600);     // set up serial port 1 to 9600 bps (RFID reader connected here)
    pinMode(RFIDResetPin, OUTPUT);  // set RFID Reset pin to output
    digitalWrite(RFIDResetPin, LOW);   // RFID reset, we generate a rising edge. Set it to low...
    delay (100);      // … wait a bit ...
    digitalWrite(RFIDResetPin, HIGH);   // … raise it to high.
} 
void loop () { 
    while (Serial1.available()) {    // If bytes arrived from the reader
        int readByte = Serial1.read();   // Read the next byte arrived from the reader
        if (readByte == 2)     // ASCII 0x2 means „start of message”
            index = 0;      // Initialize index variable, userID is filled from the beginning.
        else if (readByte == 3) {    // ASCII 0x3 means „end of message”
            userID[index] = 0;    // Terminate the card ID with a NULL.
            Serial.println(userID);    // Send it to the debug serial port. This appears on the PC connected.
        }
        else
            userID[index++] = readByte;   // We are in the middle of the message, store the character.
    }
}
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Selecting the proper Arduino

 What to check:
• How many digital input/output pins we need:

• For the display: 6

• For the keypad: 7

• For the RFID reader: 2

• Total: 15

• The Leonardo has 20, but it did not exist when we bought it. Its 
predecessor had only 14, thus we selected ADK (it has 54)

• Further input and output pins:

• We don’t need analog inputs and PWM outputs

• We need a serial port for the RFID reader

• If we want to debug, we need another serial port

• The Leonardo has 2 serial ports (its predecessor had only 1)

 Ideal choice: Leonardo
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Assembling the hardware
 Using a breadboard, without soldering

• Breadboard: a set of pre-connected holes:
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The software

 We use a state machine with 3 states
• start state: waiting for the card

• rfid state: card is there, the RFID reader is sending the 
characters of the card ID

• code state: waiting for key press

 The 12 characters of the card ID and the 4 characters of the 
PIN code are concatenated

→ We obtain a 16 character long string

 If this string equals to one of the pre-stored ones, we open 
the door
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The software - 2
#include <LiquidCrystal.h>
#include <Key.h>
#include <Keypad.h>

const int RFIDResetPin = 2;
const int LEDPin = 13;

char userID[17];      // the card ID and the PIN code are stored here (concatenated)
int index = 0;
enum estate { start, rfid, code };   // state of the state machine
estate state = start;

LiquidCrystal lcd(49, 47, 48, 46, 44, 42);  // the display has been connected to these pins

const byte ROWS = 4;
const byte COLS = 3;

char keys[ROWS][COLS] = {  {'1','2','3'},   {'4','5','6'},   {'7','8','9'},   {'*','0','#'} };

byte rowPins[ROWS] = {32, 22, 24, 28};  // the row pins of the keypad are connected to these pins
byte colPins[COLS] = { 30, 34, 26 };   // the column pins of the keypad are connected to these pins

Keypad keyPad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );

// The accepted card IDs and their PIN codes. First 12 character: card ID, last 4 character: PIN code
char* codes[] = {"010B4CF292261234", "010B4CED58F37899", "010B11C56FB19024", "010B1147E8B41290",
                 "010B11C5F12F7085", "010B112F3F0B0963", "010B11481C4F7412", "010B1148095A3254",
                 "010B1147F3AF6325", "010B114806551589", "010B1147FEA28563", "010B11C56DB33574",
                 "010B4CF0D5637412", "010B4CF26DD96521", "010B4CE9B9164589", NULL};
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The software - 3
 The mandatory setup () function:

void setup() { 
 
    Serial.begin(9600);  // set up serial port 0 to 9600 bps (for debug)
    Serial1.begin(9600);  // set up serial port 1 to 9600 bps (RFID reader connected 
here)


    pinMode(RFIDResetPin, OUTPUT); // set RFID Reset pin to output
    digitalWrite(RFIDResetPin, LOW); // RFID reset, we generate a rising edge. Set it to low…
    delay (100);   // … wait a bit …
    digitalWrite(RFIDResetPin, HIGH); // … raise it to high.
  
    pinMode(LEDPin, OUTPUT);  // set the pin of the built-in LED to output

    lcd.begin(16, 2);   // or display has 16 columns and 2 rows
    lcd.print("Touch the card!");  // write message to the display
} 
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The software - 4
 The mandatory loop () function:

void loop () { 
    while (Serial1.available()) {     // If the RFID reader transmitted some data
        int readByte = Serial1.read();    // Read the next character sent by the RFID reader
        if (state == start && readByte == 2) {   // If we are in the start state and a „start of message” character is received,
            state = rfid;      // we move to the rfid state
            index = 0;
        }
        else if (state == rfid && readByte == 3) {  // If the „end of message” character is received (ASCII 0x3),
            state = code;      // we move to the state waiting for the PIN code
            lcd.clear();      // Clear the display,
            userID[index] = 0;     // put a terminating 0 to the end of the card ID,
            lcd.print(userID);      // print it to the display,
            lcd.setCursor (0,1);     // set cursor to the beginning of the second line
            lcd.print("Enter code");     // print a message
        }
        if (state==rfid && readByte != 2 && readByte != 10 && readByte != 13 && index<12) // if card reader keeps sending card ID
            userID[index++] = readByte;    // store it
    } 

    char key = keyPad.getKey();    // check if there was a key press 
    if (state == code && index == 16) {    // If we are waiting for a key, and we got the last digit (we have the 12 + 4 characters)
        userID[index] = 0;      // put a terminating 0 to the end
        Serial.println(userID);      // print it to the debug serial port
        checkCardAndCode();     // check if it correct, and open the door if it is correct
        state = start;       // go back to the initial state
        lcd.clear ();       // clear display
        lcd.setCursor (0,0);      // move cursor to the upper left corner
        lcd.print("Touch card!");     // print message
    }
    else if (state == code && key)    // if there is a key press, but this is not the last digit
        userID[index++] = key;     // store it
}
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The software - 5

 Checking if the card and the PIN code is valid:

void checkCardAndCode () {
    lcd.clear ();     // clear display
    lcd.setCursor (0, 0);    // move cursor to the upper left corner
    int ix = 0;
    while (codes[ix]) {    // check all codes stored
        if (!strcmp(userID, codes[ix])) {  // if there is a match
            lcd.print ("OK!");    // print a message
            digitalWrite (LEDPin, 1);  // switch on the LED
            break;     // we don’t have to check the validity any more
        }
        ix++;
    }
    if (!codes[ix])     // if we reach the end of all stored codes, and still dont find the one given,
        lcd.print ("Denied.");   // print bad news

    delay (1000);     // wait 1 second 

    digitalWrite (LEDPin, 0);   // switch off the LED
    digitalWrite(RFIDResetPin, LOW);  // RFID reset, we generate a rising edge. Set it to low...
    delay (100);     // … wait a bit …
    digitalWrite(RFIDResetPin, HIGH);  // … raise it to high.
}
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