
2024. márc. 7.
Budapest

Computer Architectures

2. Implementing the door lock with Arduino

Prepared by: Gábor Horváth, ghorvath@hit.bme.hu

Presented by: Gábor Lencse, lencse@hit.bme.hu

mailto:lencse@hit.bme.hu

Computer Architectures 2© Gábor Horváth, BME-HIT

Outline

 Aim of the lecture:

• To show how easy it is to work with the highly integrated
microcontrollers available today

 Outline:

• Introducing Arduino

• The hardware

• How to program

• Sensors, peripherals

• Implementing the door lock

• The display

• The RFID reader

• The keypad

• The whole hardware

• The whole source code

Computer Architectures 3© Gábor Horváth, BME-HIT

Arduino

 2005, Ivrea, Italy
 Purpose: simple prototyping
 It is a family of prototyping boards (http://arduino.cc)
 Common features:

• Atmel AVR 8 bit CPU (Harvard architecture!)
• Integrated flash memory to store the program
• Integrated RAM to be used as the main memory
• Integrated EEPROM to be used as a non-volatile memory
• Input/output capabilities:

• Digital
• Analog

• It can be programmed through an USB port (not all of them)
• C++-like language for software development

Computer Architectures 4© Gábor Horváth, BME-HIT

The Arduino Family

Mega ADK:
€44

Micro:
€18

LilyPad:
$25

Uno:
€20

Computer Architectures 5© Gábor Horváth, BME-HIT

The Arduino Family

 Differences:
• Number of input/output pins

• Size of the memory (flash/RAM/EEPROM)

• Some special features:

• The Mega ADK can be connected to Android devices

• The LilyPad can be sewn to fabric

CPU freq. Flash RAM EEPROM Digital I/O Analog I/O

Uno 16 MHz 32 kB 2.5 kB 1 kB 14 6

Mega ADK 16 MHz 256 kB 8 kB 4 kB 54 16

Micro 16 MHz 32 kB 2,5 kB 1 kB 20 12

LilyPad 8 MHz 32 kB 2 kB 1 kB 9 4

Computer Architectures 6© Gábor Horváth, BME-HIT

Comparision

 Price
• €44, for a 8 bit CPU, 16 MHz freq., and a couple kB or memory?

• When there is the Raspberry Pi 3 for $35?

(4x1200 MHz 64 bit ARM CPU, 1 GB RAM, strong GPU, HD movie
playback, HDMI output, Ethernet port, Bluetooth, WiFi, etc.)

 They have different purposes:
• Arduino:

• Emphasis: I/O, all the time, as simply as possible

• When switched on, it is up and running in 1 second

• It is the largest model that costs €44, the cheap Leonardo is sufficient
for most projects

• Raspberry Pi:

• Emphasis: general purpose computer (for teaching programming)

• It requires an operating system (Linux)! Booting process takes a while.

• It has input/output capabilities, but using them needs deep knowledge
of the Linux kernel

Computer Architectures 7© Gábor Horváth, BME-HIT

Arduino Mega ADK
Microcontroller

Reset buttonUSB for programming
And power supply

USB to be connected to Android

Alternative power supply
Power supply for I/O devices

Analog inputs

Digital
in- and
outputs

PWM outputs Serial ports

Computer Architectures 8© Gábor Horváth, BME-HIT

Programming

Computer Architectures 9© Gábor Horváth, BME-HIT

Programming

 Open-source cross-platform development environment (IDE)
(http://arduino.cc/en/Main/Software)

 Language: C++-like (file extension: .ino)
 Compilation process:

• IDE compiles AVR code (cross compiler)
• It writes the program to the flash memory of the microcontroller

through the USB port

 Debugging:
• What the Arduino writes to its default serial port is transmitted to

the PC through USB and displayed by the IDE

http://arduino.cc/en/Main/Software

Computer Architectures 10© Gábor Horváth, BME-HIT

The development environment

Syntax check

Open file

Upload to Android

Save to file

Serial monitor

New file

Computer Architectures 11© Gábor Horváth, BME-HIT

 Arduino calls the program a “sketch”
 Data types:

• int: 16 bit integer

• long: 32 bit integer

• boolean: logical type (true/false), occupies 1 bit only in the memory (C++ has
no such data type)

• float: 32 bit floating point

• char: stores ASCII characters (1 byte)

• etc.

 Operators, loops, branches: like C++

 Class-es are allowed to use, and preprocessor directives as well

 There are two mandatory functions to write:
• void setup () { … } - this function is executed once, when Arduino starts up

• void loop () { … } - thus function runs after the initialization again and again
(when it terminates, it is started again automatically)

The programming language

Computer Architectures 12© Gábor Horváth, BME-HIT

Inputs/Outputs

Computer Architectures 13© Gábor Horváth, BME-HIT

Digital in- and outputs

 Digital pins can act as both input and output direction
• But only one direction at a time

• To set it up:

• pinMode (4, INPUT); – pin 4 is set up to act as input

• pinMode (5, OUTPUT); – pin 5 is set up to act as output

 Putting digital signals to digital pins:
• digitalWrite (5, HIGH); – puts a logical 1 (5V) to pin 5

• digitalWrite (5, LOW); – puts a logical 0 (0V) to pin 5

 Reading digital inputs:
• int val;

• val=digitalRead (4); – reads digital value from pin 4

• if (val==HIGH) …, or if (val==LOW) …

Computer Architectures 14© Gábor Horváth, BME-HIT

Analog inputs

 Does not detect only HIGH and LOW values
 ADC (Analog-Digital Converter) with 10 bit resolution

→ 1024 different voltage levels can be distinguished

 1024 levels between 0V and 5V → 4.88 mV resolution
 Usage:

• int val;
• val = analogRead (3); - sample from analog input number 3
• val: from 0 (in case of 0V) to 1023 (5V)

 The 5V maximum reference can be adjusted by calling
analogReference(), but the maximum is 5V

Computer Architectures 15© Gábor Horváth, BME-HIT

PWM output

 It can not provide continuous analog output (e.g., 4.2V)

 But it can switch the output on and off very fast: it can produce
any voltage in the “average” sense

→ PWM: Pulse Width Modulation

 This is done be calling
function analogWrite ()

 Parameters: pin number,
duty cycle (between 0…255)

Computer Architectures 16© Gábor Horváth, BME-HIT

Serial input and output

 Serial communication needs only 2 wires at most:
• RX: for receiving bytes (if we need to receive bytes)
• TX: for transmitting (sending) bytes (if needed)

 The Arduino ADK has 4 serial ports
• The first one is used by the development environment for debugging purposes

 Usage: through class Serial
• Pre-defined instances: Serial, Serial1, Serial2, Serial3
• Initialization: Serial1.begin (9600); - open serial port 1 and set up speed to 9600 bps
• Writing: Serial1.write (…); - sends a single byte, a NULL terminated string, or an

array
• Writing: Serial1.print (...); - the parameter is converted to string, and sends it.

Function Serial1.println (...); adds an extra line break at the end as well.
• Reading: int received=Serial1.read(); - obtains a byte received (-1, if no bytes

received)
• Check data availability: int count = Serial1.available(); - gives back the number of

bytes received
• Close port: Serial1.end (); - after closing the port, the pins can be used as general

purpose in/out pins

Computer Architectures 17© Gábor Horváth, BME-HIT

Memory

Computer Architectures 18© Gábor Horváth, BME-HIT

Memory

 The microcontroller of Arduino has 3 kinds of memories
• Flash memory: stores the program

• Content is kept without power supply
• RAM: stores the variables and the stack

• Power supply is needed to keep content
• EEPROM: to store non-volatile data

• Content is kept without power supply

 AVR processors follow a Harvard architecture
• There are 2 address spaces:

• Instructions and constants are taken from the flash memory
• For variables and stack, the RAM is used

• And how to access the EEPROM?
• It is treated as a peripheral (an I/O device)
• There is a library to access it

Computer Architectures 19© Gábor Horváth, BME-HIT

EEPROM

 The EEPROM library is a standard component
 #include <EEPROM.h>
 Writing it:

• EEPROM.write (address, data);

• Address is int

• Data is byte

 Reading it:
• byte a;

a = EEPROM.read (42);

• Reads the 42th byte from the EEPROM

Computer Architectures 20© Gábor Horváth, BME-HIT

Connecting peripherals

Computer Architectures 21© Gábor Horváth, BME-HIT

Digital output peripherals

 Example:
Blinking LED

Components: LED, 220 Ohm resistor

It even works without components!
Pin 13 has a built-in LED.

 Code:
const int ledPin = 13;
void setup () {
 pinMode (ledPin, OUTPUT);
}
void loop () {
 digitalWrite (ledPin, HIGH);
 delay (1000);
 digitalWrite (ledPin, LOW);
 delay (1000);
}

Computer Architectures 22© Gábor Horváth, BME-HIT

Digital input peripherals

 Example:
Detecting the state of a button, and switching on the built-in LED
accordingly

 Code:
const int buttonPin = 2;
const int ledPin = 13;
int buttonState = 0;
void setup () {
 pinMode (ledPin, OUTPUT);
 pinMode (buttonPin, INPUT);
}
void loop () {
 buttonState = digitalRead (buttonPin);
 digitalWrite (ledPin, buttonState);
}

Computer Architectures 23© Gábor Horváth, BME-HIT

Analog input peripherals

 Example:
TMP36 temperature sensor

 Code:
const int sensorPin = 0;
void setup () {
 Serial.begin (9600);
}
void loop () {
 int reading = analogRead (sensorPin);

 float voltage = reading * 5.0 / 1024.0;
 float temperature = (voltage - 0.5) * 100;
 Serial.println (temperature);
 delay(1000);
}

Computer Architectures 24© Gábor Horváth, BME-HIT

Analog input peripherals

 The most interesting family of peripherals
• Dozens of cheap sensors:

• 3-axis accelerometer (uses 3 analog inputs)
• Alcohol gas sensor

• Carbon monoxide sensor
• Optical dust sensor

• Flex sensor
• Force sensitive sensor

• Vibration sensor
• Gyro-sensor (2 axis → uses 2 analog inputs)
• Proximity sensor (both infrared and ultrasonic)
• Temperature
• Humidity sensor

• Etc.

 They convert the physical quantity to analog signals

Computer Architectures 25© Gábor Horváth, BME-HIT

PWM output peripherals

 Example:
LED fading

 Code:
const int ledPin = 9;
void setup () {
}
void loop () {
 for (int fadeValue = 0 ; fadeValue <= 255; fadeValue +=5) {
 analogWrite (ledPin, fadeValue);
 delay (30);
 }
 for (int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
 analogWrite (ledPin, fadeValue);
 delay (30);
 }
}

Computer Architectures 26© Gábor Horváth, BME-HIT

Peripherals connected through a serial port

 Peripherals that can be connected through serial ports:
• RFID modul: sends the card ID through a serial port

• GPS modul: sends the geospatial position through a serial
port in regular intervals

• GSM/GPRS modul: can be controlled through serial ports, the
received data and the data to transmit is sent on the serial
line as well

• Etc.

Computer Architectures 27© Gábor Horváth, BME-HIT

Shields

 Complete peripherals stacked over the Arduino
• There are dozens of shields available:

• GPS, LCD controller, SD card reader, WIFI, Bluetooth,
ZigBee, GSM, ...

GPS Shield
€18

MP3 Shield
€25

2.8” TFT and touch sensor
€40

Computer Architectures 28© Gábor Horváth, BME-HIT

Implementing the door-lock

Computer Architectures 29© Gábor Horváth, BME-HIT

Door lock

 What components do we need?
• A display to interact with the user

• A numeric keypad

• A card reader – we use RFID based card reader

• A switch to open the door

• An Arduino from the family that is the most appropriate for us

Computer Architectures 30© Gábor Horváth, BME-HIT

The display

 A cheap display with 2 rows and 16 cols (€8)

 Pins:
• Data bus: D0...D7, but it works in 4 bit mode as well, we use it that way:

we connect only D4...D7
• RS: indicates the display if the character sent is a command or a symbol

to display
• EN: enable signal, the display samples the data bus when receiving the

enable signal
• RW: if we ask something from the display – we dont need it

• Power supply (5V)
• Contrast of the display (potmeter)
• Power supply of the backlight

 We use 6 wires for data transmission: RS, EN, D7, D6, D5, D4

Computer Architectures 31© Gábor Horváth, BME-HIT

Using the display
 How to connect it:

Google „arduino display”

 Usage:
Instancing the LiquidCrystal class
(write(), setCursor(), blink(), clear(), etc.)

 Example:
#include <LiquidCrystal.h>
const int numRows = 2;
const int numCols = 16;
// tell it which pins we connected to the 6 wire required
LiquidCrystal lcd (12, 11, 5, 4, 3, 2);
void setup () {
 lcd.begin (numCols,numRows);
}
void loop () {
 for (int thisLetter = 'a'; thisLetter <= 'z'; thisLetter++) {
 for (int thisRow = 0; thisRow < numRows; thisRow++) {
 for (int thisCol = 0; thisCol < numCols; thisCol++) {
 lcd.setCursor (thisCol, thisRow);
 lcd.write (thisLetter);
 delay (200);
 }
 }
 }
}

Computer Architectures 32© Gábor Horváth, BME-HIT

The numeric keypad

 A 4x3 matrix of keys (€3)

 Pins:
• Has 7 pins, 4 for the rows and 3 for the columns

• If we push a button, it connects the corresponding column
and row lines

Computer Architectures 33© Gábor Horváth, BME-HIT

Using the numeric keypad
 Google „arduino keypad”
 Usage:

Instancing the Keypad class
(getKey(), waitForKey(), getState(), etc.)

 Example:
#include <Keypad.h>
const byte ROWS = 4;
const byte COLS = 3;
char keys[ROWS][COLS] = { {'1','2','3'}, {'4','5','6'}, {'7','8','9'}, {'*','0','#'}};
byte rowPins[ROWS] = {32, 22, 24, 28}; // where did we connect the row pins
byte colPins[COLS] = { 30, 34, 26 }; // where did we connect the column pins

Keypad keyPad = Keypad (makeKeymap (keys), rowPins, colPins, ROWS, COLS);

#define ledpin 13
void setup () {
 digitalWrite (ledpin, HIGH);
}
void loop () {
 char key = keyPad.getKey();
 if(key) {
 switch (key) {
 case '*':
 digitalWrite(ledpin, LOW);
 break;
 case '#':
 digitalWrite(ledpin, HIGH);
 break;
 }
 }
}

Computer Architectures 34© Gábor Horváth, BME-HIT

The RFID card reader

 Radio-frequency identification

 Each card has a unique code consisting 12 hex digits

 Reader: we have an expensive one (€25), because we could find only that one

 Tags: cheap (€1 each, cards, buttons, etc.)

 Communicates through serial port

 Pins:
• Power supply (5V)

• External antenna (we use the internal one)

• Format selection (we use the ASCII format)

• 2 wires for data transmission (we use only one of them, as a serial line)

• LED/buzzer at card reading (we dont need it)

• Reset

 Connects to Arduino with only 2 wires:

• Reset (to digital pin), D0 (to serial RX pin)

Computer Architectures 35© Gábor Horváth, BME-HIT

Using the RFID reader
 Google „arduino id-12”

 Usage:
as a serial device

 Example: (reset: pin 2, D0: pin RX1)
const int RFIDResetPin = 2; // Reset pin of the reader is connected to digital pin 2
char userID[13]; // Card ID will be stored in this array
void setup () {
 Serial.begin(9600); // set up serial port 0 to 9600 bps (for debug)
 Serial1.begin(9600); // set up serial port 1 to 9600 bps (RFID reader connected here)
 pinMode(RFIDResetPin, OUTPUT); // set RFID Reset pin to output
 digitalWrite(RFIDResetPin, LOW); // RFID reset, we generate a rising edge. Set it to low...
 delay (100); // … wait a bit ...
 digitalWrite(RFIDResetPin, HIGH); // … raise it to high.
}
void loop () {
 while (Serial1.available()) { // If bytes arrived from the reader
 int readByte = Serial1.read(); // Read the next byte arrived from the reader
 if (readByte == 2) // ASCII 0x2 means „start of message”
 index = 0; // Initialize index variable, userID is filled from the beginning.
 else if (readByte == 3) { // ASCII 0x3 means „end of message”
 userID[index] = 0; // Terminate the card ID with a NULL.
 Serial.println(userID); // Send it to the debug serial port. This appears on the PC connected.
 }
 else
 userID[index++] = readByte; // We are in the middle of the message, store the character.
 }
}

Computer Architectures 36© Gábor Horváth, BME-HIT

Selecting the proper Arduino

 What to check:
• How many digital input/output pins we need:

• For the display: 6

• For the keypad: 7

• For the RFID reader: 2

• Total: 15

• The Leonardo has 20, but it did not exist when we bought it. Its
predecessor had only 14, thus we selected ADK (it has 54)

• Further input and output pins:

• We don’t need analog inputs and PWM outputs

• We need a serial port for the RFID reader

• If we want to debug, we need another serial port

• The Leonardo has 2 serial ports (its predecessor had only 1)

 Ideal choice: Leonardo

Computer Architectures 37© Gábor Horváth, BME-HIT

Assembling the hardware
 Using a breadboard, without soldering

• Breadboard: a set of pre-connected holes:

Computer Architectures 38© Gábor Horváth, BME-HIT

The software

 We use a state machine with 3 states
• start state: waiting for the card

• rfid state: card is there, the RFID reader is sending the
characters of the card ID

• code state: waiting for key press

 The 12 characters of the card ID and the 4 characters of the
PIN code are concatenated

→ We obtain a 16 character long string

 If this string equals to one of the pre-stored ones, we open
the door

Computer Architectures 39© Gábor Horváth, BME-HIT

The software - 2
#include <LiquidCrystal.h>
#include <Key.h>
#include <Keypad.h>

const int RFIDResetPin = 2;
const int LEDPin = 13;

char userID[17]; // the card ID and the PIN code are stored here (concatenated)
int index = 0;
enum estate { start, rfid, code }; // state of the state machine
estate state = start;

LiquidCrystal lcd(49, 47, 48, 46, 44, 42); // the display has been connected to these pins

const byte ROWS = 4;
const byte COLS = 3;

char keys[ROWS][COLS] = { {'1','2','3'}, {'4','5','6'}, {'7','8','9'}, {'*','0','#'} };

byte rowPins[ROWS] = {32, 22, 24, 28}; // the row pins of the keypad are connected to these pins
byte colPins[COLS] = { 30, 34, 26 }; // the column pins of the keypad are connected to these pins

Keypad keyPad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

// The accepted card IDs and their PIN codes. First 12 character: card ID, last 4 character: PIN code
char* codes[] = {"010B4CF292261234", "010B4CED58F37899", "010B11C56FB19024", "010B1147E8B41290",
 "010B11C5F12F7085", "010B112F3F0B0963", "010B11481C4F7412", "010B1148095A3254",
 "010B1147F3AF6325", "010B114806551589", "010B1147FEA28563", "010B11C56DB33574",
 "010B4CF0D5637412", "010B4CF26DD96521", "010B4CE9B9164589", NULL};

Computer Architectures 40© Gábor Horváth, BME-HIT

The software - 3
 The mandatory setup () function:

void setup() {

 Serial.begin(9600); // set up serial port 0 to 9600 bps (for debug)
 Serial1.begin(9600); // set up serial port 1 to 9600 bps (RFID reader connected
here)


 pinMode(RFIDResetPin, OUTPUT); // set RFID Reset pin to output
 digitalWrite(RFIDResetPin, LOW); // RFID reset, we generate a rising edge. Set it to low…
 delay (100); // … wait a bit …
 digitalWrite(RFIDResetPin, HIGH); // … raise it to high.

 pinMode(LEDPin, OUTPUT); // set the pin of the built-in LED to output

 lcd.begin(16, 2); // or display has 16 columns and 2 rows
 lcd.print("Touch the card!"); // write message to the display
}

Computer Architectures 41© Gábor Horváth, BME-HIT

The software - 4
 The mandatory loop () function:

void loop () {
 while (Serial1.available()) { // If the RFID reader transmitted some data
 int readByte = Serial1.read(); // Read the next character sent by the RFID reader
 if (state == start && readByte == 2) { // If we are in the start state and a „start of message” character is received,
 state = rfid; // we move to the rfid state
 index = 0;
 }
 else if (state == rfid && readByte == 3) { // If the „end of message” character is received (ASCII 0x3),
 state = code; // we move to the state waiting for the PIN code
 lcd.clear(); // Clear the display,
 userID[index] = 0; // put a terminating 0 to the end of the card ID,
 lcd.print(userID); // print it to the display,
 lcd.setCursor (0,1); // set cursor to the beginning of the second line
 lcd.print("Enter code"); // print a message
 }
 if (state==rfid && readByte != 2 && readByte != 10 && readByte != 13 && index<12) // if card reader keeps sending card ID
 userID[index++] = readByte; // store it
 }

 char key = keyPad.getKey(); // check if there was a key press
 if (state == code && index == 16) { // If we are waiting for a key, and we got the last digit (we have the 12 + 4 characters)
 userID[index] = 0; // put a terminating 0 to the end
 Serial.println(userID); // print it to the debug serial port
 checkCardAndCode(); // check if it correct, and open the door if it is correct
 state = start; // go back to the initial state
 lcd.clear (); // clear display
 lcd.setCursor (0,0); // move cursor to the upper left corner
 lcd.print("Touch card!"); // print message
 }
 else if (state == code && key) // if there is a key press, but this is not the last digit
 userID[index++] = key; // store it
}

Computer Architectures 42© Gábor Horváth, BME-HIT

The software - 5

 Checking if the card and the PIN code is valid:

void checkCardAndCode () {
 lcd.clear (); // clear display
 lcd.setCursor (0, 0); // move cursor to the upper left corner
 int ix = 0;
 while (codes[ix]) { // check all codes stored
 if (!strcmp(userID, codes[ix])) { // if there is a match
 lcd.print ("OK!"); // print a message
 digitalWrite (LEDPin, 1); // switch on the LED
 break; // we don’t have to check the validity any more
 }
 ix++;
 }
 if (!codes[ix]) // if we reach the end of all stored codes, and still dont find the one given,
 lcd.print ("Denied."); // print bad news

 delay (1000); // wait 1 second

 digitalWrite (LEDPin, 0); // switch off the LED
 digitalWrite(RFIDResetPin, LOW); // RFID reset, we generate a rising edge. Set it to low...
 delay (100); // … wait a bit …
 digitalWrite(RFIDResetPin, HIGH); // … raise it to high.
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

