
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
04/29/2025

COMPUTER ARCHITECTURES

Branch Prediction

BUTE Department of Networked Systems and Services

ghorvath@hit.bme.hu

Gábor Horváth

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

CONTROL HAZARDS

• Control hazards
– Caused by jump instructions
– They break the sequential behavior of the instruction flow

• What is the problem?
– E. g. in the case of conditional jumps the CPU must know

● The outcome: if jump is taken or not

● The target address: where to continue
– The task of the IF stage: to load the instructions (from the instruction cache)

● It has no time for
– evaluation of the condition
– address calculation

● It has time for a hint
– If it proves to be a good one: that is fine :-)
– If not

● Mistakenly started instructions must be invalidated
● It learns from the mistake

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

THE TASK OF BRANCH
PREDICTION

• Instructions that brake the sequential execution:
– Unconditional jump:

● Direct: JUMP -28
● Indirect: JUMP R1
● -28 or R1: target address

– Conditional jump:
● Direct: JUMP -28 IF R2>0
● Indirect: JUMP R1 IF R2>0
● R2>0: jump condition
● -28 or R1: target address

– Subroutine call:
● Direct: CALL -28
● Indirect: CALL R1
● Return: RET, target address is from the stack

• The task of branch prediction is:
– Predict the outcome, if there is a branch condition
– Predict the target address

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

IMPORTANCE OF BRANCH
PREDICTION

• What is the gain of a good prediction?
– Instructions can be fetched without stopping

• What is the loss of a wrong prediction?
– The later the error turns out, the more time is wasted
– The longer the pipeline, the higher the loss is!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

IMPORTANCE OF BRANCH
PREDICTION

• Motivating example (Intel Core i7 Nehalem):
– 4-way superscalar CPU
– 17 clock cycles from IF to have branch condition evaluated and

target address computed
– Suppose that

● every 4th instruction is a conditional jump
● the hit rate of the branch predictor is 67%
● there are no other hazards

– 4-way superscalar means that throughput is 4 instructions/cycle
→ in ideal case 0.25 cycles/instruction (on average)

– 25% of instructions is a conditional jump, which wastes 17 cycles with the
probability of 33%, thus instruction execution will need:
→ 0.25 + 0.25*0.33*17 = 1.65 cycles/instruction (on average)

– Perfect prediction would result in a 1.65/0.25=6.6 times faster CPU!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

IMPORTANCE OF BRANCH
PREDICTION

• Cycles lost due to a wrong prediction (=misprediction penalty)

CPU Number of lost cycles

Intel Pentium I MMX 4-5

Intel Pentium 4 45 (on average!)

Intel Core2 15

Intel Core i7 Skylake 16.5

Intel Atom 13

AMD K8 és K10 12

AMD Ryzen 19

Via Nano 16

ARM Cortex A53 7

ARM Cortex A72 15

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 7

Prediction of the outcome of a branch

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

THE TASK TO SOLVE

• Known: the outcomes of the conditional jump in the past
• Example task: What will be the next outcome?

– 1111111?

– 11111101101111011111?

– 11001100110011?

– 11111111111000000000000?

• Requirements:
– The predictor should be fast

– The predictor should be simple

– The predictor should have a high success rate

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

SIMPLE FINITE STATE MACHINE
BASED SOLUTION

• A Finite State Machine (FSM) is assigned to every jump
instruction

• The FSM records, how likely the instruction jumps
• If likelihood is >50%, jump is predicted
• FSM is refreshed on the basis of the actual behavior of the

instruction

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

SIMPLE FINITE STATE MACHINE
BASED SOLUTION

• Analysis:

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {

 ...
 }
}

• Let us examine the decisions of the internal for loop:
– n*m decisions

– using a single bit counter: 2*m wrong estimations

– using a two bit counter: m wrong estimations

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

SIMPLE FINITE STATE MACHINE
BASED SOLUTION

• Where shall we store the state of the FSM?

– First idea: Let us use a cache like organization
● 32 (or 64) bit tag, 2 bit data → it is not worth doing so!

– In the block of the instruction cache (together with the instructions) → AMD

– In a separate table: PHT (Pattern History Table) → Pentium 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

CONSIDERING CORRELATION

• The outcome of the conditional jump instructions often depends on
the outcome of other conditional jump instructions

• Example:

if (a==2)
 a = 0;
if (b==2)
 b = 0;
if (a!=b) {
 ...
}

• If the first two conditions were true, then the third one will be false!
• It would be good to utilize such correlations!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

CONSIDERING CORRELATION

• The trick: let us store the outcomes of the consecutive conditional
instructions (0: not taken, 1: taken) in a shift register → GBHR
Global Branch History Register

• The actual outcome of a conditional jump (0 or 1) enters from right
• A k bit GBHR stores the outcome of the last k conditional jumps
• GBHR is used to index the PHT

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

COMBINED PREDICTORS

• We have heard about
– Simple finite state machine based solution

● It makes an instruction local decision

– Correlation based solution
● It considers only global decision history

• Why don’t we combine the two?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

THE GSHARE PREDICTOR

• It combines local and global pieces of information

– Local decision: What PHT predicts for the given instruction?

– Global decision: What PHT predicts on the basis of the global branch history?

– Let us combine the two: PC XOR GBHR

• Very simple and surprisingly accurate!

• SPARC, POWER4, XBox 360, AMD Athlon,
slightly modified version in ARM Cortex A8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

THE AGREE PREDICTOR

• Local procedure: the jumping “habits” of the given conditional jump (bias)
• Global procedure: this conditional jump now behaves as usual or not?

– Agrees with the bias or not?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

"TOURNAMENT" PREDICTORS

• Two predictors operate at the same time: a local one and a global
one

• Always one of them is used for the decision: the one that has made
better decisions recently

• A finite state machine keeps track, which predictor has been better
nowadays

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 18

Branch target prediction

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

BRANCH TARGET PREDICTION

• From what address to fetch the next instruction?
– It is very urgent for IF!
– The question exists for both conditional and unconditional jumps.

• It is read from a special Branch Target Buffer (BTB)
→ It is easier/faster to read it, then to calculate it

– The fields of the BTB:
● tag: the address of the jump instruction
● the expected target address

– Organization:
● A kind of cache organization, e. g. 4-way set associative
● Content management: LRU

– The stored value is corrected, if it proves to be wrong.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

THE BRANCH TARGET BUFFER

• As it has an entry for every single (recently used) jump instructions,
we can store further information in it (for conditional jumps):

– e. g. Jumping habits, Local jump history, etc.

• For example:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

RETURN ADDRESS PREDICTION

• The RET is a special jump instruction
→ return from subroutine call

– The target address is in the slow memory (stack)
• An efficient data structure for prediction: return stack

– It is in the CPU
– High speed, low capacity
– At the time of a subroutine call, the return address

● Is put on the top of the real (slow) stack
● … it is also put on the top of the return stack!

– At the time of return
● The CPU does not have to wait for the real (slow) stack
● The return stack tells the target address within cycle time

– It is efficient until it is becomes full
● OK, if there is not too many nested function calls.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

TYPICAL BRANCH TARGET
BUFFER PARAMETERS

Processor Num. BTB entries BTB organization Return stack

Intel Pentium I MMX 256 4-way set assoc. no

Intel Pentium 4 4096 likely 8-way set assoc. no

Intel Core2 (for cycles) 128 2-way set assoc.

16Intel Core2 (indir. jump) 8192 4-way set assoc.

Intel Core2 (other jump) 2048 4-way set assoc.

Intel Atom 128 4-way set assoc. 8

AMD Steamroller L1: 512, L2: 10240 L1: 4-way, L2: 5-way 24

AMD Ryzen 8/256/4096 ? 31

Via Nano 4096 4-way set assoc. very deep

ARM Cortex A8/A9 512 2-way set assoc. 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

POTENTIAL PROBLEMS

• How can we fool the branch target address predictor?
→ Let us jump in an unpredictable way!

– E. g. traversing a heterogeneous collection

– calling virtual functions in C++

– An array containing pointers to functions

• A possible solution:

– The problem is that BTB can store only one target address

– Let it store more than one!

– And the decision of the predictor, which address is to be used, is
made as a function of the global branch history

– E. g.: ARM Cortex A15, Intel Core Nehalem, AMD Ryzen, etc.

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 24

Branch prediction aware programming

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

ELIMINATING CONDITIONAL JUMP
INSTRUCTIONS

• 1st example:
 data[i]: random in [1, 1000]

• The conditional jump may be eliminated by a logical expression
– data[i]>500 ↔ (data[i]-501) >= 0 (as they are integers)
– Let us shift right: data[i]-501>>31 (arithmetic shift, preserves

sign!):
● 000...0 (if >=0) or 111...1 (if <0)

– Let us mask the addition operation with its complement

• Conditional jump is eliminated from the code:

for (int i=0; i<N; i++)
 if (data[i] > 500)
 sum += data[i];

for (int i=0; i<N; i++) {
 int t = (data[i]-501) >> 31;
 sum += ~t & data[i];
}

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

ELIMINATING CONDITIONAL JUMP
INSTRUCTIONS

• 2nd example:
 problem: incomplete
 boolean evaluation
 → conditional jump

• First step: unite the two conditions (somewhat nasty trick with binary complement)

min<=data[i] && data[i]<=max ↔ (unsigned)(data[i]-min)<=max-min
• Program code with only a single conditional jump:

• Second step: we use the trick shown in the 1st example:

for (int i=0; i<N; i++)
 if (min<=data[i] && data[i]<=max)
 sum += data[i];

for (int i=0; i<N; i++)
 if ((unsigned)(data[i]-min) <= max-min)
 sum += data[i];

for (int i=0; i<N; i++) {
 int t = (max-min-(unsigned)(data[i]-min)) >> 31;
 sum += ~t & data[i];
}

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

ELIMINATING CONDITIONAL JUMP
INSTRUCTIONS

• 3rd example:

• Trick: we use an auxiliary array: look-up table, LUT
– Specifies the substitution character for every single character

• LUT preparation + conditional jump free code:

• LUT preparation time is constant, negligible if N is large enough

for (int i=0; i<N; i++)
 if (!((data[i]>='a' && data[i]<='z') || (data[i]>='A' && data[i]<='Z')))
 data[i] = ' ';

for (int j=0; j<256; j++)
 if (!((j>='a' && j<='z') || (j>='A' && j<='Z')))
 LUT[j] = ' ';
 else
 LUT[j] = j;
for (int i=0; i<N; i++)
 data[i] = LUT[data[i]];

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

ELIMINATING CONDITIONAL JUMP
INSTRUCTIONS

• Measurements with different architecture CPUs
– N=2048*1024

• Results:

i7-2600 Pentium 4 Rasp. Pi RK3188

1st example, original 7,583 ms 14,122 ms 59,202 ms 11,296 ms

1st ex., cond. jump elimin. 1,297 ms 4,251 ms 58,410 ms 8,628 ms

2nd example, original 8,211 ms 19,6 ms 73,267 ms 21,496 ms

2nd ex. 1 cond. jump elim. 7,942 ms 14,295 ms 61,578 ms 13,347 ms

2nd ex. both c. jumps elim. 1,203 ms 4,252 ms 58,328 ms 8,268 ms

3rd example, original 6,533 ms 10,377 ms 48,532 ms 21,397 ms

3rd ex. with LUT 1,151 ms 3,641 ms 37,896 ms 18,240 ms

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

MAKING BRANCHES MORE
PREDICTABLE

• Recall the 1st example:

• The elements are random in [1, 1000]
→ the outcome is unpredictable

• Let us sort the elements in increasing order!
• Measurements:

– Unordered array
– Ordered array
– An array with all elements > 500
– An array with no elements > 500
– An array with a specified pattern (T: true, F: false)

for (int i=0; i<N; i++)
 if (data[i] > 500)
 sum += data[i];

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

MAKING BRANCHES MORE
PREDICTABLE

• Measurement results:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 31

MAKING BRANCH TARGET
ADDRESS MORE PREDICTABLE

• Example: heterogeneous collection with 16 derived classes (B1..B16)

• Traversal:

• Problem:
– Virtual function call is an indirect jump

→ Branch target address is unpredictable!
• Solution:

– Let us sort the array by type!

class A {
public:
 virtual int value ()=0;
 virtual int type ()
const =0;
 virtual ~A() {}
};

class B1 : public A {
 int v;
public:
 B1 () : v(rand()) {}
 int value () { return ++v; }
 int type () const { return 1; }
 ~B1 () {}
};

sum = 0;
for (i=0; i<siz; i++)
 sum += data[i]->value();

 © Department of Networked Systems and Services © Department of Networked Systems and Services 32

MAKING BRANCH TARGET
ADDRESS MORE PREDICTABLE

• Measurement results:

• Period=1: B1,B2,B3,…,B16,B1,B2,B3,….B16,B1,B2,B3,…
• ...
• Period=4: B1,B1,B1,B1,B2,B2,B2,B2,B3,B3,B3,B3,B4,B4,...

 © Department of Networked Systems and Services © Department of Networked Systems and Services 33

	Slide 1
	A FÓLIA címe hosszú is lehet, legfeljebb két soros lesz
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

