
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2025. 03. 17.

COMPUTER ARCHITECTURES

Cache Memory

Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

SPEED OF MEMORY
OPERATIONS

● The memory is a serious bottleneck of Neumann computers
● Because it is slow

● Using virtual memory makes it even worse
● 1 memory operation generates several memory accesses due

to page table lookup

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

REMEDY: LOCALITY

● Programs do not refer to memory addresses randomly
● Memory addresses referenced by the programs show a special

pattern
→ we can utilize it!

● Locality of reference:
● Temporal: a memory content referenced will be referenced again in

the near future
● Spatial: if a memory content has been referenced, its neighborhood

will be referenced as well in the near future
● Algorithmic: some algorithms (like traversing linked lists) refer to

the memory in a systematic way
● Examples:

● Media players:
● Spatial locality: yes, temporal locality: no

● „For” loop in the C language:
● Both temporal and spatial locality hold

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

MEMORY HIERARCHY

● If the programs show this „locality of reference” behavior:
● Let us move the frequently used data close the CPU, and

store it in a special, fast memory
● Why, isn’t all kinds of memory slow?

● No. The slowest is the hard disk drive...
● … and we have SRAM, that is much faster than DRAM
● SRAM is the fastest, but also much more expensive

Storage technology Access time Price/GB

SRAM 0.5 – 2.5 ns 2000 – 5000 $

DRAM 50 – 70 ns 20 – 50 $

HDD 5 – 20 * 106 ns 0.2 $

(data from 2008)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

MEMORY HIERARCHY

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

CACHE IMPLEMENTATIONS

● Classification of the various cache implementations:
● According to „addressing scheme” the cache can be

● Transparent
● The cache memory stores a part of the system memory

● Non-transparent
● A part of the address space is covered by cache memory (SRAM),

the rest is covered by the system memory (DRAM)
● According to „management scheme” the cache may have:

● Implicit management:
● The content of the cache is managed by the hardware (CPU)

● Explicit management:
● The content of the cache is managed by the applications

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

CACHE IMPLEMENTATIONS

● Transparent cache: classical CPU cache
● Scratch-pad memory: DSPs, microcontrollers, PlayStation 3
● Software managed cache:

● No cache hit → it is the task of the application to update the
cache

● Self-managed scratch-pad
● Rare

Addressing scheme Management scheme

Transparent cache Transparent Implicit

Software managed cache Transparent Explicit

Self-managed scratch-pad Non-transparent Implicit

Scratch-pad memory Non-transparent Explicit

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

CACHE IMPLEMENTATION

● What we are going to cover are:
● Cache organization:

● How to store data in the cache in an efficient way
(e. g. it is fast to find them, low power dissipation,
low number of transistors are needed)

● Cache content management:
● When to put a data into the cache and when not
● What shall we throw out from the cache, if we

want to put new data there

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

Cache organizations

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

TRANSPARENT CACHE
ORGANIZATIONS

● Data units in the cache are called: block
● Size of blocks = 2 L

● Lower L bit of memory addresses: position inside a block
● Upper bits: number (ID) of the block

● Additional information to be stored in the cache with each block:
● Cache tag (which block of the system memory is stored here)
● Valid bit: if =1, this cache block stores valid data
● Dirty bit: if =1, this cache block has been modified since in the cache

● The principal questions of cache organization are:
● How to store blocks in the cache

● To enable finding a block fast
● To make it simple and relatively cheap

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

FULLY ASSOCIATIVE CACHE
ORGANIZATION

● Blocks can be placed anywhere in the cache
● Cache tag: which block of the system memory is stored here
● It has high energy consumption (thus, heat), since

● Lookup: block number of the address has to be compared to all cache tags
● The comparators are wide: the number of bits to compare equals the number

of bits describing a block number

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

DIRECT MAPPED ORGANIZATION

● Each block of the memory can be placed only to a single place in the
cache

● The block number determines, where
● E.g. the lower bits of the block number determines it

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

DIRECT MAPPED ORGANIZATION

● Example: a cache can store 4 blocks: 1 yellow, 1 red, 1 blue, 1 green
● The blocks of the memory are following each other in this order

→ color = lowest 2 bits of the block number

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

DIRECT MAPPED ORGANIZATION

● Lookup consists of two steps:
1) Indexing: The color is given by the lower two bits of the memory address: assume

it is „red” (this is called: index)

2) Comparison: Is the „red” block of the cache storing our memory block?
● To decide, we need a single comparison! The number of bits to compare is

equal to the number of bits of the Tag.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

CONCLUSION

● Fully associative:
● Block can be placed anywhere
● At each lookup all of the comparators are in use, and the

comparators need to compare a lot of bits
→ which is complex, and consumes a lot of energy

● Direct mapped organization:
● Placement is restricted:

→ Contention is possible
E.g. a program might refer only to „red” blocks

● At each lookup, only a single comparator is in use, and there
are fewer bits to compare

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

N-WAY SET-ASSOCIATIVE
ORGANIZATION

● Combines the advantages of the previous two solutions
● The lower bits of the block number of memory addresses determine

where the block can be placed in the cache
● But not in a unique way!
● The lower bits select a set of places, where the block can be stored
● Each set consists of n blocks, the block we are looking for can be stored in

any of them

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

N-WAY SET-ASSOCIATIVE
ORGANIZATION

● Lookup consists of two steps:
1) Indexing: The color is given by the lower two bits of the memory address: assume it is „red”

(this is called: index)

2) Comparison: There are n places in the cache that can store „red” blocks. To find out if our
data is in the cache, we need to compare the address to the tags of all the n places

 n comparators are in use, the width of each of them is given by the width of the Tag

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

CONCLUSION

● N-way set-associative organization:
● Restricted placement of blocks, with n possibilities

→ less contention
● Only n comparators are switched on at lookup

→ moderate complexity and energy consumption
● Typical values of n:

n=2...16

Core i7
(Kaby Lake)

AMD Ryzen ARM Cortex A53 ARM Cortex A75

n= size n= size n= size n= size

L1 8 32 KB 4/8 64/32 KB 2/4 16-64 KB 4 64 KB

L2 4 256 KB 8 512 KB 16 128-2048 KB 8 256-512 KB

L3 16 2 MB/core 16 2 MB/core - - 16 1-4 MB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

Cache content management

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

PUTTING DATA INTO THE CACHE

● When to put a memory block into the cache?
● Never
● When the program refers to it at the first time
● Before the program refers to it (in the hope that it will be used later)

● Never: avoids cache pollution
● e.g. media players: displays frames only once, frames will never be

referred later
→ it is not worth to put such data into the cache

● At the first reference: The first reference is slow (memory →
cache transfer), but it will be fast later (accessible from cache)

● Before the first reference (prefetch): needs speculation

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

AVOIDANCE OF CACHE
POLLUTION

● Cache pollution: a block that was not referred to between loading
and leaving the cache

● It was a mistake putting it to the cache
● Useful data might have been thrown out due to loading it

● Explicit solutions: specific instructions
● The programmer can tell the processor what not to load into the

cache
● x86: MOVNTI, MOVNTQ

● Moves data from an SSE register to the memory, bypassing the
cache

● PowerPC: LVXL reads vectors from memory to registers
● The block will be put to the cache, but it will be marked to be not

important
● PA-RISC: Several instructions have a bit:

● Spatial Locality Cache Control Hint
● Itanium: Data movement instructions have an option: „.nt”

● Indicates that the data does not exhibit temporal locality
● Alpha: ECB instruction (Evict Data Cache Block)

● Indicates that the block will not be referred in the near future

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

AVOIDANCE OF CACHE
POLLUTION

● Implicit solutions: CPU tries to detect instructions that pollute the
cache automatically

● Several solutions in use. Example: Rivers' algorithm
● Idea: if an instruction causes too many cache misses, but does

not have cache hits → the CPU does not allow it to use the cache

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

DATA PREFETCH

● An important functionality
● Goal: the CPU should not wait for the slow memory at all
● All data has to be loaded into the cache before the first

reference occurs to them
● It is simple in case of Instruction cache:

● Non-jump instructions are executed sequentially
→ the next instructions to load is known

● The jump addresses of unconditional jump instructions can
be pre-computed

→ the next instructions can be loaded in advance
● In case of conditional jump instructions

→ the jump address can be estimated

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

DATA PREFETCH

● For data cache:
● Predicting which data will be referred in the near future is

less trivial
● If the prediction is:

● Too conservative: the data will not be in the cache, when
needed

→ too many cache misses
● Too aggressive: pollutes the cache with unnecessary

blocks
→ useful data get thrown out → too many cache
misses

● Explicit solutions:
● Special instructions

● Implicit solutions:
● The CPU speculates what will be the next referred data

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

DATA PREFETCH

● Explicit prefetch instructions:
● x86: PREFETCHT0/1/2, PREFETCHNTA

● Load a block into the cache
● PREFETCHNTA: loads data and puts it the first block in the n-way set-

associative cache → avoids cache pollution as well!
● PowerPC: DCBT, DCBTST

● Loads a block into the cache
● PA-RISC: LDD, LDW

● Loads a block into the cache
● Itanium: lfetch

● Loads a block into the cache
● Alpha: If the destination register of a data movement instruction is R31,

then the CPU treats it as a prefetch request

● Platform independent solution of the GCC C compiler:

__builtin_prefetch (pointer);

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

DATA PREFETCH

● Implicit solution:
● To detect iterating over data placed equi-distantly in the memory:

● X, X + stride, X + 2*stride, X + 3*stride, ...
● Detects stride automatically

● = "Intel Smart Memory Access IP Prefetcher" in Intel Core i7

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

CACHE REPLACEMENT
STRATEGY

● We already know which block to put into the cache and
when to do it

● But where to put it?
→ the cache memory is small, therefore it is usually full

● A block needs to be removed from the cache
● Number of candidates = the associativity of the cache

● There is no choice in case of direct mapped cache
The new block can be stored to a single place in the cache.
The previous content of that place is removed.

● Possible algorithms to select the victim:
● Random choice
● Round robin
● Least recently used (LRU) – this is the most popular

strategy
● Not the recently used
● Least frequently used

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

CACHE COHERENCE

● We have to be careful with caching write operations!
● System memory is used by several components in the computer

● We can have multiple CPUs / more cores
● I/O peripherals (PCI, DMA, etc.) can use it, too

● When modifying a cache block, the content of the cache will not
be consistent with the memory any more

● Strategies to follow when modifying data in the cache:
● Write-through

→ the modification of the cache immediately implies updating the
system memory as well

● Write-back
→ the data is modified in the cache only, the system memory is
modified only when the block leaves the cache

● In this case the content of the memory and the cache will be
different!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

MULTI-LEVEL CACHES

● Smaller cache size → lower latency (signal paths are shorter)
● Multiple cache levels are used: L1, L2, L3, …

● Size: increases
● Speed: decreases
● In case of L1 miss, the L2 is checked, then L3, etc.
● They can have different block sizes, organizations, management

● They have different priorities:
● The main priority of L1 cache: lowest possible latency

● Small size, low associativity
● The main priority of Ln cache (n>1): lowest possible miss ratio

● Larger size, higher associativity

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

