
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2024. 04. 25.

COMPUTER ARCHITECTURES

Practical Tasks in:

Cache Memory

BUTE Department of Networked Systems and Services

lencse@hit.bme.hu

Gábor Lencse

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

TASK 1

● Let us consider a cache memory of 256 bytes. The block
size is 64 bytes. The cache content is assumed to be invalid
initially.

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization,
b) in case of fully associative organization with LRU block

replacement strategy,
c) in case of 2-way set associative organization with LRU block

replacement strategy.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

TASK 1 – SOLUTION

● Let us consider a cache memory of 256 bytes. The block
size is 64 bytes. The cache content is assumed to be invalid
initially.

● How many cache blocks do we have?
● 256 / 64 = 4

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization,

→ The place of the blocks is determined by the last two bits
 of their block number
→ Let us see them in binary format!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 0, cache misses: 0

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 0, cache misses: 1

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 0, cache misses: 2

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 0, cache misses: 3

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 0, cache misses: 4

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 1, cache misses: 4

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 1, cache misses: 5

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 1, cache misses: 6

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

TASK 1 – SOLUTION

● Reminder: the powers of 2
28=256, 27=128, 26=64, 25=32, 24=16, 23=8, 22=4, 21=2, 20=1

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● We draw the cache and follow the placement of the blocks

 Valid Block number cache hits: 2, cache misses: 6

00

01

10

11

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 0, cache misses: 0

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 0, cache misses: 1

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 0, cache misses: 2

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 0, cache misses: 3

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 0, cache misses: 4

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 1, cache misses: 4

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 1, cache misses: 5

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy,
→ Let us draw the cache and follow its operation!

cache hits: 2, cache misses: 5

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

TASK 1 – SOLUTION

● A program reads from the following memory blocks (in the
given order):

● 1, 3, 8, 4, 3, 6, 8, 1
● Compute the number of cache misses and provide the final

content of the cache
a) in case of direct mapped organization, ← READY! :-)
b) in case of fully associative organization with LRU block

replacement strategy, ← Now also READY! :-)
→ Let us draw the cache and follow its operation!

cache hits: 2, cache misses: 6

Valid Block Age Valid Block Age Valid Block Age Valid Block Age

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 0, cache misses: 0

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 0, cache misses: 1

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 0, cache misses: 2

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 0, cache misses: 3

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 0, cache misses: 4

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 1, cache misses: 4

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 1, cache misses: 5

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 1, cache misses: 6

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

TASK 1 – SOLUTION

● The block numbers (four bits are enough):
● 1 → 0001, 3 → 0011, 8 → 1000, 4 → 0100, 3→ 0011,

6 → 0110, 8 → 1000, 1→ 0001
● Compute the number of cache misses and provide the final

content of the cache
c) in case of 2-way set associative organization with LRU block

replacement strategy.
→ Let us draw the cache and follow its operation!

 cache hits: 2, cache misses: 6

 Valid Block Age Valid Block Age

 0

 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 31

TASK 2

● Assume the total size of the cache memory is 512 bytes and
the block size is 64 bytes. The addresses of the CPU are 16
bit wide.

● A program reads from the following memory addresses (in
the given order):

● 13, 136, 490, 541, 670, 74, 581, 980
a) What are the ”tag”, ”index” and ”offset” values of the given

addresses
● in case of fully associative organization,
● in case of direct mapped organization,
● in case of 2-way set associative organization.

● What is the final content of the cache (in all three cases)?
The cache content is assumed to be invalid initially.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 32

TASK 2 – SOLUTION

● Assume the total size of the cache memory is 512 bytes and
the block size is 64 bytes. The addresses of the CPU are 16
bit wide.

● How many cache blocks do we have?
● 512/64=8 blocks

● What are the sizes of the given fields?
● Offset: log264=6 bits |← 10 →|← 6 →|
● Remains: 16-6=10 higher bits [tag | offset]
● Fully associative: tag: 10 bits
● Direct mapping: |← 7 →| 3 |← 6 →|

● index: log28=3 bits, tag: 10-3=7 bits [tag |index| offset]
● 2-way set associative

● There are two columns, and the number of rows is: 8/2=4
● index: log24=2 bits, tag: 10-2=8 bits |← 8 → | 2 |← 6 →|

 [tag | idx | offset]

 © Department of Networked Systems and Services © Department of Networked Systems and Services 33

TASK 2 – SOLUTION

Fully associative
Address ← tag →←offset→ tag offset
 13 = 0000 0000 0000 1101 0 13
 136 = 0000 0000 1000 1000 2 8
 490 = 0000 0001 1110 1010 7 42
 541 = 0000 0010 0001 1101 8 29
 670 = 0000 0010 1001 1110 10 30
 74 = 0000 0000 0100 1010 1 10
 581 = 0000 0010 0100 0101 9 5
 980 = 0000 0011 1101 0100 15 20

 © Department of Networked Systems and Services © Department of Networked Systems and Services 34

TASK 2 – SOLUTION

Direct mapped
Address ← tag →←ix→←offset→ tag index offset
 13 = 0000 0000 0000 1101 0 0 13
 136 = 0000 0000 1000 1000 0 2 8
 490 = 0000 0001 1110 1010 0 7 42
 541 = 0000 0010 0001 1101 1 0 29
 670 = 0000 0010 1001 1110 1 2 30
 74 = 0000 0000 0100 1010 0 1 10
 581 = 0000 0010 0100 0101 1 1 5
 980 = 0000 0011 1101 0100 1 7 20

 © Department of Networked Systems and Services © Department of Networked Systems and Services 35

TASK 2 – SOLUTION

2-way set associative
Address ← tag →←i→←offset→ tag index offset
 13 = 0000 0000 0000 1101 0 0 13
 136 = 0000 0000 1000 1000 0 2 8
 490 = 0000 0001 1110 1010 1 3 42
 541 = 0000 0010 0001 1101 2 0 29
 670 = 0000 0010 1001 1110 2 2 30
 74 = 0000 0000 0100 1010 0 1 10
 581 = 0000 0010 0100 0101 2 1 5
 980 = 0000 0011 1101 0100 3 3 20

 © Department of Networked Systems and Services © Department of Networked Systems and Services 36

TASK 2 – SOLUTION

● What is the final content of the cache (in all three cases)?
The cache content is assumed to be invalid initially.

● Fully associative case: smart solution
● There are 8 cache blocks
● There are 8 memory addresses having all different tags

→ They all fit into the cache!
→ They can be filled into the cache from left to right.

v tag a v tag a v tag a v tag a v tag a v tag a v tag a v tag a

0 0 0 0 0 0 0 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 37

TASK 2 – SOLUTION

● What is the final content of the cache (in all three cases)?
The cache content is assumed to be invalid initially.

● Fully associative case: smart solution
● There are 8 cache blocks
● There are 8 memory addresses having all different tags

→ They all fit into the cache!
→ They can be filled into the cache from left to right.

v tag a v tag a v tag a v tag a v tag a v tag a v tag a v tag a

1 0 8 1 2 7 1 7 6 1 8 5 1 10 4 1 1 3 1 9 2 1 15 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 38

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 39

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 40

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0

1 0

2 1 0

3 0

4 0

5 0

6 0

7 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 41

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0

1 0

2 1 0

3 0

4 0

5 0

6 0

7 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 42

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0 1

1 0

2 1 0

3 0

4 0

5 0

6 0

7 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 43

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0 1

1 0

2 1 0 1

3 0

4 0

5 0

6 0

7 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 44

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0 1

1 1 0

2 1 0 1

3 0

4 0

5 0

6 0

7 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 45

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0 1

1 1 0 1

2 1 0 1

3 0

4 0

5 0

6 0

7 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 46

TASK 2 – SOLUTION

Direct mapped case: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 0 7
 541 1 0
 670 1 2
 74 0 1
 581 1 1
 980 1 7

v tag

0 1 0 1

1 1 0 1

2 1 0 1

3 0

4 0

5 0

6 0

7 1 0 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 47

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 0 0

1 0 0

2 0 0

3 0 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 48

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 1 0

1 0 0

2 0 0

3 0 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 49

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 1 0

1 0 0

2 1 0 1 0

3 0 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 50

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 1 0

1 0 0

2 1 0 1 0

3 1 1 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 51

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 2 1 2 1

1 0 0

2 1 0 1 0

3 1 1 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 52

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 2 1 2 1

1 0 0

2 1 0 2 1 2 1

3 1 1 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 53

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 2 1 2 1

1 1 0 1 0

2 1 0 2 1 2 1

3 1 1 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 54

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 2 1 2 1

1 1 0 2 1 2 1

2 1 0 2 1 2 1

3 1 1 1 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 55

TASK 2 – SOLUTION

2-way set associative: we do it step by step
Address tag index
 13 0 0
 136 0 2
 490 1 3
 541 2 0
 670 2 2
 74 0 1
 581 2 1
 980 3 3

v tag a v tag a

0 1 0 2 1 2 1

1 1 0 2 1 2 1

2 1 0 2 1 2 1

3 1 1 2 1 3 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 56

TASK 3

● The size of the cache memory of a CPU is 1kB, the block
size is 64 bytes. The CPU executes the following program:

short int t[32][32];
int sum = 0;

for (int i=0; i<32; i++)
 for (int j=0; j<32; j++)
 sum += t[i][j];

 © Department of Networked Systems and Services © Department of Networked Systems and Services 57

TASK 3

Assumptions: the size of the short int type is 2 byte, array t
starts at a block boundary in the memory, the two-dimensional
array is arranged in a row-continuous way in the memory, the
cache uses a direct mapped organization. Variables i,j are
stored in registers, using them does not involve the cache
memory.

a) How many cache misses occur during the execution of the
given algorithm? Compute the cache miss ratio!

b) How many cache misses occur if the two for loops are
swapped? Compute the cache miss ratio!

c) How large cache memory is needed to achieve the same
cache miss ratio with the swapped variant as with the original
variant?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 58

TASK 3 – SOLUTION

● The size of the cache memory of a CPU is 1kB, the block
size is 64 bytes.

● How many block does the cache memory have?
● 1024/64=16

● How does the cache look like? See here →
● How much memory is used by

array t[32][32]?
● 32*32*2byte=2kB

● How much memory is used by a single row
of array t[32][32]?

● 32*2byte=64byte
→ it exactly fits into a cache block
Recall that array t starts at a block boundary!

v tag

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 59

TASK 3 – SOLUTION

● How does array t[32][32] look like?
t[0][0], t[0][1], …, t[0][j], …, t[0][30], t[0][31],
t[1][0], t[1][1], …, t[1][j], …, t[1][30], t[1][31],
…
t[i][0], t[i][1], …, t[i][j], …, t[i][30], t[i][31],
…
t[30][0], t[30][1], …, t[30][j], …, t[30][30], t[30][31],
t[31][0], t[31][1], …, t[31][j], …, t[31][30], t[31][31],

for (int i=0; i<32; i++)
 for (int j=0; j<32; j++)
 sum += t[i][j];

The array is stored and it is also read in a row-continuous way!
1st row: 1 cache miss, 31 cache hits. 2nd row, 3rd row, etc.: the same!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 60

TASK 3 – SOLUTION

Let us answer the questions!
a) How many cache misses occur during the execution of the

given algorithm? Compute the cache miss ratio!
• All in all: 32 cache misses
• Cache miss ratio 32/(32*32)=1/32=3.125%

b) How many cache misses occur if the two for loops are
swapped? Compute the cache miss ratio!

 for (int j=0; i<32; i++)
 for (int i=0; j<32; j++)
 sum += t[i][j];

• Column continuous traversing of the 2-dimensional array!
• The inside loop loads the first 16 rows into the cache
• And then overwrites them by the 2nd 16 rows! :-(
• The outside loop repeats it 32 times
• Cache miss ratio is 100%

 © Department of Networked Systems and Services © Department of Networked Systems and Services 61

TASK 3 – SOLUTION

c) How large cache memory is needed to achieve the same

cache miss ratio with the swapped variant as with the original
variant?
→ Let us double the size of the cache memory!
• What happens now?

 for (int j=0; i<32; i++)
 for (int i=0; j<32; j++)
 sum += t[i][j];

• The first execution of the internal loop produces 32 cache
misses, and it loads all the rows of the array into the cache

• All further executions of the internal loop will produce cache hits
and no cache misses!

• Thus, we achieved the same cache miss ratio as before! :-)
Answer: 2kB.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

