
2024. febr. 9.
Budapest

Computer Architectures

1. A card and code based door-lock

Prepared by: Gábor Horváth, ghorvath@hit.bme.hu

Presented by: Gábor Lencse, lencse@hit.bme.hu

mailto:lencse@hit.bme.hu

Computer Architectures 2© Gábor Horváth, Dept. of Networked Systems and Services

Outline

 Designing the hardware
• The building blocks of the system

• Adding memory to the CPU

• Adding peripherals to the CPU

 Designing the software
• State-machine model of the system

• Flow-charts of the algorithms

• Implementation

Computer Architectures 3© Gábor Horváth, Dept. of Networked Systems and Services

THE HARDWARE

Computer Architectures 4© Gábor Horváth, Dept. of Networked Systems and Services

Building blocks of the system

 A 8-bit CPU
• Data bus: 8 bit wide

• Address bus: 16 bit wide

• Multiplexed memory and I/O buses

• RISC instruction set

• 3-operand instruction format

• Starting address: 0000h
• Interrupt subroutine address: 1000h

CPU

D0-D7

A0-A15

INT

MEMRD
MEMWR
IORD
IOWR

Computer Architectures 5© Gábor Horváth, Dept. of Networked Systems and Services

Building blocks of the system

 Memory
• ROM: to store instructions and program constants

• RAM: to store program variables and stack

 Let us use 8kB ROM and 8kB RAM
• 8 bit data bus

• 13 bit address bus

8 kB ROM

A0-A12 D0-D7 RD

CS

8 kB RAM

A0-A12 D0-D7 RD

CS

WR

Computer Architectures 6© Gábor Horváth, Dept. of Networked Systems and Services

Building blocks of the system

 Card reader
• OE: output enable

• It has an 8 bit output: D

• If S/D = 0: it gives back an 1, if a new card has arrived

• If S/D = 1: it gives back the code (ID) of the last card

• INT: generates an interrupt, if a new card is recognized

D0-D7 S/D OE INT

Computer Architectures 7© Gábor Horváth, Dept. of Networked Systems and Services

Building blocks of the system

 Keypad
• OE: output enable

• It has a 8 bit output D:

• If S/D = 0: it gives back an 1 if a button has been pressed

• If S/D = 1: it gives back the code of the last key

• INT: generates an interrupt upon each key press

D0-D7 S/D OE INT

Computer Architectures 8© Gábor Horváth, Dept. of Networked Systems and Services

Building blocks of the system

 Door lock
• CS: chip select

• WR/RD

• If WR/RD = 1: sets L according to the state of the door
• (open=1, locked=0)

• If WR/RD = 0: opens the door. The door automatically locks
again after a timeout.

L WR/RD CS

Computer Architectures 9© Gábor Horváth, Dept. of Networked Systems and Services

Building blocks of the system

 LED lights
• Indicate the status of the door (red/green)

 Additional elements:
• Decoder – for interfacing the memory

• Comparators – for detecting the addresses of peripherals

• D flip-flop – for driving the LED lights

Computer Architectures 10© Gábor Horváth, Dept. of Networked Systems and Services

Adding memory to the CPU
 We have 8 kB ROM + 8 kB RAM

 Memory map:

 A13-A15 determine which module to use

 A0-A12 determine the byte position in the selected module

RAM

ROM0000h-1FFFh

2000h-3FFFh

4000h-5FFFh

6000h-7FFFh

8000h-9FFFh

A000h-BFFFh

C000h-DFFFh

E000h-FFFFh

0000 0000 0000 0000
0001 1111 1111 1111
0010 0000 0000 0000
0011 1111 1111 1111

0101 1111 1111 1111
0100 0000 0000 0000

A0A15

Computer Architectures 11© Gábor Horváth, Dept. of Networked Systems and Services

Adding memory to the CPU

CPU D0-D7

INT

MEMRD

IORD
IOWR

8 kB RAM

A0-A12D0-D7 RD

CS

WR

MEMWR

O0

O7
8 kB ROM

A0-A12 D0-D7 RD

CS

A0-A15 A0-A12

A13-A15

3/8

Computer Architectures 12© Gábor Horváth, Dept. of Networked Systems and Services

Adding the card reader

CPU

D0-D7

A0-A15

INT

MEMRD
MEMWR

IORD
IOWR

D0-D7 S/D

OE

INT

Comp.

P

Q

P=Q

2Eh

CS

A1-A7

A0

● Adding the keypad: the same, with base address 3Eh

0

Computer Architectures 13© Gábor Horváth, Dept. of Networked Systems and Services

Adding the door lock

CPU

D0-D7

A0-A15

INT

MEMRD
MEMWR

IORD
IOWR

Comp.

P

Q

P=Q

4Ch

CS

D0

WR/RD

CS

L
A0-A7

Computer Architectures 14© Gábor Horváth, Dept. of Networked Systems and Services

Adding the LED lights

CPU

D0-D7

A0-A15

INT

MEMRD
MEMWR

IORD
IOWR

Comp.

P

Q

P=Q

5Dh

CS

D0

D-FF

D

Q Q

+5V

A0-A7

Computer Architectures 15© Gábor Horváth, Dept. of Networked Systems and Services

THE SOFTWARE

Computer Architectures 16© Gábor Horváth, Dept. of Networked Systems and Services

State-machine of the system

 ST (state) = number of correct code digits typed so far on the keypad

Init

0 1 2 3
Correct digit Correct digit Correct digit

Bad digit
Card/store ID

B
ad digit B

ad
 d

ig
it

Bad digit

Corre
ct

digit /
 open door

ST=1 ST=2 ST=3ST=0

ST=255

Card/store IDCard/store ID

Card/store IDCard/store ID

Any digit

Computer Architectures 17© Gábor Horváth, Dept. of Networked Systems and Services

Transitions of the state-machine

 Card event: ST=0, and store the card ID in a local variable

 Correct digit: (if ST!=255 then) ST=ST+1,

• if now ST==4 then: ST=255 and open door

 Bad digit: ST=255

Init

0 1 2 3
Correct digit Correct digit Correct digit

Bad digit
Card/store ID

B
ad digit B

ad
 d

ig
it

Bad digit

Corre
ct

digit /
 open door

ST=1 ST=2 ST=3ST=0

ST=255

Card/store IDCard/store ID

Card/store IDCard/store ID

Any digit

Computer Architectures 18© Gábor Horváth, Dept. of Networked Systems and Services

Data structures

 The array of 4-digit key codes for each card ID
• The card ID is 8 bit wide → 256 different IDs are possible

• An array is used

• with 256 entries, one for each card ID

• each entry is the correct code (4-byte long) of the given card

• Total memory consumption: 256*4=1024 bytes (=400h)

• The ith code digit of card j is located at

• array start address + j*4 + i (j in {0..255}, i in {0..3})

 Local variables:
• 1-byte integer variable ST

• 1-byte integer variable CARDID

Computer Architectures 19© Gábor Horváth, Dept. of Networked Systems and Services

Algorithms

 The program has two parts:
• Main program

• Interrupt service routine

 The purpose of the main program:
• Monitors the state of the door

• Adjusts the LEDs accordingly

 The purpose of the interrupt service routine
• Handles card events and key presses

• Opens the door, if the correct code is given

Computer Architectures 20© Gábor Horváth, Dept. of Networked Systems and Services

The main program

 Initialization:
• Set stack pointer

• Set the value of ST (state variable)

• Enable interrupts

 In an infinite loop:
• Ask the door for the state

• Set the LED-s accordingly

R0 ← IO[door state]

IO[LED] ← R0

Initialization

Computer Architectures 21© Gábor Horváth, Dept. of Networked Systems and Services

The interrupt service routine

 First, we have to find out the interrupt source (polling!)

 Then, we apply the transition on the state machine

Save registers to stack

R0 ← IO[card reader state]

R0=0?

CARDID ← IO[card reader data]

ST ← 0

*end

no

Check if the
interrupt arrived
from the card reader

Store ID, set the state
machine to ST=0
and go to the end of
interrupt routine The interrupt is from

the keypad...

yes

Computer Architectures 22© Gábor Horváth, Dept. of Networked Systems and Services

The interrupt service routine
The interrupt is from the keypad...

Read keycode from keypad

Read the correct digit
from the memory

Calculate the address of
the correct digit

R0 ← IO[keypad data]

R1 ← start of array+CARDID*4+ST

R2 ← MEM[R1]

ST=255?
yes

no

*end

Are we in the initial state?

*code check

Computer Architectures 23© Gábor Horváth, Dept. of Networked Systems and Services

The interrupt service routine

Did we get the
correct digit?

If yes, update ST

If all 4 digits are correct,
then we can open the door

R0=R2?
no

yes

ST ← ST+1 ST ← 255

ST==4?
no

yes

ST ← 255

IO[door state] ← 1

*code check

*end

*end

*end

Computer Architectures 24© Gábor Horváth, Dept. of Networked Systems and Services

The interrupt service routine

Restore registers from stack

Enable further interrupts

Return

*end

The end of interrupt service routine:

Computer Architectures 25© Gábor Horváth, Dept. of Networked Systems and Services

Placement decisions

 Content of the RAM
• 1-byte integer variable ST: 2000h (first byte of the RAM)

• 1-byte integer variable CARDID: 2001h (second byte of the RAM)

• Initial stack pointer: 3FFFh, the highest address of the RAM, since it grows
downwards

 Content of the ROM
• The program, starting at 0000h
• The interrupt service routine, starting at 1000h
• The array of correct codes for each card

• Size: 400h
• Can be placed anywhere, where space is available

• Let us put it to 500h
– The main program is small, it does not go beyond 500h
– The end of the array is 8FFh, which is below the interrupt routine

Computer Architectures 26© Gábor Horváth, Dept. of Networked Systems and Services

Assembly implementation

 Implementation of the main program:

 ORG 0000h start code at this address
 SP ← 3FFFh set stack pointer
 MEM[2000h] ← 255 ST=255 (Initial state)
 EI enable interrupts
label: R0 ← IO[4Ch] read door status
 IO[5Dh] ← R0 update LEDs
 JUMP label jump back to reading

Computer Architectures 27© Gábor Horváth, Dept. of Networked Systems and Services

Assembly implementation

 Array of 4-byte codes for each card

ORG 500h
codes: DB 1, 3, 4, 7
 DB 5, 7, 2, 9
 DB 8, 2, 0, 8
 DB 3, 1, 8, 9
 ...

Computer Architectures 28© Gábor Horváth, Dept. of Networked Systems and Services

Assembly implementation

 Implementation of the interrupt service routine:
ORG 1000h CPU jumps at this address on
interrupt
PUSH R0 save R0/R1/R2 register to stack
PUSH R1
PUSH R2
R0 ← IO[2Eh] read card reader state
JUMP keycode IF R0==0 jump, if IT source is not the reader
R0 ← IO[2Fh] read card ID
MEM[2001h] ← R0 save to variable CARDID
MEM[2000h] ← 0 ST=0
JUMP end jump to the end of interrupt routine

Computer Architectures 29© Gábor Horváth, Dept. of Networked Systems and Services

Assembly implementation

 Implementation of the interrupt service routine:
keycode: R0 ← IO[3Fh] R0=new digit

 R1 ← MEM[2000h] R1=ST

 JUMP end IF R1==255 we are not expecting a digit

 R2 ← MEM[2001h] R2=CARDID

 R2 ← R2 * 4 R2=4*CARDID

 R2 ← R1 + R2 R2=4*CARDID+ST

 R2 ← MEM[R2+codes] R2=the correct digit

 JUMP match IF R2==R0 Jump if new digit is correct

 MEM[2000h] ← 255 state machine: ST=225 (init. state)

 JUMP end and go to the end of interrupt

match: R1 ← R1+1 If correct, increment ST

 MEM[2000h] ← R1 and save ST to memory

 JUMP end IF R1<4 If this is not the last digit, go to the end

 IO[4Ch] ← 1 If last digit, open the door

 MEM[2000h] ← 255 state machine: ST=225 (init. state)

 JUMP end Go to the end of interrupt

Computer Architectures 30© Gábor Horváth, Dept. of Networked Systems and Services

Assembly implementation

 Implementation of the interrupt service routine:

end: POP R2 restore registers in a reverse order

 POP R1
 POP R0
 EI enable further interrupts

 RET return from interrupt

Computer Architectures 31© Gábor Horváth, Dept. of Networked Systems and Services

Variations

 Can we solve the problem without RAM?
• Yes.

• But we lose the stack

• No more interrupts!!!

• Main program continuously polls:

– The state of the door (to update LEDs)

– The state of the card reader

– The state of the keypad

• We can not put ST and CARDID into the RAM

• We can store them in registers permanently

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

