
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2024. 02. 14.

COMPUTER ARCHITECTURES

I/O Devices

Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

WHERE ARE WE?

CPUCPU

I/O Devices Memory

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

I/O DEVICES

● There are many of them:
● Input / output
● Delay sensitive / insensitive
● Throughput sensitive / insensitive
● Bit error tolerant / intolerant
● Etc..

Controlled by Direction Data traffic

Keyboard Human Input ca. 100 byte/s

Mouse Human Input ca. 200 byte/s

Sound device Human Output ca. 96 kB/s

Printer Human Output ca. 200 kB/s

Graphics unit Human Output ca. 500 MB/s

Modem Machine In/Out 2-8 kB/s

Ethernet network interface Machine In/Out ca. 12.5 MB/s

Disk (HDD) Machine In/Out ca. 50 MB/s

GPS Machine Input ca. 100 byte/s

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

I/O DEVICES

● Questions to investigate:
● How does the CPU communicate with I/O devices?
● How do I/O devices communicate with the CPU?
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

I/O DEVICES

● Questions to investigate:
● How does the CPU communicate with I/O devices?
● How do I/O devices communicate with the CPU?
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

ADDRESSING

● Accessing memory content: by addressing
● Accessing I/O devices: by addressing

● Based on address space separation:
● Separate memory and I/O address spaces
● Shared memory and I/O address spaces

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

SEPARATE MEMORY AND I/O
ADDRESSES

● Two separate address spaces:
● x86: memory: 0 – 4GB, I/O: 0 – 64kB

● Separate instructions for I/O and memory operations
● R0 ← MEM[0x60]: data movement from memory
● R0 ← IO[0x60]: data movement from I/O peripheral

● Implementation:
● Separate I/O and memory buses

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

SEPARATE MEMORY AND I/O
ADDRESSES

● Two separate address spaces:
● x86: memory: 0 – 4GB, I/O: 0 – 64kB

● Separate instructions for I/O and memory operations
● R0 ← MEM[0x60]: data movement from memory
● R0 ← IO[0x60]: data movement from I/O peripheral

● Implementation:
● Multiplexed I/O and memory buses

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

MEMORY MAPPED I/O DEVICE
HANDLING

● The CPU has a single address space
● There are special memory addresses reserved for I/O communication

● Memory read/write requests from/to these addresses are answered by I/O devices
● Data exchange with I/O devices is very simple:

char* p = 0x60;
int x = *p;

● Advantage: there are many convenient data transfer instructions for the memory in
every architecture

● Drawback: unreachable “holes” in the memory
● Examples:

● RISC CPUs use this approach exclusively (ARM, Power, etc.)
● Can be used if there is a separate I/O address space as well (x86)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

I/O DEVICES

● Questions to investigate:
● How does the CPU communicate with I/O devices? √
● How do I/O devices communicate with the CPU?
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

INTERRUPTS

● An interrupt can be requested through the CPU „INT” input
● Problem: number of interrupt sources > INT input pins of the CPU
● Several I/O devices share the same interrupt lines

● How does the CPU know which devices wanted the interrupt?
● What happens, if several devices requested an interrupt at the same

time?

● Solution 1: Polling
● Every device uses a single interrupt line
● On interrupt, the interrupt handler subroutine asks every device if it

generated the interrupt → polling
● What happens, if more devices request an interrupt at the same time?

● Service order = polling order

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

INTERRUPTS

● Solution 2: interrupt vector table
● When the CPU accepts the interrupt, the device generating the

interrupt puts its number to the data bus
● This number determines which subroutine handles the interrupt
● The CPU has a table: interrupt vector table

● It contains pointers to interrupt handler subroutines
● The interrupt is handled by the subroutine given by the number

provided by the device
● What happens, if more devices request an interrupt at the same time?

● Happens frequently
● During the service of an interrupt several others may arrive
● They have to be served one after the other

● By daisy chain
● Using an interrupt controller

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

INTERRUPTS

● Daisy chaining:
● The “interrupt acknowledge” signal is sent by the CPU

● Devices not requesting an interrupt pass it on to their neighbor
● If a device requests an interrupt, stops the signal

● The order of devices define the priority
● Devices at the end of the row starve

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

INTERRUPTS

● Programmable Interrupt Controller:
● It has more than one inputs
● The PIC is an I/O peripheral itself
● The CPU (op. system) configures it with I/O operations

● What should happen, if more interrupts arise at the same time
● Which devices are allowed to generate an interrupt

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

INTERRUPTS

● Interrupts in multi-processor systems
● Simple solution: every interrupt is handled by the default processor (the

one that boots the op. system)
● Alternative solution: advanced programmable interrupt controller

(Intel: APIC, ARM: GIC, etc.)
● Components:

● Each processor has a local interrupt controller
● There is a system-level interrupt controller that distributes

interrupts
● If an I/O device needs an interrupt, the system level interrupt distributor

routes it to the appropriate processor → interrupt routing
● The interrupt distributor and the interrupt routing is configured by

the operating system as a part of the boot process
● Local interrupt controllers can send interrupts to the other processors as

well
● This is a way of communication between the processors

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

INTERRUPTS

● When there are too many interrupts...
● There are devices that generate too many interrupts

● E.g. gigabit speed network devices

● The CPU has to handle interrupts continuously, it can not do anything else
● Rule of thumbs:

● Interrupt handling routines should be as short as possible
● Interrupt rates are maximized in critical systems
● In the critical intervals of the programs interrupts should be disabled
● Interrupt moderation

● The device awaits several events and indicates it using a single interrupt
● The CPU handles the multiple events in a single interrupt

Interrupt source Typical rate Maximal rate

10 Mbps Ethernet 812 14880

100 Mbps Ethernet 8127 148809

Gigabit Ethernet 81274 1488095

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

I/O DEVICES

● Questions to investigate:
● How does the CPU communicate with I/O devices? √
● How do I/O devices communicate with the CPU? √
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

EFFICIENT DATA TRANSFER

● Ultimate goal:
● Transferring data from the I/O device to the memory (or vice

versa)
● Problems:

● What to do, if the source and the target have different speed?
→ Flow control

● Which path to choose to transfer the data to/from the
memory?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

FLOW CONTROL

● The principle problem is:
● How do we know that both the CPU and the I/O device are

ready to transmit data?

1) Unconditional data transmission
● No flow control at all
● Neither the CPU nor the I/O device can indicate its status to

the other side
● Two problems can occur:

● Data over-run error (the sender is too fast, the receiver did not
even process the previous message, when the new arrives)

● Data deficiency (the sender is too slow, the receiver thought it
got the next data, but it did not happen)

● Usage: reading a button, control a LED , ...

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

FLOW CONTROL

2) Conditional transmission with one-sided handshake
● The speed of either the CPU or the I/O device can not be influenced
● A status flag is used: is there valid data available?
● Example: voice input, network card
● Example: an input device

→ with the status register the “data deficiency” errors can be avoided

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

FLOW CONTROL

3) Conditional transmission with two-sided handshake
● The speed of both sides can be influenced
● Status flag: is there valid data available?

● Both sides check the status flag
● Example: an input device

→ this way both the “data over-run” and the “data deficiency” problems
can be avoided

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

FLOW CONTROL

4) Conditional transmission with a FIFO buffer
● The speed of both sides can be influenced
● The partners don't have to wait for the other each times a single data is

transmitted
● It is beneficial if

● the data rate is varying
● the availability of the CPU and/or the I/O device is varying

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

EFFICIENT DATA TRANSFER

● Ultimate goal:
● Transferring data from the I/O device to the memory (or vice

versa)
● Problems:

● What to do if the source and the target have different speed?
→ Flow control √

● Which path to choose to transfer the data to/from the
memory?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

EFFICIENT DATA TRANSFER

● Ultimate goal:
● Transferring data from the I/O device to the memory (or vice

versa)
● Which path to choose to transfer the data to/from the

memory?
● Solution 1: through the CPU

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

EFFICIENT DATA TRANSFER

● Polling based data transfer:
● The status of the I/O device is monitored continuously:

loop: R0 ← IO[0x64]
 JUMP loop IF R0==0
 R0 ← IO[0x60]
 MEM[0x142] ← R0

● Critical problem: choosing the right polling period
● Too frequent → high CPU load
● Too rare → loss of information

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

EFFICIENT DATA TRANSFER

● Interrupt based data transfer:
● The status of the I/O device is monitored by interrupts
● Interrupt handling routine:

keyhandler: PUSH R0
 R0 ← IO[0x60]
 MEM[0x142] ← R0
 POP R0
 RET

● Only as high load to the CPU as necessary

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

POLLING VS. INTERRUPT

● Example for polling (CPU: 1 GHz, 600 cycles/poll)
● Mouse:

● Enough to have 30 polls/s
● 30 poll/s * 600 cycles/poll = 18 000 cycles/s
● CPU: 10

9
 cycles/s → 18 000 / 10

9
 = 0.0018%, OK.

● Disk:
● Interface: 100·10

6
byte/s, 500 byte/block

● Polling period: 100·10
6
 byte/s / 500 byte/block = 200 000 poll/s

● 200 000 poll/s * 600 cycles/poll = 120 000 000
● CPU: 10

9
 clocks/s → 120·10

6
 / 10

9
 = 12%

● Too much load for a single I/O device!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

POLLING VS. INTERRUPT

● Example for interrupt-based data transfer
● Disk

● Assumptions:
● The disk is active in 10% of the time
● Interrupt processing time: 600 cycles
● Data transfer time: 100 cycles
● CPU speed: 1 GHz

● Time devoted to interrupt processing:
● 0.1·(100·10

6
 byte/s / 500 byte/block · 600 cycles/interrupt)

= 12 000 000 cycles/s
● CPU: 10

9
 cycles/s → 12·10

6
 / 10

9
 = 1.2%

● Data transfer time:
● 0.1·(100·10

6
 byte/s / 500 byte/block · 100 clocks/transfer)

= 2 000 000 clocks/s
● CPU: 10

9
 clocks/s → 2·10

6
/ 10

9
 = 0.2%

● In total: 1.2 % + 0.2% = 1.4%

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

● I/O device → memory data transfer, as seen so far:

● Can we do it in a direct way?

● It would be faster
● CPU could do something else during the data transfer
● Solutions:

● DMA
● I/O processor

DECREASING THE LOAD OF THE
CPU

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

DMA

● “I/O device → memory” data transfer without the CPU
● Steps:

1. Setting up the DMA controller
● Which peripheral
● Which memory address
● Direction of the data transfer (reading or writing)
● Number of data units to transfer

2. The DMA controller controls the data transfer
● It obtains the right to use the bus (from the CPU)
● It does the data transfer (possibly with flow control)

→ Plays the role of the CPU

3. The DMA controller sends an interrupt whenever the data
transfer is ready

 © Department of Networked Systems and Services © Department of Networked Systems and Services 31

DMA

● CPU has to work only when setting up the controller and
when the data transfer is accomplished

● This was the system level (third party) DMA controller
● Instead of this, nowadays they are using first party DMA

controllers
● Each I/O device has its own DMA controller
● They are all competing for the bus
● … with the CPU and with each other
● The winner can transfer the data of its I/O device to the memory

 © Department of Networked Systems and Services © Department of Networked Systems and Services 32

I/O PROCESSOR

● Evolution of the DMA concept
● The I/O processor has an own instruction set
● I/O program:

● A series of transfer requests
● Simple data processing tasks

● CRC, checking parity
● Compression/decompression
● Byte order conversion
● Etc.

● Execution:
1. CPU gives the pointer of the I/O program to the I/O processor
2. The I/O processor executes them one by one
3. The I/O processor generates an interrupt when the I/O
program is accomplished

 © Department of Networked Systems and Services © Department of Networked Systems and Services 33

I/O PROCESSOR

● The CPU can access the I/O devices only through the I/O processor

→ device independence!
● Task of the device controller:
● Device specific interface ↔ I/O bus protocol translation

 © Department of Networked Systems and Services © Department of Networked Systems and Services 34

I/O DEVICES

● Questions to investigate:
● How does the CPU communicate with I/O devices? √
● How do I/O devices communicate with the CPU? √
● How to transmit data efficiently, without errors? √
● How to connect the I/O devices to the CPU?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 35

INTERCONNECTS

● How to interconnect
● the CPU,
● the memory,
● I/O devices?

● So far: memory and I/O devices were sitting on the CPU bus
● It can be done more efficiently

 © Department of Networked Systems and Services © Department of Networked Systems and Services 36

BUS VS. POINT-TO-POINT

● Point-to-point interconnects
● Dedicated channel

● No contention, no waiting → faster
● The more I/O devices we have, the more point-to-point

connections are needed → expensive
● Bus based interconnects

● Shared channel
● Shared resource → can be a bottleneck

(contention, waiting for each other, etc.)
● Everybody shares the same bus → cheaper

● We need algorithms to control access to shared channel

 © Department of Networked Systems and Services © Department of Networked Systems and Services 37

THE WIDTH OF THE BUS

● Width of the bus = number of wires used for transmitting data
● Wide bus:

● More bits can be transmitted at the same time → can be faster
● More expensive

● Contradiction: the fastest buses are serial!
● Wide bus → more wires
● The length and the electrical behavior of the wires is not the

same
→ signals transmitted at the same time are shifted at arrival!

● It is only a problem if the amount of shift is not much thinner
than the clock tick

● Trend: serial transmission to everywhere → no shift, nothing
can stop up to send fast

 © Department of Networked Systems and Services © Department of Networked Systems and Services 38

TIMING

● Synchronous:
● Shared clock signal
● Data validity is tied to the

clock signal

● Asynchronous:
● No clock signal
● Validity of the data is given

by strobe signals

● Synchronous – asynchronous: which is better?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 39

TIMING

● Synchronous – asynchronous: which is better?
● None of them!

● There can be a signal shift between the data and the clock/strobe lines!

● Solution:
● Remove clock/strobe
● Just a single wire remains, for the data transfer itself

● How does the target know where the bit boundaries are?
● It detects it automatically from the 0-1 transitions

→ self-clocked timing
● It is feasible only if there are enough 0-1 transitions

● 8b/10b encoding:
● It creates 0 – 1 transitions
● Gigabit Ethernet, PCI Express 1.0/2.0, USB 3.0, SATA, HDMI, DVI, etc.
● Drawback: overhead
● Enhancement

● 64b/66b encoding: 10 GB Ethernet, 100 GB Ethernet
● 128b/130b encoding: PCI Express 3.0/4.0, USB 3.1, SATA 3.2, DisplayPort 2.0
● 256b/257b: Fibre Channel

 © Department of Networked Systems and Services © Department of Networked Systems and Services 40

ARBITRATION ON THE BUS

● Devices on the bus
● Bus Master: a device that can grab the right to use the bus
● Bus Slave: can not grab the bus, not able to manage data

transfer by its own
● Bus is a shared resource

● More masters can request to use it at the same time
● Only one can grab the right to use the bus

● Arbitration
● The decision of the contention to capture the bus

 © Department of Networked Systems and Services © Department of Networked Systems and Services 41

CENTRALIZED ARBITRATION

● A special unit: Arbiter
● Decides who can use the bus next

● Serial Arbitration: Daisy Chain

● Advantage:
● Easy to extend

● Drawback:
● Not fair (starvation at the end of the row)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 42

CENTRALIZED ARBITRATION

● Parallel centralized arbitration
● More flexible in assigning priorities

● Round-robin
● Delay sensitive devices can have priority
● Etc.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 43

DISTRIBUTED ARBITRATION

● No arbiter
● Distributed arbitration (e.g. SCSI):

● Everybody sees all the requests
● Everybody knows its own and the others' priority
● The one having the highest priority gets the bus, the others have to wait

● Collision detection based arbitration
● No arbitration at all
● If somebody wants to use the bus, it can start data transmission

immediately
● During data transmission it listens to the bus as well
● If it can hear its own transmission clearly → OK
● If it cant → there was a collision. It waits a bit and tries again later.

● Advantages of distributed arbitration:
● No arbiter, that can break down. No critical component.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 44

SINGLE-BUS SYSTEMS

● CPU – memory – I/O devices are on the same bus

● Easy to implement
● Drawback:

● If we replace the CPU → it uses a higher clocked bus / different bus
protocol → old I/O devices may not support it

● The clock freq. and the bus protocol of CPU-s change from model to
model

● We don't want to throw out our I/O devices, when buying a new CPU

→ I/O devices need a constant, standard interface

 © Department of Networked Systems and Services © Department of Networked Systems and Services 45

SYSTEMS WITH SEPARATE I/O
BUS

● I/O devices are connected to an I/O bus, memory is connected to the system
bus

● I/O devices are reached through a bridge

● System bus: speed and protocol depends on the CPU protocol
● I/O bus: constant, standardized interface

 © Department of Networked Systems and Services © Department of Networked Systems and Services 46

BRIDGE BASED SYSTEMS

● Separate buses for:
● CPU
● Memory
● I/O devices

● System bus:
● CPU dependent

● Memory bus:
● Standardized
● CPU independent

● I/O bus (PCI):
● Standardized
● CPU independent

 © Department of Networked Systems and Services © Department of Networked Systems and Services 47

BRIDGE BASED SYSTEMS

 © Department of Networked Systems and Services © Department of Networked Systems and Services 48

BRIDGE
BASED
SYSTEMS

 © Department of Networked Systems and Services © Department of Networked Systems and Services 49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

