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WHERE ARE WE?

CPUCPU

I/O Devices Memory
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I/O DEVICES

● There are many of them:
● Input / output
● Delay sensitive / insensitive
● Throughput sensitive / insensitive
● Bit error tolerant / intolerant
● Etc..

Controlled by Direction Data traffic

Keyboard Human Input ca. 100 byte/s

Mouse Human Input ca. 200 byte/s

Sound device Human Output ca. 96 kB/s

Printer Human Output ca. 200 kB/s

Graphics unit Human Output ca. 500 MB/s

Modem Machine In/Out 2-8 kB/s

Ethernet network interface Machine In/Out ca. 12.5 MB/s

Disk (HDD) Machine In/Out ca. 50 MB/s

GPS Machine Input ca. 100 byte/s



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 4

I/O DEVICES

● Questions to investigate: 
● How does the CPU communicate with I/O devices?
● How do I/O devices communicate with the CPU?
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU? 
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ADDRESSING

● Accessing memory content: by addressing
● Accessing I/O devices: by addressing

● Based on address space separation:
● Separate memory and I/O address spaces
● Shared memory and I/O address spaces
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SEPARATE MEMORY AND I/O 
ADDRESSES

● Two separate address spaces:
● x86: memory: 0 – 4GB, I/O: 0 – 64kB

● Separate instructions for I/O and memory operations
● R0 ← MEM[0x60]: data movement from memory
● R0 ← IO[0x60]: data movement from I/O peripheral

● Implementation:
● Separate I/O and memory buses
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SEPARATE MEMORY AND I/O 
ADDRESSES

● Two separate address spaces:
● x86: memory: 0 – 4GB, I/O: 0 – 64kB

● Separate instructions for I/O and memory operations
● R0 ← MEM[0x60]: data movement from memory
● R0 ← IO[0x60]: data movement from I/O peripheral

● Implementation:
● Multiplexed I/O and memory buses
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MEMORY MAPPED I/O DEVICE 
HANDLING

● The CPU has a single address space
● There are special memory addresses reserved for I/O communication

● Memory read/write requests from/to these addresses are answered by I/O devices
● Data exchange with I/O devices is very simple:

char* p = 0x60;
int x = *p;

● Advantage: there are many convenient data transfer instructions for the memory in 
every architecture

● Drawback: unreachable “holes” in the memory
● Examples:

● RISC CPUs use this approach exclusively (ARM, Power, etc.)
● Can be used if there is a separate I/O address space as well (x86)
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I/O DEVICES

● Questions to investigate: 
● How does the CPU communicate with I/O devices? √
● How do I/O devices communicate with the CPU?
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU? 
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INTERRUPTS

● An interrupt can be requested through the CPU „INT” input
● Problem: number of interrupt sources > INT input pins of the CPU
● Several I/O devices share the same interrupt lines

● How does the CPU know which devices wanted the interrupt?
● What happens, if several devices requested an interrupt at the same 

time?

● Solution 1: Polling
● Every device uses a single interrupt line 
● On interrupt, the interrupt handler subroutine asks every device if it 

generated the interrupt → polling
● What happens, if more devices request an interrupt at the same time?

● Service order = polling order
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INTERRUPTS

● Solution 2: interrupt vector table
● When the CPU accepts the interrupt, the device generating the 

interrupt puts its number to the data bus
● This number determines which subroutine handles the interrupt
● The CPU has a table: interrupt vector table

● It contains pointers to interrupt handler subroutines
● The interrupt is handled by the subroutine given by the number 

provided by the device
● What happens, if more devices request an interrupt at the same time?

● Happens frequently
● During the service of an interrupt several others may arrive
● They have to be served one after the other

● By daisy chain
● Using an interrupt controller
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INTERRUPTS

● Daisy chaining: 
● The “interrupt acknowledge” signal is sent by the CPU

● Devices not requesting an interrupt pass it on to their neighbor
● If a device requests an interrupt, stops the signal

● The order of devices define the priority
● Devices at the end of the row starve
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INTERRUPTS

● Programmable Interrupt Controller:
● It has more than one inputs
● The PIC is an I/O peripheral itself
● The CPU (op. system) configures it with I/O operations

● What should happen, if more interrupts arise at the same time
● Which devices are allowed to generate an interrupt
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INTERRUPTS

● Interrupts in multi-processor systems
● Simple solution: every interrupt is handled by the default processor (the 

one that boots the op. system)
● Alternative solution: advanced programmable interrupt controller

(Intel: APIC, ARM: GIC, etc.)
● Components:

● Each processor has a local interrupt controller
● There is a system-level interrupt controller that distributes 

interrupts
● If an I/O device needs an interrupt, the system level interrupt distributor 

routes it to the appropriate processor → interrupt routing
● The interrupt distributor and the interrupt routing is configured by 

the operating system as a part of the boot process
● Local interrupt controllers can send interrupts to the other processors as 

well
● This is a way of communication between the processors
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INTERRUPTS

● When there are too many interrupts...
● There are devices that generate too many interrupts

● E.g. gigabit speed network devices

● The CPU has to handle interrupts continuously, it can not do anything else
● Rule of thumbs:

● Interrupt handling routines should be as short as possible
● Interrupt rates are maximized in critical systems
● In the critical intervals of the programs interrupts should be disabled
● Interrupt moderation

● The device awaits several events and indicates it using a single interrupt
● The CPU handles the multiple events in a single interrupt

Interrupt source Typical rate Maximal rate

10 Mbps Ethernet 812 14880

100 Mbps Ethernet 8127 148809

Gigabit Ethernet 81274 1488095
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I/O DEVICES

● Questions to investigate: 
● How does the CPU communicate with I/O devices? √
● How do I/O devices communicate with the CPU? √
● How to transmit data efficiently, without errors?
● How to connect the I/O devices to the CPU? 
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EFFICIENT DATA TRANSFER

● Ultimate goal:
● Transferring data from the I/O device to the memory (or vice 

versa)
● Problems:

● What to do, if the source and the target have different speed?
→ Flow control

● Which path to choose to transfer the data to/from the 
memory?
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FLOW CONTROL

● The principle problem is:
● How do we know that both the CPU and the I/O device are 

ready to transmit data?

1) Unconditional data transmission
● No flow control at all
● Neither the CPU nor the I/O device can indicate its status to 

the other side
● Two problems can occur:

● Data over-run error (the sender is too fast, the receiver did not 
even process the previous message, when the new arrives)

● Data deficiency (the sender is too slow, the receiver thought it 
got the next data, but it did not happen)

● Usage: reading a button, control a LED , ...
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FLOW CONTROL

2) Conditional transmission with one-sided handshake
● The speed of either the CPU or the I/O device can not be influenced 
● A status flag is used: is there valid data available?
● Example: voice input, network card
● Example: an input device

→ with the status register the “data deficiency” errors can be avoided
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FLOW CONTROL

3) Conditional transmission with two-sided handshake
● The speed of both sides can be influenced
● Status flag: is there valid data available?

● Both sides check the status flag
● Example: an input device

→ this way both the “data over-run” and the “data deficiency” problems 
can be avoided
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FLOW CONTROL

4) Conditional transmission with a FIFO buffer
● The speed of both sides can be influenced
● The partners don't have to wait for the other each times a single data is 

transmitted
● It is beneficial if

● the data rate is varying 
● the availability of the CPU and/or the I/O device is varying
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EFFICIENT DATA TRANSFER

● Ultimate goal:
● Transferring data from the I/O device to the memory (or vice 

versa)
● Problems:

● What to do if the source and the target have different speed?
→ Flow control √

● Which path to choose to transfer the data to/from the 
memory?
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EFFICIENT DATA TRANSFER

● Ultimate goal:
● Transferring data from the I/O device to the memory (or vice 

versa)
● Which path to choose to transfer the data to/from the 

memory?
● Solution 1: through the CPU
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EFFICIENT DATA TRANSFER

● Polling based data transfer:
● The status of the I/O device is monitored continuously:

loop: R0 ← IO[0x64]
        JUMP loop IF R0==0
        R0 ← IO[0x60]
        MEM[0x142] ← R0

● Critical problem: choosing the right polling period
● Too frequent → high CPU load
● Too rare → loss of information
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EFFICIENT DATA TRANSFER

● Interrupt based data transfer:
● The status of the I/O device is monitored by interrupts
● Interrupt handling routine:

keyhandler: PUSH R0
            R0 ← IO[0x60]
            MEM[0x142] ← R0
            POP R0
            RET

● Only as high load to the CPU as necessary
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POLLING VS. INTERRUPT

● Example for polling (CPU: 1 GHz, 600 cycles/poll)
● Mouse: 

● Enough to have 30 polls/s
● 30 poll/s * 600 cycles/poll = 18 000 cycles/s
● CPU:  10

9
 cycles/s → 18 000 / 10

9
 = 0.0018%, OK.

● Disk:
● Interface: 100·10

6 
byte/s, 500 byte/block

● Polling period: 100·10
6
 byte/s / 500 byte/block = 200 000 poll/s

● 200 000 poll/s * 600 cycles/poll = 120 000 000
● CPU: 10

9
 clocks/s → 120·10

6
 / 10

9
 = 12%

● Too much load for a single I/O device!
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POLLING VS. INTERRUPT

● Example for interrupt-based data transfer
● Disk

● Assumptions:
● The disk is active in 10% of the time
● Interrupt processing time: 600 cycles
● Data transfer time: 100 cycles
● CPU speed: 1 GHz

● Time devoted to interrupt processing:
● 0.1·(100·10

6
 byte/s / 500 byte/block · 600 cycles/interrupt) 

= 12 000 000 cycles/s
● CPU: 10

9
 cycles/s → 12·10

6
 / 10

9
 = 1.2%

● Data transfer time: 
● 0.1·(100·10

6
 byte/s / 500 byte/block · 100 clocks/transfer) 

= 2 000 000 clocks/s
● CPU: 10

9
 clocks/s → 2·10

6 
/ 10

9
 = 0.2%

● In total: 1.2 % + 0.2% = 1.4%
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● I/O device → memory data transfer, as seen so far:

● Can we do it in a direct way?

● It would be faster
● CPU could do something else during the data transfer
● Solutions:

● DMA
● I/O processor

DECREASING THE LOAD OF THE 
CPU
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DMA

● “I/O device → memory” data transfer without the CPU
● Steps:

1. Setting up the DMA controller
● Which peripheral
● Which memory address
● Direction of the data transfer (reading or writing)
● Number of data units to transfer

2. The DMA controller controls the data transfer
● It obtains the right to use the bus (from the CPU)
● It does the data transfer (possibly with flow control)

→ Plays the role of the CPU

3. The DMA controller sends an interrupt whenever the data 
transfer is ready
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DMA

● CPU has to work only when setting up the controller and 
when the data transfer is accomplished

● This was the system level (third party) DMA controller
● Instead of this, nowadays they are using first party DMA 

controllers
● Each I/O device has its own DMA controller
● They are all competing for the bus
● … with the CPU and with each other
● The winner can transfer the data of its I/O device to the memory
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I/O PROCESSOR

● Evolution of the DMA concept
● The I/O processor has an own instruction set
● I/O program:

● A series of transfer requests
● Simple data processing tasks

● CRC, checking parity
● Compression/decompression
● Byte order conversion
● Etc.

● Execution:
1. CPU gives the pointer of the I/O program to the I/O processor
2. The I/O processor executes them one by one
3. The I/O processor generates an interrupt when the I/O 
program is accomplished
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I/O PROCESSOR

● The CPU can access the I/O devices only through the I/O processor

→ device independence!
● Task of the device controller:
● Device specific interface ↔ I/O bus protocol translation
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I/O DEVICES

● Questions to investigate: 
● How does the CPU communicate with I/O devices? √
● How do I/O devices communicate with the CPU? √
● How to transmit data efficiently, without errors? √
● How to connect the I/O devices to the CPU? 
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INTERCONNECTS

● How to interconnect
● the CPU,
● the memory,
● I/O devices?

● So far: memory and I/O devices were sitting on the CPU bus
● It can be done more efficiently
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BUS VS. POINT-TO-POINT

● Point-to-point interconnects
● Dedicated channel

● No contention, no waiting → faster
● The more I/O devices we have, the more point-to-point 

connections are needed → expensive
● Bus based interconnects

● Shared channel
● Shared resource → can be a bottleneck

(contention, waiting for each other, etc.)
● Everybody shares the same bus → cheaper

● We need algorithms to control access to shared channel
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THE WIDTH OF THE BUS

● Width of the bus = number of wires used for transmitting data
● Wide bus:

● More bits can be transmitted at the same time → can be faster
● More expensive

● Contradiction: the fastest buses are serial!
● Wide bus → more wires
● The length and the electrical behavior of the wires is not the 

same
→ signals transmitted at the same time are shifted at arrival!

● It is only a problem if the amount of shift is not much thinner 
than the clock tick

● Trend: serial transmission to everywhere → no shift, nothing 
can stop up to send fast
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TIMING

● Synchronous:
● Shared clock signal
● Data validity is tied to the 

clock signal

● Asynchronous:
● No clock signal
● Validity of the data is given 

by strobe signals

● Synchronous – asynchronous: which is better?
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TIMING

● Synchronous – asynchronous: which is better?
● None of them!

● There can be a signal shift between the data and the clock/strobe lines!

● Solution:
● Remove clock/strobe
● Just a single wire remains, for the data transfer itself

● How does the target know where the bit boundaries are?
● It detects it automatically from the 0-1 transitions

→ self-clocked timing
● It is feasible only if there are enough 0-1 transitions

● 8b/10b encoding:
● It creates 0 – 1 transitions
● Gigabit Ethernet, PCI Express 1.0/2.0, USB 3.0, SATA, HDMI, DVI, etc.
● Drawback: overhead
● Enhancement

● 64b/66b encoding: 10 GB Ethernet, 100 GB Ethernet
● 128b/130b encoding: PCI Express 3.0/4.0, USB 3.1, SATA 3.2, DisplayPort 2.0
● 256b/257b: Fibre Channel
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ARBITRATION ON THE BUS

● Devices on the bus
● Bus Master: a device that can grab the right to use the bus
● Bus Slave: can not grab the bus, not able to manage data 

transfer by its own
● Bus is a shared resource

● More masters can request to use it at the same time
● Only one can grab the right to use the bus

● Arbitration
● The decision of the contention to capture the bus
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CENTRALIZED ARBITRATION

● A special unit: Arbiter
● Decides who can use the bus next

● Serial Arbitration: Daisy Chain

● Advantage:
● Easy to extend

● Drawback:
● Not fair (starvation at the end of the row)
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CENTRALIZED ARBITRATION

● Parallel centralized arbitration
● More flexible in assigning priorities

● Round-robin
● Delay sensitive devices can have priority
● Etc.
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DISTRIBUTED ARBITRATION

● No arbiter
● Distributed arbitration (e.g. SCSI):

● Everybody sees all the requests
● Everybody knows its own and the others' priority
● The one having the highest priority gets the bus, the others have to wait

● Collision detection based arbitration
● No arbitration at all
● If somebody wants to use the bus, it can start data transmission 

immediately
● During data transmission it listens to the bus as well
● If it can hear its own transmission clearly → OK
● If it cant  → there was a collision. It waits a bit and tries again later.

● Advantages of distributed arbitration:
● No arbiter, that can break down. No critical component.
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SINGLE-BUS SYSTEMS

● CPU – memory – I/O devices are on the same bus

● Easy to implement
● Drawback:

● If we replace the CPU → it uses a higher clocked bus / different bus 
protocol → old I/O devices may not support it

● The clock freq. and the bus protocol of CPU-s change from model to 
model

● We don't want to throw out our I/O devices, when buying a new CPU

→ I/O devices need a constant, standard interface
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SYSTEMS WITH SEPARATE I/O 
BUS

● I/O devices are connected to an I/O bus, memory is connected to the system 
bus

● I/O devices are reached through a bridge

● System bus: speed and protocol depends on the CPU protocol
● I/O bus: constant, standardized interface
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BRIDGE BASED SYSTEMS

● Separate buses for:
● CPU
● Memory
● I/O devices

● System bus:
● CPU dependent

● Memory bus:
● Standardized
● CPU independent

● I/O bus (PCI):
● Standardized
● CPU independent
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BRIDGE BASED SYSTEMS
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BRIDGE 
BASED 
SYSTEMS
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