
     © Department of Networked Systems and Services     © Department of Networked Systems and Services 1

Budapest, 
03/26/2025

COMPUTER ARCHITECTURES

Instruction set architectures

Gábor Horváth, ghorvath@hit.bme.hu



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 2

INSTRUCTION SET 
ARCHITECTURES

• Every processor has
– Instruction Set Architecture (ISA)
– A kind of programming interface

• Parts of ISA:
– List of supported instructions
– List of supported data types
– Registers
– Addressing modes
– Flags
– How to communicate with I/O devices
– Interrupt and exception handling
– Etc.



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 3

PROPERTIES OF THE 
INSTRUCTIONS

• „Parts” of an instruction:
– Code of the operation
– Values/addresses of operands
– Address where the result is stored
– Pointer to the next instruction

• For simplicity:
– Pointer to the next instruction is unnecessary

● The next instruction is always the next one in the memory
– Number of operands

● Support for 3 operands: R1 ← R2 + R3
● Support for 2 operands: R1 ← R1 + R2
● Support for 1 operands: ADD R1

+ R1 42 R2

/ 5 R2 R3
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PROPERTIES OF THE 
INSTRUCTIONS

• Instruction types:
– Data movement

R1←R2, R1←MEM[100], R1←42, MEM[100]←R1, MEM[100]←42
– Arithmetic-logic operations

R1 ← R2+R3, R1 ← MEM[100]*42, MEM[100] ← R1 & R2
– Control flow operations: 

JUMP -42, JUMP +28 IF R1==R2, CALL proc, RETURN
– Stack operations

PUSH R1, PUSH 42, R2 ← POP
– I/O operations

IO[42] ← R1, R1 ← IO[42]
– Transcendent operations

R2 ← SIN R1, R2 ← SQRT 42
– Etc.



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 5

ADDRESSING MODES

• Determines, where the operand is located

• Possible locations:
– embedded in the instruction (immediate)
– in a register
– in the memory

Addressing mode Example

Register R1 ← R2 + R3
Immediate R1 ← R2 + 42
Direct R1 ← R2 + MEM[42]
Register indirect R1 ← R2 + MEM[R3]
Indirect with offset R1 ← R2 + MEM[R3+42]
Memory indirect R1 ← R2 + MEM[MEM[R3]]
Indexed R1 ← R2 + MEM[R3+R4]
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CONTROL-FLOW OPERATIONS

• Typically relative addressing, e.g. JUMP -28
• 3 possible implementations of conditional branches:

– With condition codes:
COMPARE R1, R2
JUMP label IF GREATER

– With condition registers:
R0 ← R1 > R2
JUMP label IF R0

– „Compare and jump”:
JUMP label IF R1 > R2
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BRANCH PREDICATION

• Predicates: instructions with conditions

R1 ← R2 + 32 IF P2
• Predicate registers: 1-bit registers (P2 in the example)
• Setting the predicate registers: by comparison instructions

P2 ← R3 ≤ R5
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PROPERTIES OF THE 
INSTRUCTIONS

• The instructions are stored with a binary encoding
• Based on the length of the encoded instructions we have:

– Fixed length encoding
– Variable length encoding
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ASSEMBLY PROGRAMMING

• Low-level programming:
– Manual encoding of the instructions is inconvenient
– Binary coded instructions are not for human use
– Tool: assembly programming

• Assembly
– The lowest level programming language
– The text representation of the machine level instructions

● 1 assembly „instruction” → 1 machine level instruction

• Assembler: creates machine code from assembly
• It is different for every instruction set architecture
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ENCODING THE INSTRUCTIONS
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ENCODING THE INSTRUCTIONS

• The CPU of the Terminator: MOS-6502 (like the CPU of Apple II)
(the cheapest CPU between 1975 and 1980: it costed sixth the price of the Intel 
and Motorola CPU-s at the same level of performance)

• The Terminator runs an example code of the Nibble magazine
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ENCODING THE INSTRUCTIONS

Assembly code

Binary encoded
(machine) instructions
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EXAMPLE FOR INSTRUCTION 
CODING (X86)

• ADD ECX, EAX     (we write it: ECX ← ECX + EAX)

• ADD EDI, [EBX]     (we write it: EDI ← EDI + MEM[EBX])

= 01 C1
(ASCII: ☺┴)

= 03 3B
(ASCII: ;♥ )
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EXAMPLE FOR INSTRUCTION 
CODING (X86)

• ADD EBX, 23423765   (we write it: EBX ← EBX + 23423765)

• = 81 C3 15 6B 65 01    (ASCII: Qü§ke☺) 
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FURTHER PROPERTIES OF 
INSTRUCTION SETS

• Byte order:
– Little endian: numbers start with the least significant byte
– Big endian: numbers start with the most significant byte
– Bi endian: can be selected (HW or SW)
– Example: 23423765 (=1656B15) 

● Little endian: 15 6B 65 01
● Big endian: 01 65 6B 15

• Ways of communicating with I/O devices:
– Separate instructions for I/O
– Memory mapped
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RISC VS. CISC

• Typical in the 70's: 
– a large number of instructions
– complex instructions

• Motivations:
– Memory was slow – with complex instructions, the processor got more work with a single 

memory operation
– Memory was expensive – a single instruction describes more work for the processor
– Compilers were very basic that time. The processor had a „high level” like instruction set 

to allow easy assembly programming.

• This is the CISC (Complex Instruction Set Computer) philosophy
• Features:

– Easy to use instructions
– Register-memory instructions (pl. R1 ← R2 + MEM[42])
– Redundancy
– Several addressing modes
– Variable length instruction encoding
– The execution time of the various instructions is different
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RISC VS. CISC

• Typical CPU design trends in the 80's and 90's: 
– The number of instructions is as small as possible
– The instructions are very basic

• Motivations:
– To simplify the design of the CPU-s
– The simpler CPU design allows more efficient implementation

• This is the RISC (Reduced Instruction Set Computing) philosophy
• Features:

– Simple, elementary instructions, avoiding redundance
– Load-Store and register-register operations
– instead of R1←R2+MEM[42] we have R3←MEM[42]; R1←R2+R3.
– Only a few addressing modes are available
– Fixed instruction encoding
– Execution time of the instructions usually takes only 1 cycle
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RISC VS. CISC

• Comparison:

– CISC: dense
● The program is smaller

– RISC: simple
● Less design bugs
● The IC is smaller
● It consumes less energy
● Better yield when manufacturing it
● There is a lot of space left on the IC allowing the integration of 

further devices onto the same silicon

– CISC: a small number of registers vs. RISC: much more registers
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Some important instruction set architectures
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SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

x86

• First appearance: 1971, Intel 8086
• 1981: The Intel 8088 is selected as the CPU of the IBM PC 
• Originally it was a 16 bit ISA, but has been extended to 32 and 64 bit later
• Nowadays it is used both in high-performance servers and low-power 

mobile devices
• A very obsolete ISA, but the demand for software compatibility keeps it 

alive for >50 years
• Intel has spent most of its profit to develop more efficient semiconductor 

production technology
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SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

ARM

• First implementation: 1987
• The most wide-spread ISA all over the world
• It is 32 bit right from the beginning (extension to 64 bit is in the works)
• This ISA is very carefully designed, easy to implement

– Can be implemented with only 30.000 transistors!
• ARM does not manufacture CPUs

– The ISA can be licensed
– ARM designs CPUs, that can be licensed as well (ARM Cortex family)

• Primary goals: simplicity, energy efficiency
(not the raw computational power)
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SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

POWER

• Defined in 1991 by IBM, Apple and Motorola 
• Goal: to surpass the computational performance of x86 
• They succeeded:

– Huge memory and I/O bandwidth
– 2014: 5 GHz, 12 cores, 8 threads/core (POWER8)

• Did not get popular in PCs
• But it got popular in workstations and servers
• … and all prev. gen. game consols used POWER processors! 

(Microsoft XBox 360, Sony PlayStation 3, Nintendo Wii)
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SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

SPARC

• 1987, SUN
• 64 bit from the beginning
• Open platform!
• The design of UltraSPARC T1 and T2 can be accessed by anybody 

(at VeriLog level)
• Still in production (now by Oracle)

– 2013: SPARC T5: 16 cores, 8 threads/core, 3.6 GHz, etc.
– 2016: SPARC M7: 4.13 GHz, 32 cores, 8 threads/core (256 threads!)

• In 2017, the 7th most powerful computer is SPARC based
(and it is the first without GPU)
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THE PAST

Alpha (DEC, 1992)

• 64 bit from the beginning

• Extremely innovative:
– 21164: the first CPU with a big cache integrated with the CPU
– 21264: the first CPU with both high frequency and out-of-order execution
– 21364: the first CPU with integrated memory controller
– 21464: supposed to be the first multi-thread CPU (but the project was stopped 

meanwhile)

• Extremely strong floating point unit

• 21264 @ 833 MHz > 3x Pentium III @ 1 GHz!

• Hand-made design

• Canceled when Compaq acquired DEC

PA-RISC (1986, HP)

• First 32, later 64 bit CPUs

• Extremely strong floating point unit

• PA-8600 @ 552 MHz > 2x Pentium III @ 1 GHz!

• Canceled when HP started to develop the Itanium processors with Intel
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THE PAST (?)

IA-64 (Itanium)

• 1994, joint development of HP & Intel
• Huge interest from the press, very costly development
• First implementation: 2001, disappointing performance, sold only few 

thousand
• Supposed to be compatible with x86: succeeded, but it can reach only the 

level of a Pentium clocked at 100MHz...
• Problem: it needs a special compiler to utilize its abilities, they did not count 

with the difficulties of developing such compiler
• Still developed and manufactured, sold only  55.000 between 2001-2007 
• Most big companies stopped supporting it

– 2008: Microsoft
– 2011: Oracle

• 2018: Intel announced to finish the production (till 2021)
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COMPARISON

x86 ARM PowerPC SPARC

Number of bits 64 32 64 64

Year introduced 1978 1983 1991 1985

Num of operands 2 3 3 3

Instruction style Reg-mem Reg-reg Reg-reg Reg-reg

CISC vs. RISC CISC RISC RISC RISC

Num of registers 8/16 16 32 32

Instruction coding Variable (1-17) Fixed (4) Fixed (4 – com.) Fixed (4)

Conditional instr. Condition code Condition code Condition code Condition code

Byte order Little Big Big/Bi Bi

Addressing modes 5 6 4 2

Branch predication No Yes No No
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COMPARISON

m68k Alpha PA-RISC Itanium

Number of bits 32 64 64 64

Year introduced 1979 1992 1986 2001

Num of operands 2 3 3 3

Instruction style Reg-mem Reg-reg Reg-reg Reg-reg

CISC vs. RISC CISC RISC RISC EPIC

Num of registers 16 32 32 128

Instruction coding Variable (2-22) Fixed (4) Fixed (4) Fixed (16)

Conditional instr. Condition code Condition reg. Compare & jump ?

Byte order Big Bi Big Bi

Addressing modes 9 1 5 ?

Branch predication No No No Yes
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