
     © Department of Networked Systems and Services     © Department of Networked Systems and Services 1

Budapest, 
03/26/2025

COMPUTER ARCHITECTURES

Instruction set architectures

Gábor Horváth, ghorvath@hit.bme.hu



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 2

INSTRUCTION SET 
ARCHITECTURES

• Every processor has
– Instruction Set Architecture (ISA)
– A kind of programming interface

• Parts of ISA:
– List of supported instructions
– List of supported data types
– Registers
– Addressing modes
– Flags
– How to communicate with I/O devices
– Interrupt and exception handling
– Etc.



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 3

PROPERTIES OF THE 
INSTRUCTIONS

• „Parts” of an instruction:
– Code of the operation
– Values/addresses of operands
– Address where the result is stored
– Pointer to the next instruction

• For simplicity:
– Pointer to the next instruction is unnecessary

● The next instruction is always the next one in the memory
– Number of operands

● Support for 3 operands: R1 ← R2 + R3
● Support for 2 operands: R1 ← R1 + R2
● Support for 1 operands: ADD R1

+ R1 42 R2

/ 5 R2 R3



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 4

PROPERTIES OF THE 
INSTRUCTIONS

• Instruction types:
– Data movement

R1←R2, R1←MEM[100], R1←42, MEM[100]←R1, MEM[100]←42
– Arithmetic-logic operations

R1 ← R2+R3, R1 ← MEM[100]*42, MEM[100] ← R1 & R2
– Control flow operations: 

JUMP -42, JUMP +28 IF R1==R2, CALL proc, RETURN
– Stack operations

PUSH R1, PUSH 42, R2 ← POP
– I/O operations

IO[42] ← R1, R1 ← IO[42]
– Transcendent operations

R2 ← SIN R1, R2 ← SQRT 42
– Etc.



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 5

ADDRESSING MODES

• Determines, where the operand is located

• Possible locations:
– embedded in the instruction (immediate)
– in a register
– in the memory

Addressing mode Example

Register R1 ← R2 + R3
Immediate R1 ← R2 + 42
Direct R1 ← R2 + MEM[42]
Register indirect R1 ← R2 + MEM[R3]
Indirect with offset R1 ← R2 + MEM[R3+42]
Memory indirect R1 ← R2 + MEM[MEM[R3]]
Indexed R1 ← R2 + MEM[R3+R4]



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 6

CONTROL-FLOW OPERATIONS

• Typically relative addressing, e.g. JUMP -28
• 3 possible implementations of conditional branches:

– With condition codes:
COMPARE R1, R2
JUMP label IF GREATER

– With condition registers:
R0 ← R1 > R2
JUMP label IF R0

– „Compare and jump”:
JUMP label IF R1 > R2



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 7

BRANCH PREDICATION

• Predicates: instructions with conditions

R1 ← R2 + 32 IF P2
• Predicate registers: 1-bit registers (P2 in the example)
• Setting the predicate registers: by comparison instructions

P2 ← R3 ≤ R5



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 8

PROPERTIES OF THE 
INSTRUCTIONS

• The instructions are stored with a binary encoding
• Based on the length of the encoded instructions we have:

– Fixed length encoding
– Variable length encoding



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 9

ASSEMBLY PROGRAMMING

• Low-level programming:
– Manual encoding of the instructions is inconvenient
– Binary coded instructions are not for human use
– Tool: assembly programming

• Assembly
– The lowest level programming language
– The text representation of the machine level instructions

● 1 assembly „instruction” → 1 machine level instruction

• Assembler: creates machine code from assembly
• It is different for every instruction set architecture



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 10

ENCODING THE INSTRUCTIONS




     © Department of Networked Systems and Services     © Department of Networked Systems and Services 11

ENCODING THE INSTRUCTIONS

• The CPU of the Terminator: MOS-6502 (like the CPU of Apple II)
(the cheapest CPU between 1975 and 1980: it costed sixth the price of the Intel 
and Motorola CPU-s at the same level of performance)

• The Terminator runs an example code of the Nibble magazine



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 12

ENCODING THE INSTRUCTIONS

Assembly code

Binary encoded
(machine) instructions



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 13

EXAMPLE FOR INSTRUCTION 
CODING (X86)

• ADD ECX, EAX     (we write it: ECX ← ECX + EAX)

• ADD EDI, [EBX]     (we write it: EDI ← EDI + MEM[EBX])

= 01 C1
(ASCII: ☺┴)

= 03 3B
(ASCII: ;♥ )



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 14

EXAMPLE FOR INSTRUCTION 
CODING (X86)

• ADD EBX, 23423765   (we write it: EBX ← EBX + 23423765)

• = 81 C3 15 6B 65 01    (ASCII: Qü§ke☺) 



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 15

FURTHER PROPERTIES OF 
INSTRUCTION SETS

• Byte order:
– Little endian: numbers start with the least significant byte
– Big endian: numbers start with the most significant byte
– Bi endian: can be selected (HW or SW)
– Example: 23423765 (=1656B15) 

● Little endian: 15 6B 65 01
● Big endian: 01 65 6B 15

• Ways of communicating with I/O devices:
– Separate instructions for I/O
– Memory mapped



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 16

RISC VS. CISC

• Typical in the 70's: 
– a large number of instructions
– complex instructions

• Motivations:
– Memory was slow – with complex instructions, the processor got more work with a single 

memory operation
– Memory was expensive – a single instruction describes more work for the processor
– Compilers were very basic that time. The processor had a „high level” like instruction set 

to allow easy assembly programming.

• This is the CISC (Complex Instruction Set Computer) philosophy
• Features:

– Easy to use instructions
– Register-memory instructions (pl. R1 ← R2 + MEM[42])
– Redundancy
– Several addressing modes
– Variable length instruction encoding
– The execution time of the various instructions is different



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 17

RISC VS. CISC

• Typical CPU design trends in the 80's and 90's: 
– The number of instructions is as small as possible
– The instructions are very basic

• Motivations:
– To simplify the design of the CPU-s
– The simpler CPU design allows more efficient implementation

• This is the RISC (Reduced Instruction Set Computing) philosophy
• Features:

– Simple, elementary instructions, avoiding redundance
– Load-Store and register-register operations
– instead of R1←R2+MEM[42] we have R3←MEM[42]; R1←R2+R3.
– Only a few addressing modes are available
– Fixed instruction encoding
– Execution time of the instructions usually takes only 1 cycle



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 18

RISC VS. CISC

• Comparison:

– CISC: dense
● The program is smaller

– RISC: simple
● Less design bugs
● The IC is smaller
● It consumes less energy
● Better yield when manufacturing it
● There is a lot of space left on the IC allowing the integration of 

further devices onto the same silicon

– CISC: a small number of registers vs. RISC: much more registers



     © Hálózati Rendszerek és Szolgáltatások Tanszék       © Hálózati Rendszerek és Szolgáltatások Tanszék  19

Some important instruction set architectures



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 20

SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

x86

• First appearance: 1971, Intel 8086
• 1981: The Intel 8088 is selected as the CPU of the IBM PC 
• Originally it was a 16 bit ISA, but has been extended to 32 and 64 bit later
• Nowadays it is used both in high-performance servers and low-power 

mobile devices
• A very obsolete ISA, but the demand for software compatibility keeps it 

alive for >50 years
• Intel has spent most of its profit to develop more efficient semiconductor 

production technology



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 21

SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

ARM

• First implementation: 1987
• The most wide-spread ISA all over the world
• It is 32 bit right from the beginning (extension to 64 bit is in the works)
• This ISA is very carefully designed, easy to implement

– Can be implemented with only 30.000 transistors!
• ARM does not manufacture CPUs

– The ISA can be licensed
– ARM designs CPUs, that can be licensed as well (ARM Cortex family)

• Primary goals: simplicity, energy efficiency
(not the raw computational power)



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 22

SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

POWER

• Defined in 1991 by IBM, Apple and Motorola 
• Goal: to surpass the computational performance of x86 
• They succeeded:

– Huge memory and I/O bandwidth
– 2014: 5 GHz, 12 cores, 8 threads/core (POWER8)

• Did not get popular in PCs
• But it got popular in workstations and servers
• … and all prev. gen. game consols used POWER processors! 

(Microsoft XBox 360, Sony PlayStation 3, Nintendo Wii)



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 23

SOME IMPORTANT INSTRUCTION 
SET ARCHITECTURES

SPARC

• 1987, SUN
• 64 bit from the beginning
• Open platform!
• The design of UltraSPARC T1 and T2 can be accessed by anybody 

(at VeriLog level)
• Still in production (now by Oracle)

– 2013: SPARC T5: 16 cores, 8 threads/core, 3.6 GHz, etc.
– 2016: SPARC M7: 4.13 GHz, 32 cores, 8 threads/core (256 threads!)

• In 2017, the 7th most powerful computer is SPARC based
(and it is the first without GPU)



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 24

THE PAST

Alpha (DEC, 1992)

• 64 bit from the beginning

• Extremely innovative:
– 21164: the first CPU with a big cache integrated with the CPU
– 21264: the first CPU with both high frequency and out-of-order execution
– 21364: the first CPU with integrated memory controller
– 21464: supposed to be the first multi-thread CPU (but the project was stopped 

meanwhile)

• Extremely strong floating point unit

• 21264 @ 833 MHz > 3x Pentium III @ 1 GHz!

• Hand-made design

• Canceled when Compaq acquired DEC

PA-RISC (1986, HP)

• First 32, later 64 bit CPUs

• Extremely strong floating point unit

• PA-8600 @ 552 MHz > 2x Pentium III @ 1 GHz!

• Canceled when HP started to develop the Itanium processors with Intel



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 25

THE PAST (?)

IA-64 (Itanium)

• 1994, joint development of HP & Intel
• Huge interest from the press, very costly development
• First implementation: 2001, disappointing performance, sold only few 

thousand
• Supposed to be compatible with x86: succeeded, but it can reach only the 

level of a Pentium clocked at 100MHz...
• Problem: it needs a special compiler to utilize its abilities, they did not count 

with the difficulties of developing such compiler
• Still developed and manufactured, sold only  55.000 between 2001-2007 
• Most big companies stopped supporting it

– 2008: Microsoft
– 2011: Oracle

• 2018: Intel announced to finish the production (till 2021)



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 26

COMPARISON

x86 ARM PowerPC SPARC

Number of bits 64 32 64 64

Year introduced 1978 1983 1991 1985

Num of operands 2 3 3 3

Instruction style Reg-mem Reg-reg Reg-reg Reg-reg

CISC vs. RISC CISC RISC RISC RISC

Num of registers 8/16 16 32 32

Instruction coding Variable (1-17) Fixed (4) Fixed (4 – com.) Fixed (4)

Conditional instr. Condition code Condition code Condition code Condition code

Byte order Little Big Big/Bi Bi

Addressing modes 5 6 4 2

Branch predication No Yes No No



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 27

COMPARISON

m68k Alpha PA-RISC Itanium

Number of bits 32 64 64 64

Year introduced 1979 1992 1986 2001

Num of operands 2 3 3 3

Instruction style Reg-mem Reg-reg Reg-reg Reg-reg

CISC vs. RISC CISC RISC RISC EPIC

Num of registers 16 32 32 128

Instruction coding Variable (2-22) Fixed (4) Fixed (4) Fixed (16)

Conditional instr. Condition code Condition reg. Compare & jump ?

Byte order Big Bi Big Bi

Addressing modes 9 1 5 ?

Branch predication No No No Yes



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 28


	Slide 1
	A FÓLIA címe hosszú is lehet, legfeljebb két soros lesz
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

