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F' THE IMPORTANCE OF
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www.hit.bome.hu

* How to develop slow programs?

* Let us refer the memory content in a random order
* Many cache misses
* Many TLB misses
 Many page faults
 DRAM row activation many times

* How to develop fast programs?
* Let us take the memory hierarchy into consideration

 Memory references should exhibit
* Spatial locality
* Temporal locality
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Quantifying the effect of the locality of

references
Is it worth using memory hierarchy aware programing tricks?
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* The effect of temporal locality

 How important is it to decrease the memory used by the
programs, and use the same data many times?

* The effect of spatial locality

* How important is it to traverse the data in a memory
continuous way?
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* Measurement method:
* Let us take a large (N) array
* Array entries: pointers to further entries of the array
* The pointer chain includes all elements in a random-like order

A Al csislriplolrlriy
s

* The naive algorithm for traversing the pointer chain is:

for (int i=0; i<iterations; i++)
| p = *p;

* We use a trick called “loop unrolling” to amortize the cost of the handling
of the for cycle (see next slide)
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* Measurement method:
* Let us take alarge (N) array
* Array entries: pointers to further entries of the array
* The pointer chain includes all elements in a random-like order

F' MEASURING THE EFFECT
lTW OF TEMPORAL LOCALITY

A Al csislriplolrlriy

S

* We measure the execution time of traversing the pointer chain:

for (int i=0; i<iterations/100; i++) ({
p = *p;
p = *p;
p = *p;

}
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Memory access latency as a function of array size and CPU type
1000 —

www.hit.bome.hu

i7-2700 —— ' '
P4 Northwood

Raspberry Pi s _
100 | Rockchip RK3188 ——

Memory access latency [ns]

1kB 32kB 256kB EMB 128MB

_ Array size [byte]
« Conclusion:

* The size of caches can be identified
 Message:
* Temporal locality does matter a lot
» Difference of memory access times can be up to 200x !!!
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* Measurement method:

* Like before, but the chain is sequential now (rather than
random)

A VA VA VA VA | /. VA VA VA VA VA
/‘/\/w‘o’{({o’{q{{{{{)

R -

* Expected results: improved memory access times
* Cache miss ratio decreases:

* If a cache block is referred to, we proceed and use all further
elements of the same cache block as well

* If there is a cache prefetch algorithm in the CPU, it can take the
advantage of sequential read operations

* The TLB miss ratio decreases

* If a page is referred to, we proceed and use all further elements
of the same page, thus the same page table entry can be used
for address translations
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F' MEASURING THE EFFECT OF
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* The results of three kinds of measurements are compared:

* The previous measurement with random array (used as reference)
— Only temporal locality may result in a cache hit

~ e aaaa

* The currently introduced “elementwise” sequential traversal of the array
— Spatial locality will result in cache hits

/A VA V4. VA VA | /. VA VA VA VA VA |
J/‘.//W‘Jq;({;.l/\‘{{{{g{)

* Sequentia ~usl ' al to the cache block
size

— Only successful prefetch can result in a cache hit!
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- MEASURING THE EFFECT OF
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e Results:

Core i7

Pentium 4
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e Conclusion:

* |tis worth traversing data structures in a memory continuous
way

* In case of large arrays the difference is 40x-80x
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Locality aware loops
What can a C programmer do?
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Original C code: After loop fusion:
for (i=0; i<N; i++) sum = 0;

b[i] = ¢ * a[i] + Xx; for (i=0; i<N; i++) {
sum = 0; b[i] = ¢ * a[i] + Xx;
for (i=0; i<N; i++) sum += b[i];

sum += b[i]; d[i] = a[i] + b[i];
for (i=@; i<N; i++) }

d[i] = a[i] + b[i];

 (Cache miss analysis: (assume 8 double / cache block, N is large)
* Original code:
* First loop: 2N references, 2N/8 cache misses
e Second loop: N references, N/8 misses
* Third loop: 3N references, 3N/8 misses
* Total: 6N references, 6N/8 cache misses
— Cache miss ratio: 1/8 =12.5%
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Original C code: After loop fusion:
for (i=0; i<N; i++) sum = 0;

b[i] = ¢ * a[i] + Xx; for (i=0; i<N; i++) {
sum = 0; b[i] = ¢ * a[i] + Xx;
for (i=0; i<N; i++) sum += b[i];

sum += b[i]; d[i] = a[i] + b[i];
for (i=0; i<N; i++) }

d[i] = a[i] + b[i];

* After loop merging:
* First line of the loop: 2N references, 2N/8 cache miss
 Second line: N references, 0 cache miss!
* Third line: 3N references, N/8 miss (due to d]i])
» Total: 6N references, 3N/8 cache miss
— Cache miss ratio: 1/16 = 6.25%
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* Conclusion:
* Traversing arrays several times should be avoided
A common loop is better than multiple small loops
 Measurement results:
° N=222

i7-2600 P4 Rasp. Pi RK3188

Original algorithm 16.933 ms 109.974 ms 698.450 ms 115.354 ms
After loop merging 8469 ms 84.917ms 203.755ms 97.126 ms
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Row-continuous traversal: Column-continuous traversal:
for (i=@: i<N;: i++) for (j=0; j<N; j++)
for (j=0; j<N; j++) for (i=0@; i<N; i++)
sum += a[il[j]; sum += a[i][j];

* C language: arrays are stored in a row-continuous way

* Also called: row major order
https://en.wikipedia.org/wiki/Row-_and_column-major_order

Assumption: 8 double/cache block, N large

* Cache miss analysis:

With row-continuous traversal:
* Array is traversed in a memory-continuous way
« We saw how fast it is a[0][0] a[0][1] a[0][2]
* 1 cache miss for 8 memory references a[1][0] a[1][1] a[1][2]
 Cache miss ratio: 1/8 =12.5% al2][0] a[2][1] a[2][2]
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Row-continuous traversal: Column-continuous traversal:
for (i=0:; i<N; i++) for (j=0; j<N; j++)
for (j=0; j<N; j++) for (1i=0; i<N; i++)
sum += a[il[j]; sum += a[i][j];

Column-continuous traversal:
* N-1 elements are skipped after each memory reference

* [f the CPU supports cache prefetch, it can adapt to this
behavior and fetch the data before the first references

* If there is no prefetch and N > cache size:
* Blocks are replaced before incrementing j
 Each memory references imply a cache miss!

e Cache miss ratio: 100%
a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]
a[2][0] a[2][1] a[2][2]
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e Conclusion:

* Data structures should be traversed in a memory-continuous
way

e Measurement results:
e N=2048

i7-2600 Rasp. Pi RK3188

Row-continuous 6.312 ms 8973 ms 605757 ms 14.879 ms
Column-continuous 6.926 ms 160.78 ms 4363.13ms 60.96 ms

(Core i7 has a cache prefetch algorithm)
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Original C code: After loop tiling:
for (i=0;: i<N: i++)  for (bi=0; bi<=N-BLK; bi+=BLK)
for (j=0; j<N; j++) | for (bj=0; bj<=N-BLK; bj+=BLK)
b[jI[i] = a[il[j]; for (i=bi; i<bi+BLK; i++)

for (j=bj; j<bj+BLK; j++)
b[jI1[i] = al[il[]j];

* Matrix transpose (image rotation, etc.)
 Assumptions: 8 double/cache block, N is large
* Cache miss analysis:
* Original C code:
 a[i][j]: row-continuous traversal, N? references, N4/8 cache misses
* Db[j][i]: column-continuous traversal, N2 references, N? cache misses
» Total: 2N? references, N4/8 + N?cache miss
« Cache miss ratio: 9/16 = 56.25%
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e Operation of the matrix transposition:

Original C code: After loop tiling:
LI b
. : A X
|I J J o]
bj =
A |

« The N x N arrays do not fit into the cache
* Their column continuous access has 100% cache miss ratio
* The two (green colored) BLK x BLK block do fit into the cache
* Their column-continuous access will have only 1/8 cache miss ratio
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Original C code: After loop tiling:
for (i=@: i<N: i++)  for (bi=@; bi<=N-BLK; bi+=BLK)
for (j=0; j<N; j++) | for (bj=0; bj<=N-BLK; bj+=BLK)
b[j1[i] = al[illj]; for (i=bi; i<bi+BLK; i++)
| for (j=bj; j<bj+BLK; j++)
b[jl1[1i] = a[i][]j];

» After loop tiling:
* We proceed block-by-block
* If BLK is properly set, a BLK x BLK sized block fits into the cache
 ali][j] and bIj][i] will both be in the cache!
 ali][j]: row-continuous traversal, N? references, N?/8 cache miss
* DbJ[j][i]: column-continuous traversal, N? references, N?/8 cache miss
» Total: 2N? references, N?/8 +N2/8 cache miss
« Cache miss ratio: 1/8 = 12.5%
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* How to determine the optimal block size?
* Too small — like without loop tiling
* Too large — like without loop tiling

* Architecture dependent! It depends on both
* Cache size
e Cache block size

e Measurement results:
e N=2048
e BLK from 1 to 2048
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e Results:
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