
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2025. 03. 26.

COMPUTER ARCHITECTURES

Locality-aware Programming

Prepared by: Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

THE IMPORTANCE OF
LOCALITY OF REFERENCES

● How to develop slow programs?
● Let us refer the memory content in a random order

● Many cache misses
● Many TLB misses
● Many page faults
● DRAM row activation many times

● How to develop fast programs?
● Let us take the memory hierarchy into consideration
● Memory references should exhibit

● Spatial locality
● Temporal locality

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

Quantifying the effect of the locality of
references

Is it worth using memory hierarchy aware programing tricks?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

WHAT TO MEASURE?

● The effect of temporal locality
● How important is it to decrease the memory used by the

programs, and use the same data many times?
● The effect of spatial locality

● How important is it to traverse the data in a memory
continuous way?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

● Measurement method:
● Let us take a large (N) array
● Array entries: pointers to further entries of the array
● The pointer chain includes all elements in a random-like order

● The naive algorithm for traversing the pointer chain is:

● We use a trick called “loop unrolling” to amortize the cost of the handling
of the for cycle (see next slide)

MEASURING THE EFFECT
OF TEMPORAL LOCALITY

for (int i=0; i<iterations; i++)
 p = *p;

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

● Measurement method:
● Let us take a large (N) array
● Array entries: pointers to further entries of the array
● The pointer chain includes all elements in a random-like order

● We measure the execution time of traversing the pointer chain:

MEASURING THE EFFECT
OF TEMPORAL LOCALITY

for (int i=0; i<iterations/100; i++) {
 p = *p;
 p = *p;
 ...
 p = *p;
}

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

MEASURING THE EFFECT OF
TEMPORAL LOCALITY

● Conclusion:
● The size of caches can be identified
● Message:

● Temporal locality does matter a lot
● Difference of memory access times can be up to 200x !!!

Memory access latency as a function of array size and CPU type

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

MEASURING THE EFFECT OF
SPATIAL LOCALITY

● Measurement method:
● Like before, but the chain is sequential now (rather than

random)

● Expected results: improved memory access times
● Cache miss ratio decreases:

● If a cache block is referred to, we proceed and use all further
elements of the same cache block as well

● If there is a cache prefetch algorithm in the CPU, it can take the
advantage of sequential read operations

● The TLB miss ratio decreases
● If a page is referred to, we proceed and use all further elements

of the same page, thus the same page table entry can be used
for address translations

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

● The results of three kinds of measurements are compared:
● The previous measurement with random array (used as reference)

→ Only temporal locality may result in a cache hit

● The currently introduced “elementwise” sequential traversal of the array
→ Spatial locality will result in cache hits

● Sequential traversal of the array, using stride equal to the cache block
size

→ Only successful prefetch can result in a cache hit!

MEASURING THE EFFECT OF
SPATIAL LOCALITY

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

MEASURING THE EFFECT OF
SPATIAL LOCALITY

● Results:

Pentium 4 Core i7

ARM (raspberry pi) ARM (rk3188)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

MEASURING THE EFFECT OF
SPATIAL LOCALITY

● Conclusion:
● It is worth traversing data structures in a memory continuous

way
● In case of large arrays the difference is 40x-80x

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

Locality aware loops
What can a C programmer do?

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

LOOP FUSION

● Cache miss analysis: (assume 8 double / cache block, N is large)
● Original code:

● First loop: 2N references, 2N/8 cache misses
● Second loop: N references, N/8 misses
● Third loop: 3N references, 3N/8 misses

● Total: 6N references, 6N/8 cache misses
→ Cache miss ratio: 1/8 = 12.5%

for (i=0; i<N; i++)
 b[i] = c * a[i] + x;
sum = 0;
for (i=0; i<N; i++)
 sum += b[i];
for (i=0; i<N; i++)
 d[i] = a[i] + b[i];

sum = 0;
for (i=0; i<N; i++) {
 b[i] = c * a[i] + x;
 sum += b[i];
 d[i] = a[i] + b[i];
}

Original C code: After loop fusion:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

LOOP FUSION

● After loop merging:
● First line of the loop: 2N references, 2N/8 cache miss
● Second line: N references, 0 cache miss!
● Third line: 3N references, N/8 miss (due to d[i])

● Total: 6N references, 3N/8 cache miss
→ Cache miss ratio: 1/16 = 6.25%

for (i=0; i<N; i++)
 b[i] = c * a[i] + x;
sum = 0;
for (i=0; i<N; i++)
 sum += b[i];
for (i=0; i<N; i++)
 d[i] = a[i] + b[i];

sum = 0;
for (i=0; i<N; i++) {
 b[i] = c * a[i] + x;
 sum += b[i];
 d[i] = a[i] + b[i];
}

Original C code: After loop fusion:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

LOOP FUSION

● Conclusion:
● Traversing arrays several times should be avoided
● A common loop is better than multiple small loops

● Measurement results:
● N=222

i7-2600 P4 Rasp. Pi RK3188

Original algorithm 16.533 ms 109.974 ms 698.450 ms 115.354 ms

After loop merging 8.469 ms 84.917 ms 203.755 ms 97.126 ms

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

OPTIMIZING THE ORDER OF
LOOPS

● C language: arrays are stored in a row-continuous way
● Also called: row major order

https://en.wikipedia.org/wiki/Row-_and_column-major_order
● Assumption: 8 double/cache block, N large
● Cache miss analysis:
● With row-continuous traversal:

● Array is traversed in a memory-continuous way
● We saw how fast it is
● 1 cache miss for 8 memory references
● Cache miss ratio: 1/8 = 12.5%

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 sum += a[i][j];

for (j=0; j<N; j++)
 for (i=0; i<N; i++)
 sum += a[i][j];

Row-continuous traversal: Column-continuous traversal:

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

https://en.wikipedia.org/wiki/Row-_and_column-major_order

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

OPTIMIZING THE ORDER OF
LOOPS

Column-continuous traversal:
● N-1 elements are skipped after each memory reference
● If the CPU supports cache prefetch, it can adapt to this

behavior and fetch the data before the first references
● If there is no prefetch and N > cache size:

● Blocks are replaced before incrementing j
● Each memory references imply a cache miss!
● Cache miss ratio: 100%

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 sum += a[i][j];

for (j=0; j<N; j++)
 for (i=0; i<N; i++)
 sum += a[i][j];

Row-continuous traversal: Column-continuous traversal:

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

OPTIMIZING THE ORDER OF
LOOPS

● Conclusion:
● Data structures should be traversed in a memory-continuous

way

● Measurement results:
● N=2048

(Core i7 has a cache prefetch algorithm)

i7-2600 P4 Rasp. Pi RK3188

Row-continuous 6.312 ms 8.973 ms 605.757 ms 14.879 ms

Column-continuous 6.926 ms 160.78 ms 4363.13 ms 60.96 ms

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

LOOP TILING

● Matrix transpose (image rotation, etc.)
● Assumptions: 8 double/cache block, N is large
● Cache miss analysis:
● Original C code:

● a[i][j]: row-continuous traversal, N2 references, N2/8 cache misses
● b[j][i]: column-continuous traversal, N2 references, N2 cache misses
● Total: 2N2 references, N2/8 + N2 cache miss
● Cache miss ratio: 9/16 = 56.25%

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 b[j][i] = a[i][j];

for (bi=0; bi<=N-BLK; bi+=BLK)
 for (bj=0; bj<=N-BLK; bj+=BLK)
 for (i=bi; i<bi+BLK; i++)
 for (j=bj; j<bj+BLK; j++)
 b[j][i] = a[i][j];

Original C code: After loop tiling:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

LOOP TILING

● Operation of the matrix transposition:
Original C code: After loop tiling:

● The N x N arrays do not fit into the cache
● Their column continuous access has 100% cache miss ratio

● The two (green colored) BLK x BLK block do fit into the cache
● Their column-continuous access will have only 1/8 cache miss ratio

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

LOOP TILING

● After loop tiling:
● We proceed block-by-block
● If BLK is properly set, a BLK x BLK sized block fits into the cache
● a[i][j] and b[j][i] will both be in the cache!
● a[i][j]: row-continuous traversal, N2 references, N2/8 cache miss
● b[j][i]: column-continuous traversal, N2 references, N2/8 cache miss
● Total: 2N2 references, N2/8 +N2/8 cache miss
● Cache miss ratio: 1/8 = 12.5%

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 b[j][i] = a[i][j];

for (bi=0; bi<=N-BLK; bi+=BLK)
 for (bj=0; bj<=N-BLK; bj+=BLK)
 for (i=bi; i<bi+BLK; i++)
 for (j=bj; j<bj+BLK; j++)
 b[j][i] = a[i][j];

Original C code: After loop tiling:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

LOOP TILING

● How to determine the optimal block size?
● Too small → like without loop tiling
● Too large → like without loop tiling
● Architecture dependent! It depends on both

● Cache size
● Cache block size

● Measurement results:
● N=2048
● BLK from 1 to 2048

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

LOOP TILING

● Results:

Pentium 4 Core i7

ARM (raspberry pi) ARM (rk3188)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

