DEPARTMENT OF

NETWORKED SYSTEMS
AND SEFRVICES

COMPUTER ARCHITECTURES
Locality-aware Programming

Budapest,
2025. 03. 26.

Prepared by: Gabor Horvath, ghorvath@hit.ome.hu Py VU

MGEGYETEM 1782

© Department of Networked Systems and Services 1

F' THE IMPORTANCE OF
] IW LOCALITY OF REFERENCES

www.hit.bome.hu

* How to develop slow programs?

* Let us refer the memory content in a random order
* Many cache misses
* Many TLB misses
 Many page faults
 DRAM row activation many times

* How to develop fast programs?
* Let us take the memory hierarchy into consideration

 Memory references should exhibit
* Spatial locality
* Temporal locality

© Department of Networked Systems and Services 2

Quantifying the effect of the locality of

references
Is it worth using memory hierarchy aware programing tricks?

© Department of Networked Systems and Services

]
Fl I L WHAT TO MEASURE? I

AND SERVICES
www.hit.bome.hu

* The effect of temporal locality

 How important is it to decrease the memory used by the
programs, and use the same data many times?

* The effect of spatial locality

* How important is it to traverse the data in a memory
continuous way?

© Department of Networked Systems and Services 4

F' MEASURING THE EFFECT
] IW OF TEMPORAL LOCALITY

www.hit.bome.hu

* Measurement method:
* Let us take a large (N) array
* Array entries: pointers to further entries of the array
* The pointer chain includes all elements in a random-like order

A Al csislriplolrlriy
s

* The naive algorithm for traversing the pointer chain is:

for (int i=0; i<iterations; i++)
| p = *p;

* We use a trick called “loop unrolling” to amortize the cost of the handling
of the for cycle (see next slide)

© Department of Networked Systems and Services

AND SERVICES
www.hit.bome.hu

* Measurement method:
* Let us take alarge (N) array
* Array entries: pointers to further entries of the array
* The pointer chain includes all elements in a random-like order

F' MEASURING THE EFFECT
lTW OF TEMPORAL LOCALITY

A Al csislriplolrlriy

S

* We measure the execution time of traversing the pointer chain:

for (int i=0; i<iterations/100; i++) ({
p = *p;
p = *p;
p = *p;

}

© Department of Networked Systems and Services

F' MEASURING THE EFFECT OF
lTW TEMPORAL LOCALITY

Memory access latency as a function of array size and CPU type
1000 —

www.hit.bome.hu

i7-2700 —— ' '
P4 Northwood

Raspberry Pi s _
100 | Rockchip RK3188 ——

Memory access latency [ns]

1kB 32kB 256kB EMB 128MB

_ Array size [byte]
« Conclusion:

* The size of caches can be identified
 Message:
* Temporal locality does matter a lot
» Difference of memory access times can be up to 200x !!!

© Department of Networked Systems and Services 7

|-' | MEASURING THE EFFECT OF
B SPATIAL LOCALITY

www.hit.bome.hu

* Measurement method:

* Like before, but the chain is sequential now (rather than
random)

A VA VA VA VA | /. VA VA VA VA VA
/‘/\/w‘o’{({o’{q{{{{{)

R -

* Expected results: improved memory access times
* Cache miss ratio decreases:

* If a cache block is referred to, we proceed and use all further
elements of the same cache block as well

* If there is a cache prefetch algorithm in the CPU, it can take the
advantage of sequential read operations

* The TLB miss ratio decreases

* If a page is referred to, we proceed and use all further elements
of the same page, thus the same page table entry can be used
for address translations

© Department of Networked Systems and Services 8

F' MEASURING THE EFFECT OF
lTW SPATIAL LOCALITY

* The results of three kinds of measurements are compared:

* The previous measurement with random array (used as reference)
— Only temporal locality may result in a cache hit

~ e aaaa

* The currently introduced “elementwise” sequential traversal of the array
— Spatial locality will result in cache hits

/A VA V4. VA VA | /. VA VA VA VA VA |
J/‘.//W‘Jq;({;.l/\‘{{{{g{)

* Sequentia ~usl ' al to the cache block
size

— Only successful prefetch can result in a cache hit!

© Department of Networked Systems and Services 9

- MEASURING THE EFFECT OF
R SPATIAL LOCALITY

e Results:

Core i7

Pentium 4

1000 T T T 1000 T T T
Random traversal = Random traversal s
= Sequential traversal, elementwise = R Sequential traversal, elementwise ==
- Sequential traversal, blockwise - Sequential traversal, blockwise
[*] [%)
= 100 ¢ 1 2 100 |]
@ O s
= =
W vy
i i
1¥) L5
& 10 B E @ 10 ¢ q
o 2
[=] [=]
E E
] T D ——
= 1L J = 1k _

1kB 32kB 256kB EMB 128MB 1kB 32kB 256kB 3MB 128MB
Array size [byte] Array size [byte]

ARM (raspberry pi) ARM (rk3188)

1000 T 1000 T
T "
= =
z P z
c 100 ¢ A q c 100 ¢ E
[il <
w) wl
W wl
8 g -
& 10 ¢ E g 10 ey]
: s —
=} =] ——————————
E Random traversal E = ’ Random traversal
= 1l Sequential traversal, elementwise == | = 1L Sequential traversal, elementwise == |
. . Sequential traversal, blockwise ‘ . Sequential traversal, blockwise
1kB 32kB 256kB 8MB 128MB 1kB 32kB 256kB 8MB 128MB
Array size [byte] Array size [byte]

© Department of Networked Systems and Services

F' MEASURING THE EFFECT OF
lTW SPATIAL LOCALITY

www.hit.bome.hu

e Conclusion:

* |tis worth traversing data structures in a memory continuous
way

* In case of large arrays the difference is 40x-80x

© Department of Networked Systems and Services

Locality aware loops
What can a C programmer do?

© Department of Networked Systems and Services

DEPARTMENT OF LOOP FUSION
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

Original C code: After loop fusion:
for (i=0; i<N; i++) sum = 0;

b[i] = ¢ * a[i] + Xx; for (i=0; i<N; i++) {
sum = 0; b[i] = ¢ * a[i] + Xx;
for (i=0; i<N; i++) sum += b[i];

sum += b[i]; d[i] = a[i] + b[i];
for (i=@; i<N; i++) }

d[i] = a[i] + b[i];

 (Cache miss analysis: (assume 8 double / cache block, N is large)
* Original code:
* First loop: 2N references, 2N/8 cache misses
e Second loop: N references, N/8 misses
* Third loop: 3N references, 3N/8 misses
* Total: 6N references, 6N/8 cache misses
— Cache miss ratio: 1/8 =12.5%

© Department of Networked Systems and Services

DEPARTMENT OF LOOP FUSION
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

Original C code: After loop fusion:
for (i=0; i<N; i++) sum = 0;

b[i] = ¢ * a[i] + Xx; for (i=0; i<N; i++) {
sum = 0; b[i] = ¢ * a[i] + Xx;
for (i=0; i<N; i++) sum += b[i];

sum += b[i]; d[i] = a[i] + b[i];
for (i=0; i<N; i++) }

d[i] = a[i] + b[i];

* After loop merging:
* First line of the loop: 2N references, 2N/8 cache miss
 Second line: N references, 0 cache miss!
* Third line: 3N references, N/8 miss (due to d]i])
» Total: 6N references, 3N/8 cache miss
— Cache miss ratio: 1/16 = 6.25%

© Department of Networked Systems and Services

DEPARTMENT OF LOOP FUSION
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

* Conclusion:
* Traversing arrays several times should be avoided
A common loop is better than multiple small loops
 Measurement results:
° N=222

i7-2600 P4 Rasp. Pi RK3188

Original algorithm 16.933 ms 109.974 ms 698.450 ms 115.354 ms
After loop merging 8469 ms 84.917ms 203.755ms 97.126 ms

© Department of Networked Systems and Services

FiT OPTIMIZING THE ORDER OF

EPARTMENT OF
AND SERVICES LOOPS
www.hit.bme.hu
Row-continuous traversal: Column-continuous traversal:
for (i=@: i<N;: i++) for (j=0; j<N; j++)
for (j=0; j<N; j++) for (i=0@; i<N; i++)
sum += a[il[j]; sum += a[i][j];

* C language: arrays are stored in a row-continuous way

* Also called: row major order
https://en.wikipedia.org/wiki/Row-_and_column-major_order

Assumption: 8 double/cache block, N large

* Cache miss analysis:

With row-continuous traversal:
* Array is traversed in a memory-continuous way
« We saw how fast it is a[0][0] a[0][1] a[0][2]
* 1 cache miss for 8 memory references a[1][0] a[1][1] a[1][2]
 Cache miss ratio: 1/8 =12.5% al2][0] a[2][1] a[2][2]

© Department of Networked Systems and Services 16

https://en.wikipedia.org/wiki/Row-_and_column-major_order

FiT N OPTIMIZING THE ORDER OF

R LOOPS
www.hit.bome.hu
Row-continuous traversal: Column-continuous traversal:
for (i=0:; i<N; i++) for (j=0; j<N; j++)
for (j=0; j<N; j++) for (1i=0; i<N; i++)
sum += a[il[j]; sum += a[i][j];

Column-continuous traversal:
* N-1 elements are skipped after each memory reference

* [f the CPU supports cache prefetch, it can adapt to this
behavior and fetch the data before the first references

* If there is no prefetch and N > cache size:
* Blocks are replaced before incrementing j
 Each memory references imply a cache miss!

e Cache miss ratio: 100%
a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]
a[2][0] a[2][1] a[2][2]

© Department of Networked Systems and Services 17

I_' N OPTIMIZING THE ORDER OF
|T LOOPS

www.hit.bome.hu

e Conclusion:

* Data structures should be traversed in a memory-continuous
way

e Measurement results:
e N=2048

i7-2600 Rasp. Pi RK3188

Row-continuous 6.312 ms 8973 ms 605757 ms 14.879 ms
Column-continuous 6.926 ms 160.78 ms 4363.13ms 60.96 ms

(Core i7 has a cache prefetch algorithm)

© Department of Networked Systems and Services

DEPARTMENT OF LOOP TILING
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

Original C code: After loop tiling:
for (i=0;: i<N: i++) for (bi=0; bi<=N-BLK; bi+=BLK)
for (j=0; j<N; j++) | for (bj=0; bj<=N-BLK; bj+=BLK)
b[jI[i] = a[il[j]; for (i=bi; i<bi+BLK; i++)

for (j=bj; j<bj+BLK; j++)
b[jI1[i] = al[il[]j];

* Matrix transpose (image rotation, etc.)
 Assumptions: 8 double/cache block, N is large
* Cache miss analysis:
* Original C code:
 a[i][j]: row-continuous traversal, N? references, N4/8 cache misses
* Db[j][i]: column-continuous traversal, N2 references, N? cache misses
» Total: 2N? references, N4/8 + N?cache miss
« Cache miss ratio: 9/16 = 56.25%

© Department of Networked Systems and Services

DEPARTMENT OF LOOP TILING
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

e Operation of the matrix transposition:

Original C code: After loop tiling:
LI b
. : A X
|I J J o]
bj =
A |

« The N x N arrays do not fit into the cache
* Their column continuous access has 100% cache miss ratio
* The two (green colored) BLK x BLK block do fit into the cache
* Their column-continuous access will have only 1/8 cache miss ratio

© Department of Networked Systems and Services

DEPARTMENT OF LOOP TILING
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

Original C code: After loop tiling:
for (i=@: i<N: i++) for (bi=@; bi<=N-BLK; bi+=BLK)
for (j=0; j<N; j++) | for (bj=0; bj<=N-BLK; bj+=BLK)
b[j1[i] = al[illj]; for (i=bi; i<bi+BLK; i++)
| for (j=bj; j<bj+BLK; j++)
b[jl1[1i] = a[i][]j];

» After loop tiling:
* We proceed block-by-block
* If BLK is properly set, a BLK x BLK sized block fits into the cache
 ali][j] and bIj][i] will both be in the cache!
 ali][j]: row-continuous traversal, N? references, N?/8 cache miss
* DbJ[j][i]: column-continuous traversal, N? references, N?/8 cache miss
» Total: 2N? references, N?/8 +N2/8 cache miss
« Cache miss ratio: 1/8 = 12.5%

© Department of Networked Systems and Services

DEPARTMENT OF LOOP TILING
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

* How to determine the optimal block size?
* Too small — like without loop tiling
* Too large — like without loop tiling

* Architecture dependent! It depends on both
* Cache size
e Cache block size

e Measurement results:
e N=2048
e BLK from 1 to 2048

© Department of Networked Systems and Services

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

e Results:

2500 T T .

2000 |

1500

Pentium 4

1000

Execution time [ms]

500 |

Without loop tiling ==
With loop tiling =

0 L L L
2 8 32

128 512 2kB

Block size (BLK)

9000

8000
7000
6000
5000
4000 -
3000
2000
1000

0 . .

Execution time [ms]

erry pi) ‘

Without loop tiling ==
With loop tiling ===

2 8 32

128 312 2kB

Block size (BLK)

© Department of Networked Systems and Services

Execution time [ms]

Execution time [ms]

300

250

200

150

100

50

1800
1600
1400
1200
1000
800
600
400
200

LOOP TILING

Core i7 -

Without loop tiling s i
IWith loop ti!ing —

8 32 128 512 2kB
Block size (BLK)

ARM (rk3188) |

Without loop tiling =
With loop tiling

8 32 128 512 2kB
Block size (BLK)

DEPARTMENT OF

NETWORKED SYSTEMS
AND SFRVICES

© Department of Networked Systems and Services

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

