
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
05/21/2025

COMPUTER ARCHITECTURES

Attacks against speculative execution

BUTE Department of Networked Systems and Services

ghorvath@hit.bme.hu

Gábor Horváth

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 2

Ingredients

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

USER AND KERNEL PAGES

● Recall: each has its own page table

– Task switching → Page table switching

● Also recall:

– The page table of tasks contain part of the kernel address space, too

– To enable fast execution of kernel calls

– … These pages have „supervisor” bit=1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

● User task:

– Can access only its own pages

● Kernel:

– Can access both the task’s and the kernel’s pager
● Kernel Call:

– User task triggers a special interrupt
● Puts the number of the kernel function to call into the EAX register

● Linux: INT 0x80, Windows: INT 0x2e
– On an interrupt, CPU always switches user → kernel mode

– Kernel pages are now accessible

– At the end of the kernel function it returns to user mode

USER AND KERNEL PAGES

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

● Speculative execution =
executing instructions that might not be needed

● Two main manifestations:
– Branch prediction

● Wrong prediction: instructions fetched by mistake are “invalidated”
– Exception handling

● At an exception, instructions whose execution started by mistake must be
“invalidated”

● Meaning of “invalidation”:
– Instructions that were executed by mistake are dropped

● They do not affect the archtiectural state
– … This is not always enough !!! They should disappear completely!

● Microarchitectural state can not always be restored
● Instruction might affect cache content, TLB and BTB content, etc.
● Fortunately these are not visible from outside (sure?)

SPECULATIVE EXECUTION

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

● = side channel attack
● = Trying and measuring

● Craching length N passwords in just 26·N steps
(instead of 26

N
):

– Let’s try: Ax, Bx, Cx, …, Zx
– Reasure response time
– Response takes longer if we got the first letter correct

● Strcmp has to compare the second letter, too!

– We move on to the second letter, etc.

TIMING ATTACKS

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 7

Meltdown

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

● The root of the problem:
– Attacker exploits the speculative execution
– Speculative instructions can leave microarchitectural traces
– By leveraging this, kernel memory can be accessed

● Idea:
– Let’s try to access kernel data (a secret)
– It shouldn’t work (protection fault)
– But the data access may have executed before the protection fault is

detected
– Of course, it will be invalidated, but the data remains in the cache
– … and that’s what we exploit!

CONCEPT

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

● Kernel secret we want to read: „secret”

i1: R1 ← MEM[address of secret]
i2: R2 ← R1 * 64
i3: R3 ← MEM[probe + R2]

● i1 leads to protection fault, the program stops executing
● But the fault is only detected later
● i2, i3 are invalidated (R1, R2, R3 are not changed)
● But the R1-th element of the probe array was loaded

into the cache!

IMPLEMENTATION

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

● The R1-th element of the probe array was loaded into the cache!
(even though its content, of course, hasn’t changed)

● The elements of the probe array are 64 bytes each
→ for every possible R1 value, a different block is loaded into the
cache

● We can measure what R1 might have been!
● We go through the probe array and measure the access time:

→ The value of R1 was 84

IMPLEMENTATION

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

● Kernel memory can be dumped at speed 100-500 KB/s

● KPTI (KASLR, KAISER)
– Kernel pages are not included in the page table of the task

→ Page tables are switched at each kernel call

– Implies up to 30% overhead

– AMD CPUs are not affected

MITIGATION

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

● Meltdown (2017):
– Exploits how exception handling works
– Accesses unauthorized data via the task’s own page tables
– Relatively easy to patch (≈)

● Spectre (2017):
– Exploits speculative execution due to conditional branching
– Goal: trick the CPU into speculatively executing attacker-controlled code

in a foreign address space
● Spectre v1: misprediction of a branch condition
● Spectre v2: misprediction of a branch target (BTB – Branch Target Buffer – is deliberately

“mistrained”)
– Gains access to secrets via a foreign task’s page table
– Very difficult to mitigate

● More and more speculative mechanisms are being found to be
vulnerable!

FURTHER ATTACKS AGAINST
SPECULATIVE EXECUTION

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

