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EXAMPLE (REMINDER)

Instructions: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

D2 ← MEM[R1] IF ID EX MEM WB

D3 ← D2 * D0 IF ID D* M0 M1 M2 M3 M4 MEM WB

MEM[R2] ← D3 IF S* ID D* D* D* D* EX MEM WB

R1 ← R1 + 8 IF S* S* S* S* ID EX MEM WB

R2 ← R2 + 8 IF ID EX MEM WB

Instruction scheduling: (latency of multiplication: 5, integer and memory operations: 1)

for (i=0; i<N; i++)
    Z[i]=A*X[i];

C code:

D2 ← MEM[R1]
D3 ← D2 * D0
MEM[R2] ← D3
R1 ← R1 + 8
R2 ← R2 + 8

Elementary instructions:

A: D0
X[i]: MEM[R1]
Z[i]: MEM[R2]
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OPTIMIZATION

● Let us determine the optimal order of instructions

Instructions: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

D2 ← MEM[R1] IF ID EX MEM WB

D3 ← D2 * D0 IF ID D* M0 M1 M2 M3 M4 MEM WB

R1 ← R1 + 8 IF S* ID EX MEM WB

MEM[R2] ← D3 IF ID D* D* D* EX MEM WB

R2 ← R2 + 8 IF S* S* S* ID EX MEM WB

D2 ← MEM[R1]
D3 ← D2 * D0
MEM[R2] ← D3
R1 ← R1 + 8
R2 ← R2 + 8

Original:

D2 ← MEM[R1]
D3 ← D2 * D0
MEM[R2] ← D3
R1 ← R1 + 8
R2 ← R2 + 8

O

D2 ← MEM[R1]
D3 ← D2 * D0
R1 ← R1 + 8
MEM[R2] ← D3
R2 ← R2 + 8

Optimized:
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OPTIMIZATION

● The program become faster due to the optimization
● Problems of this approach:

● Programmers/compiler have to recognize these possibilities
● The optimal order depends on the structure of the pipeline

● Ideal solution:
● The CPU should do it, on-the-fly
● The CPU should re-order the instructions such that

● the execution time is lower
● the semantics of the program remains the same

→ Out-of-order execution
● Implementation:

● Not as complex as it seems
● In use for a long time

● First: Scoreboard – 1964
● Advanced: Tomasulo – 1967 

● Used even in recent CPUs (e.g. Intel Core i7)
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Out-of-order execution
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THE FIRST

● First out-of-order CPU
● 1964: CDC 6600

● Designed by Seymour Cray
● Features:

● 16 functional units
● 10 MHz clock rate
● >400.000 transistors
● 5 tons
● Wired control

● The fastest computer of the word for the next 5 years
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CDC-6600

Freon-based cooling
in each case:

● Dual vector-graphics display:
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CRAY VS. IBM

● Thomas Watson (IBM):
„Last week, Control Data ... 
announced the 6600 system. I 
understand that in the 
laboratory developing the 
system there are only 34 people 
including the janitor. Of these, 
14 are engineers and 4 are 
programmers... Contrasting this 
modest effort with our vast 
development activities, I fail to 
understand why we have lost 
our industry leadership position 
by letting someone else offer 
the world's most powerful 
computer.”
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CRAY VS. IBM

● Seymour Cray (CD)
„It seems like Mr. Watson 
has answered his own 
question.”
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THE INGREDIENTS OF OUT-OF-ORDER 
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer
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INSTRUCTION WINDOW / RESERVATION 
STATIONS

● Fetching instructions (IF) → in-order
● Executing instructions (EX) → out-of-order

→ the instruction window is located in the ID phase
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INSTRUCTION WINDOW / 
RESERVATION STATIONS

● Cuts the pipeline into two parts:
● Front-end: instructions enter in an in-order way
● Back-end: instructions enter in an out-of-order way
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INSTRUCTION WINDOW / 
RESERVATION STATIONS

● ID is now separated to (non-standard terminology!):
● ID1: Dispatch (DS) – decodes instructions and puts them into the instruction window
● ID2: Issue (IS) – collects operands and assigns instructions to functional units
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DYNAMIC INSTRUCTION 
SCHEDULING

● The execution order of instructions is determined using

Data-flow approach
● A precedence graph is created

● Nodes: instructions
● Arcs: which other instructions need to be awaited before executing the 

instruction → dependencies
● An instruction is ready to be executed if all its dependencies are 

resolved. The dependencies can be:
● RAW: an input parameter is not yet ready
● WAW: it would write to a register, which is still to be written by an earlier, 

not yet finished instruction
● WAR: it would write to a register, which is still to be read by an earlier, 

not yet finished instruction
● If an instruction is ready to be executed, and there is an appropriate 

execution unit available, we execute it immediately
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● What happens, if more than one instructions are ready for an execution 
unit? (Contention)

● Choose the one that was ready earlier
● Choose the one that prevents the highest number of instruction from 

being ready for execution
● etc.

● For coloring the nodes of the precedence graph, we use the following 
colors to express the status of the instructions

● Blue: instruction is loaded into the reservation station
● Red: the execution of the instruction is in progress
● Green: the execution of the instruction has been finished

DYNAMIC INSTRUCTION 
SCHEDULING
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EXAMPLE

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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REGISTER RENAMING

● Goal: to make the precedence graph sparse
● The types of data dependencies (hazards):

● RAW:
D3 ← D2 * D0
MEM[R2] ← D3

→ Real dependency
● WAR:

D3 ← D2 * D0
...
D2 ← MEM[R1]

● WAW:
D3 ← D2 * D0

...
D3 ← MEM[R1]

● Surprise: the WAR and the WAW dependencies can be eliminated
→ Anti-dependencies
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REGISTER RENAMING

● Why would a programmer write such a code?
● WAR:

D3 ← D2 * D0
...
D2 ← MEM[R1]

● WAW:
D3 ← D2 * D0
...
D3 ← MEM[R1]

● The registers are re-used because we have too few of them!
● Let us put a large number of registers to the CPU

→ Physical registers
● Let us hide them. The programmer still works with

→ Logical/architectural registers (described in the ISA)
● The CPU re-writes the program on the fly to make use of the 

physical registers
→ Register renaming
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U17

D3 U4

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table
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Logical reg. Physical 
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U4

Original: After renaming:
Register alias table:
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REGISTER RENAMING
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REGISTER RENAMING
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Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
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i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated
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REGISTER RENAMING
● Tool: Register alias table
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REGISTER RENAMING
● Tool: Register alias table
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REGISTER RENAMING
● Tool: Register alias table
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● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U26

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U26

Original: After renaming:
Register alias table:



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 44

REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: R2 ← R2 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T49

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T49

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:
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REGISTER RENAMING
● Tool: Register alias table

● Entry i.:  the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

Logical reg. Physical 
reg.

R0 T21

R1 T49

R2 T50

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:
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REGISTER RENAMING

● Result:
● All WAW and WAR dependencies disappeared
● ...since we always store the result in a “clean”, unused register

● The precedence graph:

Before register renaming: After register renaming:
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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EXAMPLE

i1:  U25 ← MEM[T3]
i2:  U26 ← U25 * U9
i3:  MEM[T46] ← U26
i4:  T47 ← T3 + 8
i5:  T48 ← T46 + 8

i6:  U27 ← MEM[T47]
i7:  U28 ← U27 * U9
i8:  MEM[T48] ← U28
i9:  T49 ← T47 + 8
i10: T50 ← T48 + 8

i1:  D2 ← MEM[R1]
i2:  D3 ← D2 * D0
i3:  MEM[R2] ← D3
i4:  R1 ← R1 + 8
i5:  R2 ← R2 + 8

i6:  D2 ← MEM[R1]
i7:  D3 ← D2 * D0
i8:  MEM[R2] ← D3
i9:  R1 ← R1 + 8
i10: R2 ← R2 + 8
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REGISTER RENAMING

● Conclusion:
● Effective!
● The larger the instruction window is, the more efficient the  

register renaming is.
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THE INGREDIENTS OF OUT-OF-ORDER 
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 61

THE INGREDIENTS OF OUT-OF-ORDER 
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer
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RE-ORDER BUFFER

● Unwanted side effect of out-of-order execution:
● Registers/memory does not change in the order as given by the 

program
● The memory is shared

● Other processors are using it,
● I/O devices are using it,
● etc.

● Not everybody is prepared for this behavior!
● Solution: re-order buffer (ROB)

● An entry is allocated to each instruction when entering the CPU
● After executing the instruction, the ROB stores

● The result of the instruction
● The destination of the result (register/memory location)

● The results are written to the destination only when all preceding 
instructions are ready

● Complete: execution has been finished
● Retire: the result is written to its destination
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] U25
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] U25

U26 ← U25 * U9 U26
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 T47
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 T47

T48 ← T46 + 8 T48
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 T48

U27 ← MEM[T47] U27
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 ✔ <value> T48

U27 ← MEM[T47] U27

U28 ← U27 * U9 U28
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 ✔ <value> U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 ✔ <value> T48

U27 ← MEM[T47] ✔ <value> U27

U28 ← U27 * U9 U28

MEM[T48] ← U28 MEM[T48]
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EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 ✔ <value> U26

MEM[T46] ← U26 ✔ <value> MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 ✔ <value> T48

U27 ← MEM[T47] ✔ <value> U27

U28 ← U27 * U9 U28

MEM[T48] ← U28 MEM[T48]

T49 ← T47 + 8 T49
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OUT-OF-ORDER INSTRUCTION 
EXECUTION

● Covered topics:
● Principle: dependency analysis
● Can be more efficient if register renaming is used
● We can imitate in-order execution with a re-order buffer

● Implementations:
● Scoreboard (1964): no register renaming, no ROB
● Tomasulo (IBM, 1967): has register renaming, but no ROB
● Since Intel P6 (including Core i7): both register renaming and 

ROB
● In mobile devices: since ARM Cortex A9
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