
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
4/10/25

COMPUTER ARCHITECTURES

Out-of-order Execution

Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

EXAMPLE (REMINDER)

Instructions: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

D2 ← MEM[R1] IF ID EX MEM WB

D3 ← D2 * D0 IF ID D* M0 M1 M2 M3 M4 MEM WB

MEM[R2] ← D3 IF S* ID D* D* D* D* EX MEM WB

R1 ← R1 + 8 IF S* S* S* S* ID EX MEM WB

R2 ← R2 + 8 IF ID EX MEM WB

Instruction scheduling: (latency of multiplication: 5, integer and memory operations: 1)

for (i=0; i<N; i++)
 Z[i]=A*X[i];

C code:

D2 ← MEM[R1]
D3 ← D2 * D0
MEM[R2] ← D3
R1 ← R1 + 8
R2 ← R2 + 8

Elementary instructions:

A: D0
X[i]: MEM[R1]
Z[i]: MEM[R2]

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

OPTIMIZATION

● Let us determine the optimal order of instructions

Instructions: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

D2 ← MEM[R1] IF ID EX MEM WB

D3 ← D2 * D0 IF ID D* M0 M1 M2 M3 M4 MEM WB

R1 ← R1 + 8 IF S* ID EX MEM WB

MEM[R2] ← D3 IF ID D* D* D* EX MEM WB

R2 ← R2 + 8 IF S* S* S* ID EX MEM WB

D2 ← MEM[R1]
D3 ← D2 * D0
MEM[R2] ← D3
R1 ← R1 + 8
R2 ← R2 + 8

Original:

D2 ← MEM[R1]
D3 ← D2 * D0
MEM[R2] ← D3
R1 ← R1 + 8
R2 ← R2 + 8

O

D2 ← MEM[R1]
D3 ← D2 * D0
R1 ← R1 + 8
MEM[R2] ← D3
R2 ← R2 + 8

Optimized:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

OPTIMIZATION

● The program become faster due to the optimization
● Problems of this approach:

● Programmers/compiler have to recognize these possibilities
● The optimal order depends on the structure of the pipeline

● Ideal solution:
● The CPU should do it, on-the-fly
● The CPU should re-order the instructions such that

● the execution time is lower
● the semantics of the program remains the same

→ Out-of-order execution
● Implementation:

● Not as complex as it seems
● In use for a long time

● First: Scoreboard – 1964
● Advanced: Tomasulo – 1967

● Used even in recent CPUs (e.g. Intel Core i7)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

Out-of-order execution

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

THE FIRST

● First out-of-order CPU
● 1964: CDC 6600

● Designed by Seymour Cray
● Features:

● 16 functional units
● 10 MHz clock rate
● >400.000 transistors
● 5 tons
● Wired control

● The fastest computer of the word for the next 5 years

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

CDC-6600

Freon-based cooling
in each case:

● Dual vector-graphics display:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

CRAY VS. IBM

● Thomas Watson (IBM):
„Last week, Control Data ...
announced the 6600 system. I
understand that in the
laboratory developing the
system there are only 34 people
including the janitor. Of these,
14 are engineers and 4 are
programmers... Contrasting this
modest effort with our vast
development activities, I fail to
understand why we have lost
our industry leadership position
by letting someone else offer
the world's most powerful
computer.”

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

CRAY VS. IBM

● Seymour Cray (CD)
„It seems like Mr. Watson
has answered his own
question.”

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

INSTRUCTION WINDOW / RESERVATION
STATIONS

● Fetching instructions (IF) → in-order
● Executing instructions (EX) → out-of-order

→ the instruction window is located in the ID phase

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

INSTRUCTION WINDOW /
RESERVATION STATIONS

● Cuts the pipeline into two parts:
● Front-end: instructions enter in an in-order way
● Back-end: instructions enter in an out-of-order way

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

INSTRUCTION WINDOW /
RESERVATION STATIONS

● ID is now separated to (non-standard terminology!):
● ID1: Dispatch (DS) – decodes instructions and puts them into the instruction window
● ID2: Issue (IS) – collects operands and assigns instructions to functional units

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

DYNAMIC INSTRUCTION
SCHEDULING

● The execution order of instructions is determined using

Data-flow approach
● A precedence graph is created

● Nodes: instructions
● Arcs: which other instructions need to be awaited before executing the

instruction → dependencies
● An instruction is ready to be executed if all its dependencies are

resolved. The dependencies can be:
● RAW: an input parameter is not yet ready
● WAW: it would write to a register, which is still to be written by an earlier,

not yet finished instruction
● WAR: it would write to a register, which is still to be read by an earlier,

not yet finished instruction
● If an instruction is ready to be executed, and there is an appropriate

execution unit available, we execute it immediately

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

● What happens, if more than one instructions are ready for an execution
unit? (Contention)

● Choose the one that was ready earlier
● Choose the one that prevents the highest number of instruction from

being ready for execution
● etc.

● For coloring the nodes of the precedence graph, we use the following
colors to express the status of the instructions

● Blue: instruction is loaded into the reservation station
● Red: the execution of the instruction is in progress
● Green: the execution of the instruction has been finished

DYNAMIC INSTRUCTION
SCHEDULING

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

EXAMPLE

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

REGISTER RENAMING

● Goal: to make the precedence graph sparse
● The types of data dependencies (hazards):

● RAW:
D3 ← D2 * D0
MEM[R2] ← D3

→ Real dependency
● WAR:

D3 ← D2 * D0
...
D2 ← MEM[R1]

● WAW:
D3 ← D2 * D0

...
D3 ← MEM[R1]

● Surprise: the WAR and the WAW dependencies can be eliminated
→ Anti-dependencies

 © Department of Networked Systems and Services © Department of Networked Systems and Services 31

REGISTER RENAMING

● Why would a programmer write such a code?
● WAR:

D3 ← D2 * D0
...
D2 ← MEM[R1]

● WAW:
D3 ← D2 * D0
...
D3 ← MEM[R1]

● The registers are re-used because we have too few of them!
● Let us put a large number of registers to the CPU

→ Physical registers
● Let us hide them. The programmer still works with

→ Logical/architectural registers (described in the ISA)
● The CPU re-writes the program on the fly to make use of the

physical registers
→ Register renaming

 © Department of Networked Systems and Services © Department of Networked Systems and Services 32

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U17

D3 U4

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 33

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U4

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 34

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U4

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 35

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 36

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 37

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T3

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 38

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 39

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T46

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 40

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 41

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U25

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 42

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 43

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U26

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 44

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 45

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 46

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T47

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 47

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: R2 ← R2 + 8

Logical reg. Physical
reg.

R0 T21

R1 T49

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 48

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

Logical reg. Physical
reg.

R0 T21

R1 T49

R2 T48

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 49

REGISTER RENAMING
● Tool: Register alias table

● Entry i.: the ID of the physical register assigned to logical register i
● Procedure:

● The operands are replaced by physical registers
● The result is put to a brand new (unused) physical register
● The register alias table is updated

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

Logical reg. Physical
reg.

R0 T21

R1 T49

R2 T50

R3 T8

D0 U9

D1 U24

D2 U27

D3 U28

Original: After renaming:
Register alias table:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 50

REGISTER RENAMING

● Result:
● All WAW and WAR dependencies disappeared
● ...since we always store the result in a “clean”, unused register

● The precedence graph:

Before register renaming: After register renaming:

 © Department of Networked Systems and Services © Department of Networked Systems and Services 51

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 52

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 53

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 54

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 55

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 56

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 57

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 58

EXAMPLE

i1: U25 ← MEM[T3]
i2: U26 ← U25 * U9
i3: MEM[T46] ← U26
i4: T47 ← T3 + 8
i5: T48 ← T46 + 8

i6: U27 ← MEM[T47]
i7: U28 ← U27 * U9
i8: MEM[T48] ← U28
i9: T49 ← T47 + 8
i10: T50 ← T48 + 8

i1: D2 ← MEM[R1]
i2: D3 ← D2 * D0
i3: MEM[R2] ← D3
i4: R1 ← R1 + 8
i5: R2 ← R2 + 8

i6: D2 ← MEM[R1]
i7: D3 ← D2 * D0
i8: MEM[R2] ← D3
i9: R1 ← R1 + 8
i10: R2 ← R2 + 8

 © Department of Networked Systems and Services © Department of Networked Systems and Services 59

REGISTER RENAMING

● Conclusion:
● Effective!
● The larger the instruction window is, the more efficient the

register renaming is.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 60

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 61

THE INGREDIENTS OF OUT-OF-ORDER
EXECUTION

● The CPU has to fetch several instructions to be able to re-order them
● They must be stored somewhere:

→ instruction window (instruction pool, reservation station)
● A procedure that determines the execution order of the instructions

→ dynamic scheduler
● An idea to reduce the number of dependencies between the instructions

→ register renaming
● A trick to show in-order execution to the outside world

→ re-order buffer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 62

RE-ORDER BUFFER

● Unwanted side effect of out-of-order execution:
● Registers/memory does not change in the order as given by the

program
● The memory is shared

● Other processors are using it,
● I/O devices are using it,
● etc.

● Not everybody is prepared for this behavior!
● Solution: re-order buffer (ROB)

● An entry is allocated to each instruction when entering the CPU
● After executing the instruction, the ROB stores

● The result of the instruction
● The destination of the result (register/memory location)

● The results are written to the destination only when all preceding
instructions are ready

● Complete: execution has been finished
● Retire: the result is written to its destination

 © Department of Networked Systems and Services © Department of Networked Systems and Services 63

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] U25

 © Department of Networked Systems and Services © Department of Networked Systems and Services 64

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] U25

U26 ← U25 * U9 U26

 © Department of Networked Systems and Services © Department of Networked Systems and Services 65

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

 © Department of Networked Systems and Services © Department of Networked Systems and Services 66

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 T47

 © Department of Networked Systems and Services © Department of Networked Systems and Services 67

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 T47

T48 ← T46 + 8 T48

 © Department of Networked Systems and Services © Department of Networked Systems and Services 68

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 T48

U27 ← MEM[T47] U27

 © Department of Networked Systems and Services © Department of Networked Systems and Services 69

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 ✔ <value> T48

U27 ← MEM[T47] U27

U28 ← U27 * U9 U28

 © Department of Networked Systems and Services © Department of Networked Systems and Services 70

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 ✔ <value> U26

MEM[T46] ← U26 MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 ✔ <value> T48

U27 ← MEM[T47] ✔ <value> U27

U28 ← U27 * U9 U28

MEM[T48] ← U28 MEM[T48]

 © Department of Networked Systems and Services © Department of Networked Systems and Services 71

EXAMPLE

Instruction: Ready? Result: Where?

U25 ← MEM[T3] ✔ <value> U25

U26 ← U25 * U9 ✔ <value> U26

MEM[T46] ← U26 ✔ <value> MEM[T46]

T47 ← T3 + 8 ✔ <value> T47

T48 ← T46 + 8 ✔ <value> T48

U27 ← MEM[T47] ✔ <value> U27

U28 ← U27 * U9 U28

MEM[T48] ← U28 MEM[T48]

T49 ← T47 + 8 T49

 © Department of Networked Systems and Services © Department of Networked Systems and Services 72

OUT-OF-ORDER INSTRUCTION
EXECUTION

● Covered topics:
● Principle: dependency analysis
● Can be more efficient if register renaming is used
● We can imitate in-order execution with a re-order buffer

● Implementations:
● Scoreboard (1964): no register renaming, no ROB
● Tomasulo (IBM, 1967): has register renaming, but no ROB
● Since Intel P6 (including Core i7): both register renaming and

ROB
● In mobile devices: since ARM Cortex A9

 © Department of Networked Systems and Services © Department of Networked Systems and Services 73

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

