
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2025. 04. 01.

COMPUTER ARCHITECTURES

Instruction Pipeline

Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

WHERE ARE WE?

CPUCPU

I/O Devices Memory

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

EXECUTING INSTRUCTIONS

● Our CPU in the examples: RISC
● Instructions:

● Load / Store
R1 ← MEM[R0+42] or MEM[R0+42] ← R1

● Addressing mode: indirect with offset
● Arithmetic / Logic
R1 ← R2 + R3 or R1 ← 42 * R3 or R4 ← R1 & R5

● Control
● Branch, jump
● Conditional jump
JUMP -24 IF R2 == 0

● Only Load and Store are allowed to access the memory

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

● Stages of the execution of instructions:
1) Instruction Fetch, IF

+ increase program counter (if it is not a jump)
2) Instruction decode/register fetch, ID

● Decoding the binary encoded instruction
● Determine what kind of instruction it is

→ also provides control signals for ALU
● Operands located in registers are retrieved from the register file

3)Execution, EX – ALU executes an operation
In case of

● Load/Store: it calculates the memory address
(R1←MEM[R0+42])

● Arithmetic/Logic: it calculates the result (R1 ← R2*R3)
● Conditional jump: it evaluates the condition and also calculates

branch target address (JUMP [PC]-24 IF R2==0)

EXECUTING INSTRUCTIONS

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

EXECUTING INSTRUCTIONS

… cont'ed:
4)Memory access, MEM

In case of
● Load/Store: the memory operation is accomplished
● Arithmetic/logic, jumps: this phase does nothing

5)Write-back, WB
In case of

● Arithmetic/logic: stores the result to the register file
(R1 ← R2*R3)

● Load: stores the memory content retrieved to register file
(R1 ← MEM[R0+42])

● Store, jumps: this phase does nothing

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

EXECUTING INSTRUCTIONS

● Stages to execute:
● Arithmetic instructions: IF, ID, EX, WB
● Store instructions: IF, ID, EX, MEM
● Load instructions: IF, ID, EX, MEM, WB
● Jumps: IF, ID, EX
● Etc.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

EXECUTING INSTRUCTIONS

IF

ID

WB

EX
MEM

IF

ID

EX
MEM

WB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

EXECUTING INSTRUCTIONS

WB

IF

ID

EX
MEM

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

INSTRUCTION PIPELINE

● This was the concept of instruction pipeline
● Stages of instruction executions are overlapped:

● Every stage needs to be given the same amount of time:
cycle time

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

INSTRUCTION PIPELINE

● How much do we gain?
● On the one hand: we overlapped the execution of several instructions → gain
● On the other hand: there are idle time intervals (some stages are not needed by all

types of instructions, some stages are faster than the cycle time, etc.)
● As long as the instructions are independent, the gain is significant

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

INSTRUCTION PIPELINE

● Quantities:
● Depth: number of stages
● Latency: the execution time of an instruction
● Throughput: executed instructions / sec

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

PIPELINE REGISTERS

● Each stage needs to exchange some information with the neighboring
stages about the current instruction

→ these are stored in pipeline registers

● Example:
● IF puts the fetched instruction to register IF/ID
● ID takes it out from IF/ID, and puts the ALU control signals and

operands to register ID/EX
● EX takes it out from ID/EX, executes the arithmetic operation, puts the

result to register EX/MEM
● Etc... (later)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

HAZARDS

● There is a serious problem
● The instructions are not independent!

● Sometimes they need the same system resources at the same time

→ Structural hazard
● An operand of an instruction is the result of the previous instruction

→ Data hazard
● Conditional jumps: we do not know where the execution of the

program continues until the branch condition is evaluated

→ Control hazard

How to treat them:
● We either resolve them by using some smart trick
● ...or stop the pipeline till the hazard persists

→ degrades efficiency

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

STRUCTURAL HAZARDS

● Some system resources are used in several stages as well
● IF: Memory
● ID: Register file
● EX: ALU
● MEM: Memory
● WB: Register file

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

STRUCTURAL HAZARD

● Resolving it:
● In case of the „memory” resource:

● By using separate instruction and data cache
● In case of the „register file” resource:

● One of the stages uses the register file in the first half of the
cycle time, the other stage uses it in the second half

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

DATA HAZARD

● Caused by data dependencies
● Data hazard:

Multiple instructions operate on the same data address
(on the same register, or on the same memory address)

● E.g. an operand of an instruction is the result of a previous
instruction

→ RAW dependency (Read After Write)

i1: R3 ← MEM[R2]
i2: R1 ← R2 * R3
i3: R4 ← R1 + R5
i4: R5 ← R6 + R7
i5: R1 ← R8 + R9

● RAW dependencies:
i1 ↔ i2, i2 ↔ i3

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

RAW DEPENDENCIES

i1: R7 ← R1 + R5
i2: R8 ← R7 + R2
i3: R5 ← R8 + R7

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

RAW DEPENDENCIES

● The result is available, but it is not yet stored to the register file
● Let us read it out from the appropriate pipeline register → forwarding

i1: R7 ← R1 + R5
i2: R8 ← R7 + R2
i3: R5 ← R8 + R7

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

RAW DEPENDENCIES

● Forwarding: there are situations when it does not help

i1: R6 ← MEM[R2]
i2: R7 ← R6 + R4

● The value of R6 is available at the end of MEM stage
● i2 needs it at the beginning of EX

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

RAW DEPENDENCIES

● Forwarding: there are situations when it does not help

i1: R6 ← MEM[R2]
i2: R7 ← R6 + R4

● The value of R6 is available at the end of MEM stage
● i2 needs it at the beginning of EX
● i2 needs to wait

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

DATA HAZARD

● Data dependencies:
● RAW: an instruction reads the register/address written by an earlier instruction

● Solution: forwarding/waiting
● WAR: an instruction writes the register/address read by an earlier instruction

● Not a problem in this simple pipeline
● WAW: multiple instructions write the same register/address

● Not a problem in this simple pipeline
● RAR: multiple instructions read the same register/address

● Never a problem

● Example:
i1: R3 ← MEM[R2]
i2: R1 ← R2 * R3
i3: R4 ← R1 + R5
i4: R5 ← R6 + R7
i5: R1 ← R8 + R9

● WAW: i2 ↔ i5 (write after write)
● WAR: i3 ↔ i4 (write after read)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

CONTROL HAZARDS

● There is a problem with the conditional jump instructions:
● IF fetches them
● The jump condition and the jump target address is calculated

only by stage EX!
● Where to fetch the subsequent instruction from till it completes

the EX stage?
● Solutions:

● Stop and wait till the jump instruction completes the EX stage
→ used by Intel 80386

● Predict the jump condition and the address immediately
→ branch prediction

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

CONTROL HAZARDS

● Static branch prediction → not adaptive
There are methods which

● Always predicts that the jump won’t be taken
● It costs nothing
● In case of misprediction, the instructions fetched by mistake are

invalidated (by Intel 80486)
● However, conditional jumps are more often taken than not taken

(loops)
● Always predicts that the jump will be taken

● OK, but how do we know the jump target address then?
● It works well if the target address is calculated well before the

condition
● Jump forward: not taken, jump backward: taken

● Motivation: loops usually do jump back, except, when they are
finished

● Dynamic branch prediction
● Adapts the behavior of the program (it learns which jumps are taken and

which are not)
● It is much better than the static one
● All modern CPUs use dynamic branch prediction

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

CONCLUSION

● What did we learn up to this point?
● The concept of instruction pipeline
● That the pipeline stages communicate by using the pipeline

registers
● How to cope with hazards

● Let us design our own instruction pipeline!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

IMPLEMENTATION OF THE
PIPELINE

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

THE ALU

● ALU: has a central role
● It does computations:

R1 ← R1 * 42
R1 ← R2 & R3
PC ← PC + 42 (JUMP +42)
R1 ← MEM [R2 + 42]

● First operand: register or PC
● Second operand: register or constant (immediate)

● Evaluates jump conditions:
JUMP -28 IF R1==0

● The task of the ID phase:
● Preparing operands for the ALU
● Preparing operand selection signals for the ALU
● Preparing the operation code (+, -, *, /, &, etc.) for the ALU

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

STAGE IF

● Updates the program counter:
● If jump (EX/MEM.Instr.Opcode==branch),

and if it will be taken (EX/MEM.Cond==TRUE):
● PC ← EX.MEM.ALUOut

● Otherwise:
● PC ← PC+4

● Passing the instruction word and the new
program counter value forward:

● IF/ID.NPC ← PC
● IF/ID.Instr ← IMEM[PC]

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

STAGE ID (PART 1)

● Prepares the operands:
● First operand:

● ID/EX.NPC ← IF/ID.NPC
● ID/EX.A ← Reg [IF/ID.Instr.ra]

● Selection signal for the first operand:
● In case of jump instruction

 (IF/ID.Instr.Opcode == branch):
● ID/EX.SrcA ← npc

● Otherwise:
● ID/EX.SrcA ← regA

● Second operand:
● ID/EX.Imm ← IF/ID.Instr.imm
● ID/EX.B ← Reg [IF/ID.Instr.rb]

● Selection signal for the second operand:
● If constant (IF/ID.Instr.HasImm):

● ID/EX.SrcB ← imm
● Otherwise:

● ID/EX.SrcB ← regB
● ...

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

STAGE ID (PART 2)

● ...
● Prepares operation code:

● If we have an arithmetic instruction
 (IF/ID.Instr.Opcode == arithm):

● ID/EX.ALUOp ← IF/ID.Instr.Func
● Otherwise (PC update or address calculation):

● ID/EX.ALUOp ← „+”
● Passing the instruction word forward:

● ID/EX.Instr ← IF/ID.Instr

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

STAGE EX

● ALU inputs:
● If ID/EX.SrcA == npc

● ALU.A ← ID/EX.NPC
● If ID/EX.SrcA == regA

● ALU.A ← ID/EX.A
● If ID/EX.SrcB == imm

● ALU.B ← ID/EX.Imm
● If ID/EX.SrcB == regB

● ALU.B ← ID/EX.B
● Operation code:

● ALU.Op ← ID/EX.ALUOp
● Storing the result:

● EX/MEM.ALUOut ← ALU.Out
● Comparison unit:

● EX/MEM.Cond ← ID/EX.A == 0
● Forwarding B in case of „Store” instructions

● EX/MEM.B ← ID/EX.B (This will be the
data to store)

● Forwarding the instruction word:
● EX/MEM.Instr ← ID/EX.Instr

 © Department of Networked Systems and Services © Department of Networked Systems and Services 31

STAGE MEM

● Memory address
● ALUOut

● In case of “Store” (ID/EX.Instr.Opcode == Store)
● MEM[EX/MEM.ALUOut] ← EX/MEM.B

(Data to write: B)
● In case of “Load” (ID/EX.Instr.Opcode == Load)

● MEM/WB.LoadedData ← MEM[EX/MEM.ALUOut]
● In case of arithmetic instruction:

● MEM/WB.ALUOut ← EX/MEM.ALUOut
(Forwarding the result)

● Forwarding the instruction word:
● MEM/WB.Instr ← EX/MEM.Instr

 © Department of Networked Systems and Services © Department of Networked Systems and Services 32

STAGE WB

● Updating the register file (Reg[])
● In case of arithmetic instructions:

(MEM/WB.Instr.Opcode == arithm)
● Reg[MEM/WB.Instr.rd] ← MEM/WB.ALUOut

● In case of “Load” instruction:
(MEM/WB.Instr.Opcode == Load)

● Reg[MEM/WB.Instr.rd] ← MEM/WB.LoadedData

 © Department of Networked Systems and Services © Department of Networked Systems and Services 33

IMPLEMENTATION OF THE
PIPELINE

 © Department of Networked Systems and Services © Department of Networked Systems and Services 34

RAW DEPENDENCIES

● Recall: we need forwarding

i1: R7 ← R1 + R5
i2: R8 ← R7 + R2
i3: R5 ← R8 + R7

 © Department of Networked Systems and Services © Department of Networked Systems and Services 35

RAW DEPENDENCIES

 © Department of Networked Systems and Services © Department of Networked Systems and Services 36

RAW DEPENDENCIES

● How does stage ID know what the operands of ALU are?
● There are two operands
● Each of them can have two different sources (NPC↔register,

constant↔register)
● Register operands can came from three locations:

● From the decoder, ID
● From the ALU output
● From the ALU output of the previous step

● Operand selection logic (in stage ID):
● For example, operand 1, ID/EX.SrcA can be 0, 1, 2, 3:

● npc: IF/ID.Instr.Opcode == branch
● fwdA1: if IF/ID.Instr.Opcode==arithm &&

 IF/ID.Instr.ra ==
ID/EX.Instr.rd

● fwdA2: if IF/ID.Instr.Opcode==arithm &&
 IF/ID.Instr.ra == EX/MEM.Instr.rd

● regA: if IF/ID.Instr.Opcode==arithm, otherwise
● Similarly for operand 2

 © Department of Networked Systems and Services © Department of Networked Systems and Services 37

COPING WITH OTHER HAZARDS

● If the resolution of a RAW dependency needs to stall the
pipeline:

● Stage ID can detect it (as it detects RAW as well)
● Stops stage IF

● Control hazards
● Stop & wait method: detect if a conditional jump arrived and stop

stage IF for 2 cycles
● Static prediction that always predicts „jump not taken”

● Goes on with fetching the next instructions
● If the jump turns out to be taken, the instructions fetched by mistake

need to be invalidated:
● Instructions are carrying a „valid” flag
● If an instruction needs to be invalidated, „valid” is set to 0
● Instructions with Valid=0 do nothing in stages MEM and WB (thus they

leave no traces at all)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 38

CONCLUSION

● What did we learn up to this point?
● The concept of instruction pipelines
● The role of pipeline registers
● How to cope with hazards
● How to implement an instruction pipeline
● How to implement hazard detection and resolution

● Everything is nice till something extraordinary happens
● What can happen?

● Exceptions!
● An interrupt from an I/O device
● Page fault
● Protection fault
● Invalid instruction
● Etc.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 39

PRECISE EXCEPTIONS

● Ideal behavior
● Given that the exception raises during instruction i.
● We want to ensure a state where

● All instructions before i are completed
● Instructions after i have not been started at all

→ precise exceptions
● Not easy to implement if we have a pipeline
● When an exception happens, we want to prevent the started

but not yet completed instructions from leaving a trace
● … but sometimes it can not be prevented

(a later instruction might have already changed the content of
the memory)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 40

PRECISE EXCEPTIONS

● What can happen in the various stages:
● Stage IF: page fault, protection fault
● Stage ID: invalid instruction
● Stage EX: arithmetic error (integer overflow, division by zero, etc.)
● Stage MEM: page fault, protection fault
● Stage WB: no exceptions can happen

● Instruction 1.: Integer overflow in stage EX
● Instruction 2.: page fault in stage IF

→ The order of events is not correct! The exception of a later instruction
occurs sooner!

1 2 3 4 5 6

Rk ← Rm + Rn IF ID EX MEM WB

Ri ← MEM [Rj] IF ID EX MEM WB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 41

PRECISE EXCEPTIONS

● A possible solution:
● Exceptions are not handled immediately
● The CPU just marks the instruction with a flag
● Handling of exception: only in stage WB

→ the order of exceptions will be correct this way

1 2 3 4 5 6

Rk ← Rm + Rn IF ID EX MEM WB

Ri ← MEM [Rj] IF ID EX MEM WB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 42

PIPELINE WITH MULTI-CYCLE
OPERATIONS

● Until now all arithmetic operations were executed in 1 cycle
● But different arithmetic operations may have different latencies

● Floating point operations need more cycles
● Multiplication needs more cycles than addition
● Division is the slowest operation

● The arithmetic functional units can be pipelined or unpipelined
internally

● E.g. the floating point addition might have a latency of 4 cycles,
● ...but can start a new addition operation every cycle

→ Iteration interval = 1

 © Department of Networked Systems and Services © Department of Networked Systems and Services 43

PIPELINE WITH MULTICYCLE
OPERATIONS

Functional unit Latency Iteration interval

Integer ALU 1 1

FP add 4 1

FP multiply 7 1

FP divide 25 25

 © Department of Networked Systems and Services © Department of Networked Systems and Services 44

PIPELINE WITH MULTICYCLE
OPERATIONS

● Observe:
● Instructions are started in-order, but completed out-of-order

● In this example this was not a problem
● ...but it can introduce problems in other situations
● Stage ID has new tasks:

● To keep the semantics of the program
● To cope with new kinds of hazards and dependencies

D4 ← D1 * D5 IF ID M0 M1 M2 M3 M4 M5 M6 MEM WB

D2 ← D1 + D3 IF ID A0 A1 A2 A3 MEM WB

D0 ← MEM [R0+4] IF ID EX MEM WB

MEM [R0+8] ← D5 IF ID EX MEM WB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 45

STRUCTURAL HAZARDS INTRODUCED

● Problem:
● 10.: there are 3 instructions in stage MEM at the same time
● 11.: there are 3 instructions in stage WB at the same time

● Solution:
● Stage ID knows exactly the latency of the instructions → it can detect such situations
● If ID thinks that an instruction will cause structural hazard later → it does not let it move

forward in the pipeline (stall)

Instruction 1 2 3 4 5 6 7 8 9 10 11

D4 ← D1 * D5 IF ID M0 M1 M2 M3 M4 M5 M6 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

D2 ← D1 + D3 IF ID A0 A1 A2 A3 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

D0 ← MEM [R0+4] IF ID EX MEM WB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 46

MUCH MORE RAW
DEPENDENCIES

● Data hazards are worse than before
● Problem: pipeline is longer

● The result of an operation is calculated late

→ if an instruction uses that result, it has to wait a lot
● There are more instructions under execution at the same time

→ the chance of having a RAW dependency among them is larger
(compared to our simple 5-stage pipeline)

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 14 14 15 16 17

D4 ← MEM [R0+4] IF ID EX ME WB

D0 ← D4 * D6 IF ID Stop M0 M1 M2 M3 M4 M5 M6 ME WB

D2 ← D0 + D8 IF Stop ID Stop Stop Stop Stop Stop Stop A0 A1 A2 A3 ME WB

MEM [R0+4] ← D2 IF Stop Stop Stop Stop Stop Stop ID EX Stop Stop Stop ME

 © Department of Networked Systems and Services © Department of Networked Systems and Services 47

WAW DEPENDENCIES

● WAW dependency:
● Two instructions write their results to the same register

● If instructions are allowed to complete out-of-order → might
introduce problems!

● It might happen that the later instruction writes its result to the target
register sooner

● Stage ID has to detect this situation and handle it by inserting stalls

● Clearly bad
● Solution: Stage ID introduces 2 stalls at the last instruction

Instruction 1 2 3 4 5 6 7 8

D2 ← D1 + D3 IF ID A0 A1 A2 A3 MEM WB

... IF ID EX MEM WB

D2 ← MEM [R0+4] IF ID EX MEM WB

 © Department of Networked Systems and Services © Department of Networked Systems and Services 48

CONCLUSION

● Instruction pipeline is a nice, beautiful concept
● Difficulties:

● Hazards / data dependencies
● Exceptions
● Multi-cycle operations

→ The longer the pipeline is, the more serious these
difficulties are

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

