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WHERE ARE WE?

CPUCPU

I/O Devices Memory
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EXECUTING INSTRUCTIONS

● Our CPU in the examples: RISC
● Instructions:

● Load / Store
R1 ← MEM[R0+42] or MEM[R0+42] ← R1

● Addressing mode: indirect with offset
● Arithmetic / Logic
R1 ← R2 + R3 or R1 ← 42 * R3 or R4 ← R1 & R5

● Control
● Branch, jump
● Conditional jump
JUMP -24 IF R2 == 0

● Only Load and Store are allowed to access the memory
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● Stages of the execution of instructions:
1) Instruction Fetch, IF

+ increase program counter (if it is not a jump)
2) Instruction decode/register fetch, ID

● Decoding the binary encoded instruction
● Determine what kind of instruction it is

→ also provides control signals for ALU
● Operands located in registers are retrieved from the register file

3)Execution, EX – ALU executes an operation
In case of

● Load/Store: it calculates the memory address 
(R1←MEM[R0+42])

● Arithmetic/Logic: it calculates the result (R1 ← R2*R3)
● Conditional jump: it evaluates the condition and also calculates 

branch target address (JUMP [PC]-24 IF R2==0)

EXECUTING INSTRUCTIONS
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EXECUTING INSTRUCTIONS

… cont'ed:
4)Memory access, MEM

In case of
● Load/Store: the memory operation is accomplished
● Arithmetic/logic, jumps: this phase does nothing

5)Write-back, WB
In case of

● Arithmetic/logic: stores the result to the register file 
(R1 ← R2*R3)

● Load: stores the memory content retrieved to register file 
(R1 ← MEM[R0+42])

● Store, jumps: this phase does nothing
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EXECUTING INSTRUCTIONS

● Stages to execute:
● Arithmetic instructions: IF, ID, EX, WB
● Store instructions: IF, ID, EX, MEM
● Load instructions: IF, ID, EX, MEM, WB
● Jumps: IF, ID, EX
● Etc.
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EXECUTING INSTRUCTIONS
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EXECUTING INSTRUCTIONS
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INSTRUCTION PIPELINE

● This was the concept of instruction pipeline
● Stages of instruction executions are overlapped:

● Every stage needs to be given the same amount of time: 
cycle time
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INSTRUCTION PIPELINE

● How much do we gain?
● On the one hand: we overlapped the execution of several instructions → gain
● On the other hand: there are idle time intervals (some stages are not needed by all 

types of instructions, some stages are faster than the cycle time, etc.)
● As long as the instructions are independent, the gain is significant
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INSTRUCTION PIPELINE

● Quantities:
● Depth: number of stages
● Latency: the execution time of an instruction
● Throughput: executed instructions / sec
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PIPELINE REGISTERS

● Each stage needs to exchange some information with the neighboring 
stages about the current instruction

→ these are stored in pipeline registers

● Example:
● IF puts the fetched instruction to register IF/ID
● ID takes it out from IF/ID, and puts the ALU control signals and 

operands to register ID/EX
● EX takes it out from ID/EX, executes the arithmetic operation, puts the 

result to register EX/MEM
● Etc... (later)
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HAZARDS

● There is a serious problem
● The instructions are not independent!

● Sometimes they need the same system resources at the same time 

→ Structural hazard
● An operand of an instruction is the result of the previous instruction

→ Data hazard
● Conditional jumps: we do not know where the execution of the 

program continues until the branch condition is evaluated

→ Control hazard

How to treat them:
● We either resolve them by using some smart trick
● ...or stop the pipeline till the hazard persists

→ degrades efficiency
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STRUCTURAL HAZARDS

● Some system resources are used in several stages as well
● IF: Memory
● ID: Register file
● EX: ALU
● MEM: Memory
● WB: Register file
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STRUCTURAL HAZARD

● Resolving it:
● In case of the „memory” resource: 

● By using separate instruction and data cache
● In case of the „register file” resource: 

● One of the stages uses the register file in the first half of the 
cycle time, the other stage uses it in the second half
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DATA HAZARD

● Caused by data dependencies
● Data hazard:

Multiple instructions operate on the same data address
(on the same register, or on the same memory address)

● E.g. an operand of an instruction is the result of a previous 
instruction

→ RAW  dependency (Read After Write)

i1:  R3 ← MEM[R2]
i2:  R1 ← R2 * R3
i3:  R4 ← R1 + R5
i4:  R5 ← R6 + R7
i5:  R1 ← R8 + R9

● RAW dependencies: 
i1 ↔ i2, i2 ↔ i3



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 17

RAW DEPENDENCIES

i1:  R7 ← R1 + R5
i2:  R8 ← R7 + R2
i3:  R5 ← R8 + R7
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RAW DEPENDENCIES

● The result is available, but it is not yet stored to the register file
● Let us read it out from the appropriate pipeline register → forwarding

i1:  R7 ← R1 + R5
i2:  R8 ← R7 + R2
i3:  R5 ← R8 + R7
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RAW DEPENDENCIES

● Forwarding: there are situations when it does not help

i1:  R6 ← MEM[R2]
i2:  R7 ← R6 + R4

● The value of R6 is available at the end of MEM stage
● i2 needs it at the beginning of EX
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RAW DEPENDENCIES

● Forwarding: there are situations when it does not help

i1:  R6 ← MEM[R2]
i2:  R7 ← R6 + R4

● The value of R6 is available at the end of MEM stage
● i2 needs it at the beginning of EX
● i2 needs to wait
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DATA HAZARD

● Data dependencies:
● RAW: an instruction reads the register/address written by an earlier instruction

● Solution: forwarding/waiting
● WAR: an instruction writes the register/address read by an earlier instruction

● Not a problem in this simple pipeline
● WAW: multiple instructions write the same register/address

● Not a problem in this simple pipeline
● RAR: multiple instructions read the same register/address

● Never a problem

● Example:
i1:  R3 ← MEM[R2]
i2:  R1 ← R2 * R3
i3:  R4 ← R1 + R5
i4:  R5 ← R6 + R7
i5:  R1 ← R8 + R9

● WAW: i2 ↔ i5 (write after write)
● WAR: i3 ↔ i4 (write after read)
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CONTROL HAZARDS

● There is a problem with the conditional jump instructions:
● IF fetches them
● The jump condition and the jump target address is calculated 

only by stage EX!
● Where to fetch the subsequent instruction from till it completes 

the EX stage?
● Solutions:

● Stop and wait till the jump instruction completes the EX stage 
→ used by Intel 80386

● Predict the jump condition and the address immediately
→ branch prediction
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CONTROL HAZARDS

● Static branch prediction → not adaptive
There are methods which

● Always predicts that the jump won’t be taken
● It costs nothing 
● In case of misprediction, the instructions fetched by mistake are 

invalidated (by Intel 80486)
● However, conditional jumps are more often taken than not taken 

(loops)
● Always predicts that the jump will be taken

● OK, but how do we know the jump target address then?
● It works well if the target address is calculated well before the 

condition
● Jump forward: not taken, jump backward: taken

● Motivation: loops usually do jump back, except, when they are 
finished

● Dynamic branch prediction
● Adapts the behavior of the program (it learns which jumps are taken and 

which are not)
● It is much better than the static one
● All modern CPUs use dynamic branch prediction
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CONCLUSION

● What did we learn up to this point?
● The concept of instruction pipeline
● That the pipeline stages communicate by using the pipeline 

registers
● How to cope with hazards

● Let us design our own instruction pipeline!
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IMPLEMENTATION OF THE 
PIPELINE
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THE ALU

● ALU: has a central role
● It does computations:

R1 ← R1 * 42
R1 ← R2 & R3
PC ← PC + 42 (JUMP +42)
R1 ← MEM [R2 + 42]

● First operand: register or PC
● Second operand: register or constant (immediate)

● Evaluates jump conditions:
JUMP -28 IF R1==0

● The task of the ID phase:
● Preparing operands for the ALU
● Preparing operand selection signals for the ALU
● Preparing the operation code (+, -, *, /, &, etc.) for the ALU
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STAGE IF

● Updates the program counter:
● If jump (EX/MEM.Instr.Opcode==branch),

and if it will be taken (EX/MEM.Cond==TRUE):
● PC ← EX.MEM.ALUOut

● Otherwise:
● PC ← PC+4

● Passing the instruction word and the new
program counter value forward:

● IF/ID.NPC ← PC
● IF/ID.Instr ← IMEM[PC]
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STAGE ID (PART 1)

● Prepares the operands:
● First operand:

●  ID/EX.NPC ← IF/ID.NPC
●  ID/EX.A ← Reg [IF/ID.Instr.ra]

● Selection signal for the first operand:
● In case of jump instruction 

    (IF/ID.Instr.Opcode == branch):
● ID/EX.SrcA ← npc

● Otherwise:
● ID/EX.SrcA ← regA

● Second operand:
●  ID/EX.Imm ← IF/ID.Instr.imm
●  ID/EX.B ← Reg [IF/ID.Instr.rb]

● Selection signal for the second operand:
● If constant (IF/ID.Instr.HasImm):

● ID/EX.SrcB ← imm
● Otherwise:

● ID/EX.SrcB ← regB
● ...
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STAGE ID (PART 2)

● ...
● Prepares operation code:

● If we have an arithmetic instruction 
   (IF/ID.Instr.Opcode == arithm):

● ID/EX.ALUOp ← IF/ID.Instr.Func
● Otherwise (PC update or address calculation):

● ID/EX.ALUOp ← „+”
● Passing the instruction word forward:

● ID/EX.Instr ← IF/ID.Instr
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STAGE EX

● ALU inputs:
● If ID/EX.SrcA == npc

● ALU.A ← ID/EX.NPC
● If ID/EX.SrcA == regA

● ALU.A ← ID/EX.A
● If ID/EX.SrcB == imm

● ALU.B ← ID/EX.Imm
● If ID/EX.SrcB == regB

● ALU.B ← ID/EX.B
● Operation code:

● ALU.Op ← ID/EX.ALUOp
● Storing the result:

● EX/MEM.ALUOut ← ALU.Out
● Comparison unit:

● EX/MEM.Cond ← ID/EX.A == 0
● Forwarding B in case of „Store” instructions

● EX/MEM.B ← ID/EX.B (This will be the 
data to store)

● Forwarding the instruction word:
● EX/MEM.Instr ← ID/EX.Instr
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STAGE MEM

● Memory address 
● ALUOut

● In case of “Store” (ID/EX.Instr.Opcode == Store)
● MEM[EX/MEM.ALUOut] ← EX/MEM.B 

(Data to write: B)
● In case of “Load” (ID/EX.Instr.Opcode == Load)

● MEM/WB.LoadedData ← MEM[EX/MEM.ALUOut]
● In case of arithmetic instruction:

● MEM/WB.ALUOut ← EX/MEM.ALUOut 
(Forwarding the result)

● Forwarding the instruction word:
● MEM/WB.Instr ← EX/MEM.Instr
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STAGE WB

● Updating the register file (Reg[ ])
● In case of arithmetic instructions:

(MEM/WB.Instr.Opcode == arithm)
● Reg[MEM/WB.Instr.rd] ← MEM/WB.ALUOut

● In case of “Load” instruction:
(MEM/WB.Instr.Opcode == Load)

● Reg[MEM/WB.Instr.rd] ← MEM/WB.LoadedData
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IMPLEMENTATION OF THE 
PIPELINE
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RAW DEPENDENCIES

● Recall: we need forwarding

i1:  R7 ← R1 + R5
i2:  R8 ← R7 + R2
i3:  R5 ← R8 + R7
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RAW DEPENDENCIES
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RAW DEPENDENCIES

● How does stage ID know what the operands of ALU are?
● There are two operands
● Each of them can have two different sources (NPC↔register, 

constant↔register)
● Register operands can came from three locations:

● From the decoder, ID
● From the ALU output
● From the ALU output of the previous step

● Operand selection logic (in stage ID):
● For example, operand 1, ID/EX.SrcA can be 0, 1, 2, 3:

● npc: IF/ID.Instr.Opcode == branch
● fwdA1: if IF/ID.Instr.Opcode==arithm && 

  IF/ID.Instr.ra == 
ID/EX.Instr.rd

● fwdA2: if IF/ID.Instr.Opcode==arithm && 
  IF/ID.Instr.ra == EX/MEM.Instr.rd

● regA: if IF/ID.Instr.Opcode==arithm, otherwise
● Similarly for operand 2
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COPING WITH OTHER HAZARDS

● If the resolution of a RAW dependency needs to stall the 
pipeline:

● Stage ID can detect it (as it detects RAW as well)
● Stops stage IF

● Control hazards
● Stop & wait method: detect if a conditional jump arrived and stop 

stage IF for 2 cycles
● Static prediction that always predicts „jump not taken”

● Goes on with fetching the next instructions
● If the jump turns out to be taken, the instructions fetched by mistake 

need to be invalidated:
● Instructions are carrying a „valid” flag
● If an instruction needs to be invalidated, „valid” is set to 0
● Instructions with Valid=0 do nothing in stages MEM and WB (thus they 

leave no traces at all)
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CONCLUSION

● What did we learn up to this point?
● The concept of instruction pipelines
● The role of pipeline registers
● How to cope with hazards
● How to implement an instruction pipeline
● How to implement hazard detection and resolution

● Everything is nice till something extraordinary happens
● What can happen?

● Exceptions!
● An interrupt from an I/O device
● Page fault
● Protection fault
● Invalid instruction
● Etc.
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PRECISE EXCEPTIONS

● Ideal behavior
● Given that the exception raises during instruction i.
● We want to ensure a state where

● All instructions before i are completed
● Instructions after i have not been started at all

→ precise exceptions
● Not easy to implement if we have a pipeline
● When an exception happens, we want to prevent the started 

but not yet completed instructions from leaving a trace
● … but sometimes it can not be prevented

(a later instruction might have already changed the content of 
the memory)
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PRECISE EXCEPTIONS

● What can happen in the various stages:
● Stage IF: page fault, protection fault
● Stage ID: invalid instruction
● Stage EX: arithmetic error (integer overflow, division by zero, etc.)
● Stage MEM: page fault, protection fault
● Stage WB: no exceptions can happen

● Instruction 1.: Integer overflow in stage EX
● Instruction 2.: page fault in stage IF

→ The order of events is not correct! The exception of a later instruction 
occurs sooner!

1 2 3 4 5 6

Rk ← Rm + Rn IF ID EX MEM WB

Ri ← MEM [Rj] IF ID EX MEM WB
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PRECISE EXCEPTIONS

● A possible solution:
● Exceptions are not handled immediately
● The CPU just marks the instruction with a flag
● Handling of exception: only in stage WB

→ the order of exceptions will be correct this way

1 2 3 4 5 6

Rk ← Rm + Rn IF ID EX MEM WB

Ri ← MEM [Rj] IF ID EX MEM WB
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PIPELINE WITH MULTI-CYCLE 
OPERATIONS

● Until now all arithmetic operations were executed in 1 cycle
● But different arithmetic operations may have different latencies

● Floating point operations need more cycles
● Multiplication needs more cycles than addition
● Division is the slowest operation

● The arithmetic functional units can be pipelined or unpipelined 
internally

● E.g. the floating point addition might have a latency of 4 cycles, 
● ...but can start a new addition operation every cycle

→ Iteration interval = 1
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PIPELINE WITH MULTICYCLE 
OPERATIONS

Functional unit Latency Iteration interval

Integer ALU 1 1

FP add 4 1

FP multiply 7 1

FP divide 25 25
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PIPELINE WITH MULTICYCLE 
OPERATIONS

● Observe:
● Instructions are started in-order, but completed out-of-order

● In this example this was not a problem
● ...but it can introduce problems in other situations
● Stage ID has new tasks:

● To keep the semantics of the program
● To cope with new kinds of hazards and dependencies

D4 ← D1 * D5 IF ID M0 M1 M2 M3 M4 M5 M6 MEM WB

D2 ← D1 + D3 IF ID A0 A1 A2 A3 MEM WB

D0 ← MEM [R0+4] IF ID EX MEM WB

MEM [R0+8] ← D5 IF ID EX MEM WB
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STRUCTURAL HAZARDS INTRODUCED

● Problem: 
● 10.: there are 3 instructions in stage MEM at the same time
● 11.: there are 3 instructions in stage WB at the same time

● Solution:
● Stage ID knows exactly the latency of the instructions → it can detect such situations
● If ID thinks that an instruction will cause structural hazard later → it does not let it move 

forward in the pipeline (stall)

Instruction 1 2 3 4 5 6 7 8 9 10 11

D4 ← D1 * D5 IF ID M0 M1 M2 M3 M4 M5 M6 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

D2 ← D1 + D3 IF ID A0 A1 A2 A3 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

D0 ← MEM [R0+4] IF ID EX MEM WB
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MUCH MORE RAW 
DEPENDENCIES

● Data hazards are worse than before
● Problem: pipeline is longer

● The result of an operation is calculated late

→ if an instruction uses that result, it has to wait a lot
● There are more instructions under execution at the same time

→ the chance of having a RAW dependency among them is larger 
(compared to our simple 5-stage pipeline)

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 14 14 15 16 17

D4 ← MEM [R0+4] IF ID EX ME WB

D0 ← D4 * D6 IF ID Stop M0 M1 M2 M3 M4 M5 M6 ME WB

D2 ← D0 + D8 IF Stop ID Stop Stop Stop Stop Stop Stop A0 A1 A2 A3 ME WB

MEM [R0+4] ← D2 IF Stop Stop Stop Stop Stop Stop ID EX Stop Stop Stop ME



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 47

WAW DEPENDENCIES

● WAW dependency:
● Two instructions write their results to the same register

● If instructions are allowed to complete out-of-order → might 
introduce problems!

● It might happen that the later instruction writes its result to the target 
register sooner

● Stage ID has to detect this situation and handle it by inserting stalls

● Clearly bad
● Solution: Stage ID introduces 2 stalls at the last instruction

Instruction  1  2  3  4   5   6   7  8

D2 ← D1 + D3 IF ID A0 A1 A2 A3 MEM WB

... IF ID EX MEM WB

D2 ← MEM [R0+4] IF ID EX MEM WB
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CONCLUSION

● Instruction pipeline is a nice, beautiful concept
● Difficulties:

● Hazards / data dependencies
● Exceptions
● Multi-cycle operations

→ The longer the pipeline is, the more serious these 
difficulties are
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