DEPARTMENT OF

NETWORKED SYSTEMS
AND SEFRVICES

COMPUTER ARCHITECTURES

Protection
Budapest,
2025. 03. 26.
Prepared by: Gabor Horvath, ghorvath@hit.ome.hu Py VU

MGEGYETEM 1782

© Department of Networked Systems and Services 1

[|
|-|T PURPOSE OF PROTECTION I

NETWORKED SYSTEMS
AND SERVICES

* Objective:
* Ensuring the operation and integrity of the system
* Even in the presence of faulty or malicious
* Tasks
* Hardware
In the system!
* Protection = Restriction

* Restricting Tasks:

* Must not access data of other tasks
or the operating system

* Must not call private functions of other tasks
or the operating system

* Must not communicate with I/O devices bypassing the OS

* Restricting Hardware:
* Must not corrupt memory using DMA

© Department of Networked Systems and Services 2

]
I'lT PRIVILEGE LEVELS I

www.hit.bome.hu

* Privilege level = The amount of permissions a task has
* =0: The highest possible privilege
* The higher the number, the fewer the privileges
* Atleast 2 levels are required (e.g., x86 has 4 levels)
 What does it affect?
* The instructions a task can use
* The memory areas a task can access
e The functions a task can call
 The I/O devices a task can use

Level 2
Level 1

© Department of Networked Systems and Services

Memory protection

© Department of Networked Systems and Services 4

l_' . MEMORY PROTECTION WITH
|T SEGMENTATION

www.hit.bome.hu

* What is segmentation?
* Logically grouped objects

* In virtual memory:
* Can start anywhere
* Are continuous
* Have variable lengths

* Two-step address translation:
 Segment — Virtual memory (segment descriptor table)
* Virtual memory — Physical memory (page table)

© Department of Networked Systems and Services S

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

MEMORY PROTECTION WITH
SEGMENTATION (CONTINUED)

Task 1, code Task 1, data Task 1, stack Task 2, data Task 2, stack
]] ——]
e e]]
e ————
-‘““ :\15 /‘f 4-.,_“. = ,'t
T - g L T e 2
L, S g e L
g e RS R " -~ ! ;
s’ T 4 B o ! /
ettt sy o] H, I] = +| HI
- 1 : s =
senocanEac =S BRSS Sl b1 22 SEVESt || 1F;

Physical memory
Disk

* Within a segment: near addressing/jumping
* Across segments: far addressing/jumping
* x86 /32-bit mode: 3 segments per task:

* Code
* Data
* Stack

* Not used in Windows/Linux
x86 / 64-bit mode:
* Practically eliminated

Segments

Virtual memory (pages)

© Department of Networked Systems and Services 6

l_' MEMORY PROTECTION WITH
|T SEGMENTATION (CONTINUED)

www.hit.bome.hu

* Fundamentals of Memory Protection:
Address space separation

Each task and the OS have separate segments
Privilege levels:

* Every task has one

* Every segment has one (stored in the segment descriptor)
Memory access protection rules:

* Compare task PL < segment PL

* Atask can only read/write equal or less privileged segments
* Higher privileged segments are inaccessible

If a rule is violated:

* The OS takes control

* The task is terminated

© Department of Networked Systems and Services 7

I_' | MEMORY PROTECTION WITH
|T PAGING ONLY

www.hit.bome.hu

Task switching — Page table switching
Each task gets a separate address space
— Cannot access other tasks’ memory!

Issue: Some routines must always be available

* Interrupt handlers for I/O devices
OS routines (system calls)
Solution: Split the address space

* Lower part: Task’s space (switched on task switch)
Upper part: OS’s space (constant)

Issue: The protected area is visible to the task

* How to prevent unauthorized access?
Solution: New bit in page table entries:

* User/Supervisor bit

* =1:0Only OS (privilege level 0) can access
* =0: Accessible by anyone

© Department of Networked Systems and Services 8

l_' | MEMORY PROTECTION WITH
|T PAGING ONLY

www.hit.bome.hu

* Splitting the virtual address space:

Virtual address space
of the task

Area of operating system

3..4GB (protected)

I X

Area of the task

0:.3GB (available to use)

\J \J

* Windows 32 bit: 2 GB — 2 GB (optionally 3 GB — 1 GB)
* Windows 64 bit: user gets 8 TB
* Linux: kernel compilation parameter

© Department of Networked Systems and Services 9

Control flow protection

© Department of Networked Systems and Services

I_' | SOFTWARE INTERRUPT-BASED
|T CONTROL TRANSFER

www.hit.bome.hu

* How does the OS handle I/O device events?
* With interrupts
* Triggered by hardware via a CPU pin
How does the OS handle task requests?
* With interrupts
* Triggered by software via an instruction
Interrupt Vector Table:
* Stores the entry addresses of interrupt handlers
* x86: 256 entries, ARM: 8 entries
* All interrupts can be triggered by software!
* x86: INT instruction, ARM: SWI instruction
SW Interrupt vs. Function Call:
* An interrupt can switch the CPU to PL=0!
|dea:
* Reserve some interrupts for OS calls!
The task triggers an interrupt to request an OS function
* The interrupt switches PL=0 and accesses the OS function

© Department of Networked Systems and Services

I_' | SOFTWARE INTERRUPT-BASED
|T CONTROL TRANSFER

www.hit.bome.hu

* In practice:

int printf(...) { Int. vector table
EAX —4 : J/Vint sys_call (...) {
@ INT 0x80 @ N e (6 } return syscalls[EAXE
. } : &/
libc /
ut S Qint sys_write (...) {
printf("hello world!");
} }
User task (level 3) Operating system (level 0)

* Old method:

* Windows: Interrupt Ox2E, Linux: Interrupt 0x80
* Modern method:

* sysenter/sysexit (same, but faster)

© Department of Networked Systems and Services

Protection and 1/O devices

© Department of Networked Systems and Services

AND SERVICES
www.hit.bome.hu

0
Fl IW ACCESSING I/O DEVICES I

* Access to I/O devices must be restricted
* A misconfigured I/O operation could corrupt memory via DMA
* For memory-mapped I/O handling:
* OS sets the supervisor bit on that memory area
* For separate I/O instructions:
* |/O operations can be made privileged
— Harsh restriction: Task cannot issue I/O instructions
* Whitelist available I/O addresses
— Fine control: Per-address access rules

© Department of Networked Systems and Services

[|
I'lT RESTRICTING I/O DEVICES I

NETWORKED SYSTEMS
AND SERVICES

www.hit.bome.hu

* Protecting Memory from Tasks

* Managed by the MMU

e Page table entries store protection information

* |f a memory frame is not mapped, the task cannot access it
* Protecting Memory from 1/O devices

* By default: No protection!

* Advanced systems use an IOMMU

* |/O devices operate in virtual address space

* Pages can have protection attributes

I/0 device —» IOMMU —»» Memory < MMU CPU

© Department of Networked Systems and Services

DEPARTMENT OF

NETWORKED SYSTEMS
AND SFRVICES

© Department of Networked Systems and Services

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

