
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2025. 03. 26.

COMPUTER ARCHITECTURES

Protection

Prepared by: Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

PURPOSE OF PROTECTION

● Objective:
● Ensuring the operation and integrity of the system

● Even in the presence of faulty or malicious
● Tasks
● Hardware

in the system!
● Protection = Restriction

● Restricting Tasks:
● Must not access data of other tasks

or the operating system
● Must not call private functions of other tasks

or the operating system
● Must not communicate with I/O devices bypassing the OS

● Restricting Hardware:
● Must not corrupt memory using DMA

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

PRIVILEGE LEVELS

● Privilege level = The amount of permissions a task has
● =0: The highest possible privilege
● The higher the number, the fewer the privileges
● At least 2 levels are required (e.g., x86 has 4 levels)

● What does it affect?
● The instructions a task can use
● The memory areas a task can access
● The functions a task can call
● The I/O devices a task can use

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

Memory protection

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

MEMORY PROTECTION WITH
SEGMENTATION

● What is segmentation?
● Logically grouped objects
● In virtual memory:

● Can start anywhere
● Are continuous
● Have variable lengths

● Two-step address translation:
● Segment → Virtual memory (segment descriptor table)
● Virtual memory → Physical memory (page table)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

MEMORY PROTECTION WITH
SEGMENTATION (CONTINUED)

● Within a segment: near addressing/jumping
● Across segments: far addressing/jumping
● x86 / 32-bit mode: 3 segments per task:

● Code
● Data
● Stack
● Not used in Windows/Linux

● x86 / 64-bit mode:
● Practically eliminated

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

MEMORY PROTECTION WITH
SEGMENTATION (CONTINUED)

● Fundamentals of Memory Protection:
Address space separation

● Each task and the OS have separate segments
● Privilege levels:

● Every task has one
● Every segment has one (stored in the segment descriptor)

● Memory access protection rules:
● Compare task PL ↔ segment PL
● A task can only read/write equal or less privileged segments
● Higher privileged segments are inaccessible

● If a rule is violated:
● The OS takes control
● The task is terminated

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

MEMORY PROTECTION WITH
PAGING ONLY

● Task switching → Page table switching
● Each task gets a separate address space

→ Cannot access other tasks’ memory!

● Issue: Some routines must always be available
● Interrupt handlers for I/O devices
● OS routines (system calls)

● Solution: Split the address space
● Lower part: Task’s space (switched on task switch)
● Upper part: OS’s space (constant)

● Issue: The protected area is visible to the task
● How to prevent unauthorized access?

● Solution: New bit in page table entries:
● User/Supervisor bit

● =1: Only OS (privilege level 0) can access
● =0: Accessible by anyone

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

MEMORY PROTECTION WITH
PAGING ONLY

● Splitting the virtual address space:

● Windows 32 bit: 2 GB – 2 GB (optionally 3 GB – 1 GB)
● Windows 64 bit: user gets 8 TB
● Linux: kernel compilation parameter

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

Control flow protection

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

SOFTWARE INTERRUPT-BASED
CONTROL TRANSFER

● How does the OS handle I/O device events?
● With interrupts
● Triggered by hardware via a CPU pin

● How does the OS handle task requests?
● With interrupts
● Triggered by software via an instruction

● Interrupt Vector Table:
● Stores the entry addresses of interrupt handlers
● x86: 256 entries, ARM: 8 entries
● All interrupts can be triggered by software!
● x86: INT instruction, ARM: SWI instruction

● SW Interrupt vs. Function Call:
● An interrupt can switch the CPU to PL=0!

● Idea:
● Reserve some interrupts for OS calls!
● The task triggers an interrupt to request an OS function
● The interrupt switches PL=0 and accesses the OS function

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

SOFTWARE INTERRUPT-BASED
CONTROL TRANSFER

● In practice:

● Old method:
● Windows: Interrupt 0x2E, Linux: Interrupt 0x80

● Modern method:
● sysenter/sysexit (same, but faster)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

Protection and I/O devices

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

ACCESSING I/O DEVICES

● Access to I/O devices must be restricted
● A misconfigured I/O operation could corrupt memory via DMA

● For memory-mapped I/O handling:
● OS sets the supervisor bit on that memory area

● For separate I/O instructions:
● I/O operations can be made privileged

→ Harsh restriction: Task cannot issue I/O instructions
● Whitelist available I/O addresses

→ Fine control: Per-address access rules

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

RESTRICTING I/O DEVICES

● Protecting Memory from Tasks
● Managed by the MMU
● Page table entries store protection information
● If a memory frame is not mapped, the task cannot access it

● Protecting Memory from I/O devices
● By default: No protection!
● Advanced systems use an IOMMU
● I/O devices operate in virtual address space
● Pages can have protection attributes

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

