
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
05/05/2025

COMPUTER ARCHITECTURES

SIMD processing

BUTE Department of Networked Systems and Services

ghorvath@hit.bme.hu

Gábor Horváth

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

FLYNN TAXONOMY

• Flynn's Taxonomy Based on the Relationship Between Instructions and Data
• SISD (Single Instruction, Single Data):

– Execution of a single sequence of instructions on scalar data.
– This is what we have studied so far.

• SIMD (Single Instruction, Multiple Data):
– A single sequence of instructions operates on multiple data elements

simultaneously.
– Examples include vector processors, array processors, etc.

• MIMD (Multiple Instruction, Multiple Data):
– Multiple sequences of instructions operate on multiple data elements

independently.
– Typical of multiprocessor systems.

• MISD (Multiple Instruction, Single Data):
– Used in fault-tolerant systems.

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 3

Vector processors

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

VECTOR PROCESSORS

• Instead of using classical scalar data types and operations

– Vector data types

– Vector processing instructions

• Every modern supercomputer has vector processing capabilities

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

EXAMPLE

• C code:

• Classical (scalar) solution: Vector-based solution:

for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

R4←64
loop:
 D1 ← MEM[R1]
 D2 ← MEM[R2]
 D3 ← D1 + D2
 MEM[R3] ← D3
 R1 ← R1 + 8
 R2 ← R2 + 8
 R3 ← R3 + 8
 R4 ← R4 - 1
 JUMP loop IF R4!=0

VLR ← 64
V1 ← MEM[R1]
V2 ← MEM[R2]
V3 ← V1 + V2
MEM[R3] ← V3

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

EXAMPLE

• Why is the vector-based solution better?

– Shorter, more coincise code

– No loops are needed!
● What is wrong with loops?

– In each cycle again and again the CPU has to
● Fetch the instructions of the body
● Decode them
● Execute them

– There is a control hazard in every iteration
– Branch prediction is needed 64 times

– Vector instructions implicitly assume the independence of
vector elements

● High performance can be achieved with very deep pipeline
and/or multiple functional units

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

ARCHITECTURE OF
VECTOR PROCESSORS

• Type of vector processors:
– Register-register
– Memory-memory

• We’ll consider register-register vectorprocessors only

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

OPERATION OF
VECTOR PROCESSORS

• Why do only scalar operands benefit from cache?

– Vector operations are accelerated differently:
→ Through specialized memory handling.

• Why is a scalar memory read slow?

– There are multiple clock cycles between issuing the address and the
data arriving.

• Why are vector memory operations more efficient?
– Vector loading involves a fixed (large) number of memory operations:
– You issue the address of one element.
– The data doesn’t arrive in the next cycle yet, but you can already issue

the address of the next element.
– …and so on → a pipeline-like solution.
– For this to work efficiently:

Successive elements must be located in different memory banks.

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

INTERLEAVED MEMORY
ADRESSING

Cycle Bank

1 15636

2 Busy 15640

3 Busy Busy 15644

4 Busy Busy Busy 15648

5 Data[0] Busy Busy Busy 15652

6 15656 Data[1] Busy Busy Busy

7 Busy 15660 Data[2] Busy Busy

8 Busy Busy 15664 Data[3] Busy

9 Busy Busy Busy 15668 Data[4]

10 Data[5] Busy Busy Busy 15672

11 Data[6] Busy Busy Busy 15676

12 15680 Data[7] Busy Busy Busy

13 Busy 15684 Data[8] Busy Busy

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

FUNCTIONAL UNITS

• Accelerating vector operations:
• By replicating functional units

– Vector elements are independent
– e.g., with 4 functional units, 4 elements can be processed in

parallel

• By using a deep data pipeline
– Data pipeline? What’s that?
– Floating-point number representation: Number = (-1)^s × c × 2^q
– Example: Floating-point addition (4 stages):

● Check if either operand is zero
● Align the two operands to the same exponent
● Perform the addition
● Normalize the result

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

DATA PIPELINE

• Example: Floating-Point Multiplication (5 Stages)
– Check if either operand is zero
– Add the exponents
– Multiply the mantissas
– Determine the sign bit of the result
– Normalize the result

• As soon as the first stage is complete for one vector element,
the processor immediately starts the first stage for the next
element → pipelining

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

DATA PIPELINE

1 2 3 4 5 6 7 8 9 10 11

V2[0] ← V0[0]+V1[0] A0 A1 A2 A3

V2[1] ← V0[1]+V1[1] A0 A1 A2 A3

V2[2] ← V0[2]+V1[2] A0 A1 A2 A3

V2[3] ← V0[3]+V1[3] A0 A1 A2 A3

V2[4] ← V0[4]+V1[4] A0 A1 A2 A3

V2[5] ← V0[5]+V1[5] A0 A1 A2 A3

V2[6] ← V0[6]+V1[6] A0 A1 A2 A3

V2[7] ← V0[7]+V1[7] A0 A1 A2 A3

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

DATA PIPELINE

● With 2 pipelines:

1 2 3 4 5 6 7 8 9 10 11

V2[0] ← V0[0]+V1[0] A0 A1 A2 A3

V2[1] ← V0[1]+V1[1] A0 A1 A2 A3

V2[2] ← V0[2]+V1[2] A0 A1 A2 A3

V2[3] ← V0[3]+V1[3] A0 A1 A2 A3

V2[4] ← V0[4]+V1[4] A0 A1 A2 A3

V2[5] ← V0[5]+V1[5] A0 A1 A2 A3

V2[6] ← V0[6]+V1[6] A0 A1 A2 A3

V2[7] ← V0[7]+V1[7] A0 A1 A2 A3

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

DATA PIPELINE

• Very Important:

– This is a type of pipeline where
● There is no data hazard!

→ No need for waiting or hazard detection logic

→ This allows for arbitrarily deep pipelines

→ And arbitrarily wide pipelines

– The only limiting factor:
● How many sub-stages we can divide an arithmetic

operation into

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

EXAMPLE 1.

• Berkely T0 (Torrent-0, 1995)
• Length-32 vector registers
• 1 lane: responsible for 4 elements

(8 lines on the figure)
• 2 ALUs in each lane
• ...only one of them can multiply

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

EXAMPLE 2.

• NEC SX-9 Supercomputer Processor
• The fastest supercomputer of 2008
• Used by:

German Meteorological Center (2 units)
• In 2011: 976 vector processors

+ 31 TB of memory
• Per processor:

– Handles vectors of length 256
– Contains 8 pipelined functional units

• Vector ALU runs at 3.2 GHz
• Scalar unit: 4-way out-of-order

execution at 1.6 GHz

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 17

Typical Solutions in Vector Processors

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

STRIP-MINING

• Hardware-Supported Vector Length is Fixed:
MVL (Maximum Vector Length)

• We rarely need vectors exactly this size.

– If we compute with a smaller vector:
● Set the VLR (Vector Length Register)
● Smaller VLR → shorter execution time

– If we compute with a larger vector:
● The vector is split into MVL-sized chunks
● The operation is executed on each chunk

→ This is called Strip-mining

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

STRIP-MINING EXAMPLE

• C code: Vectorized:

for (i=0; i<N; i++)
 C[i] = A[i] + B[i];

 VLR ← R0 % MVL
loop:
 V1 ← MEM[R1]
 V2 ← MEM[R2]
 V3 ← V1 + V2
 MEM[R3] ← V3
 R4 ← VLR * 8
 R1 ← R1 + R4
 R2 ← R2 + R4
 R3 ← R3 + R4
 R0 ← R0 - VLR
 VLR ← MVL
 JUMP loop IF R0!=0

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

VECTOR MASKING

• There is a special mask register
• ALU skips vector elements where mask=0
• C code: Vectorized:

• Two possible implementations:

– Naive: Vector ALU applies operation on all elements,
but it does not store masked out elements

– Efficient: The Load/Store unit and the ALU skips masked
out elements → faster execution

for (i=0; i<N; i++)
 if (B[i]>0)
 C[i] = A[i] / B[i];

V1 ← MEM[R1]
MASK ← V1>0
V0 ← MEM[R0]
V2 ← V0 / V1
MEM[R2] ← V2

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

VECTOR CHAINING

● RAW dependencies exist in vector processors, too:
● V1 ← MEM[R1]

V3 ← V1 + V2
V5 ← V3 * V4

● A solution in vector processors similar to forwarding:
● Vector chaining
● Dependent instruction does not have to wait for the one

providing the operand
● As soon as the first element of V1 is available, we can start

working on the first element of V3
● As soon as the first element of V3 is available, we can start

working on the first element of V5

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

EXAMPLE FOR VECTOR CHAINING

Instruction 1 2 3 4 5 6 7 8 9

V1[0]←MEM[R1+0] T0 T1

V1[1]←MEM[R1+8] T0 T1

V1[2]←MEM[R1+16] T0 T1

V1[3]←MEM[R1+24] T0 T1

V1[4]←MEM[R1+32] T0 T1

V1[5]←MEM[R1+40] T0 T1

V3[0]←V1[0]+V2[0] A0 A1 A2

V3[1]←V1[1]+V2[1] A0 A1 A2

V1[6]←MEM[R1+48] T0 T1

V1[7]←MEM[R1+56] T0 T1

V3[2]←V1[2]+V2[2] A0 A1 A2

V3[3]←V1[3]+V2[3] A0 A1 A2

...

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

EXAMPLE FOR VECTOR CHAINING

Instruction 1 2 3 4 5 6 7 8 9

V1[8]←MEM[R1+64] T0 T1

V1[9]←MEM[R1+72] T0 T1

V3[4]←V1[4] + V2[4] A0 A1 A2

V3[5]←V1[5] + V2[5] A0 A1 A2

V1[10]←MEM[R1+80] T0 T1

V1[11]←MEM[R1+88] T0 T1

V3[6]←V1[6] + V2[6] A0 A1 A2

V3[7]←V1[7] + V2[7] A0 A1 A2

V5[0]←V3[0] * V4[0] M0 M1 M2 M3

V5[1]←V3[1] * V4[1] M0 M1 M2 M3

...

 © Hálózati Rendszerek és Szolgáltatások Tanszék © Hálózati Rendszerek és Szolgáltatások Tanszék 24

SIMD instruction set extensions

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

SIMD
INSTRUCTION SET EXTENSIONS

● Vector instructions are useful even for consumer use
● Useful for image processing

● In 3D graphics applications and games

● Even simple scientific computations can be well-vectorized
● Many processors support vector operations
● But that doesn’t make them true vector processors!

● Why not?
● Vector size is very small (at best: 256 bits)
● No Vector Length Register (VLR)
● No mask registers
● No vector chaining
● No data pipeline

● The number of functional units = vector size

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

SIMD
INSTRUCTION SET EXTENSIONS

● Instruction types:
● Vector-vector operations

● Inter-vector: between 2 vectors. Result: vector
● For example: adding two vectors

● Intra-vector: on the elements of a vector. Result: scalar
● For example: summing the elements of a vector

● Reordering elements of a vector (shuffling)
● Scalar-vector operations:

● For example: multiplying each vector element by a scalar
● Vector load/store operations:

● Memory ↔ vector register data transfer

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

SIMD
INSTRUCTION SET EXTENSIONS

Name ISA Num. vec. regs. Length Type of elements

MMX x86 8 64 bit Int: 8x8, 4x16, 2x32 bit

3DNow x86 8 64 bit Float: 2x32 bit

SSE x86/x64 8 128 bit Float: 4x32 bit

SSE2-4 x86/x64 8/16 128 bit Int: 16x8, 8x16, 4x32 bit.
Float: 4x32, 2x64 bit

AVX x86/x64 16 256 bit Float: 8x32, 4x64 bit

AltiVec Power 32 128 bit Int: 16x8, 8x16, 4x32 bit
Float: 4x32 bit

NEON ARM 32/16 64/128 bit Int: 8x8, 4x16, 2x32 bit
Float: 2x32 bit

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

SIMD OPERATIONS IN
HIGH LEVEL LANGUAGES

● SIMD operations can be used in high level languages, too!

→ „intrinsic” instructions
● Platform dependent

● Usage:
● Include the appropriate C header file

● Introduces vector data types (__m128, float32x4_t)
● Introduces vector operations

 © Department of Networked Systems and Services © Department of Networked Systems and Services 29

EXAMPLE FOR SIMD IN
HIGH LEVEL LANGUAGE

● Increasing image saturation, without SIMD:
void saturate () {

 float r, g, b, p, val;

 for (int i=0; i<height*width; i++) {
 r = *srcR;
 g = *srcG;
 b = *srcB;

 p = sqrt (r*r + g*g + b*b);
 val = p + (r - p) * 1.5f;
 *dstR = val>255.0 ? 255.0 : val<0 ? 0 : val;
 val = p + (g - p) * 1.5f;
 *dstG = val>255.0 ? 255.0 : val<0 ? 0 : val;
 val = p + (b - p) * 1.5f;
 *dstB = val>255.0 ? 255.0 : val<0 ? 0 : val;

 srcR++; srcG++; srcB++;
 dstR++; dstG++; dstB++;
 }
}

 © Department of Networked Systems and Services © Department of Networked Systems and Services 30

WITH SSE2 INSTRUCTIONS

#include <xmmintrin.h>
void saturateSSE2 () {

 float p, val;
 __m128 r0, r1, r2, r3, r4;
 const __m128 r5 = {1.5f, 1.5f, 1.5f, 1.5f};
 const __m128 r6 = {0.0f, 0.0f, 0.0f, 0.0f};
 const __m128 r7 = {255f, 255f, 255f, 255f};

 for (int i=0; i<height*width; i+=4) {

 r1 = _mm_load_ps (srcR);
 r0 = r1;
 r0 = _mm_mul_ps (r0, r1);

 r2 = _mm_load_ps (srcG);
 r4 = r2;
 r4 = _mm_mul_ps (r4, r2);
 r0 = _mm_add_ps (r0, r4);

 r3 = _mm_load_ps (srcB);
 r4 = r3;
 r4 = _mm_mul_ps (r4, r3);
 r0 = _mm_add_ps (r0, r4);

 r0 = _mm_sqrt_ps (r0);

 r1 = _mm_sub_ps (r1, r0);
 r1 = _mm_mul_ps (r1, r5);
 r1 = _mm_add_ps (r1, r0);
 r1 = _mm_min_ps (r1, r7);
 r1 = _mm_max_ps (r1, r6);

 _mm_store_ps (dstR, r1);

 r2 = _mm_sub_ps (r2, r0);
 r2 = _mm_mul_ps (r2, r5);
 r2 = _mm_add_ps (r2, r0);
 r2 = _mm_min_ps (r2, r7);
 r2 = _mm_max_ps (r2, r6);

 _mm_store_ps (dstG, r2);

 r3 = _mm_sub_ps (r3, r0);
 r3 = _mm_mul_ps (r3, r5);
 r3 = _mm_add_ps (r3, r0);
 r3 = _mm_min_ps (r3, r7);
 r3 = _mm_max_ps (r3, r6);

 _mm_store_ps (dstB, r3);

 srcR+=4; srcG+=4; srcB+=4;
 dstR+=4; dstG+=4; dstB+=4;
 }
}

 © Department of Networked Systems and Services © Department of Networked Systems and Services 31

WITH NEON INSTRUCTIONS

#include <arm_neon.h>
void saturateNEON () {

 float p, val;
 float32x4_t r0, r1, r2, r3, r4;
 const float32x4_t r5 = vdupq_n_f32 (1.5f);
 const float32x4_t r6 = vdupq_n_f32 (0.0f);
 const float32x4_t r7 = vdupq_n_f32 (255.0f);

 for (i=0; i<height*width; i+=4) {

 r1 = vld1q_f32 (srcR);
 r0 = vmulq_f32 (r1, r1);

 r2 = vld1q_f32 (srcG);
 r4 = vmulq_f32 (r2, r2);
 r0 = vaddq_f32 (r0, r4);

 r3 = vld1q_f32 (srcB);
 r4 = vmulq_f32 (r3, r3);
 r0 = vaddq_f32 (r0, r4);

 r0 = vrecpeq_f32 (vrsqrteq_f32 (r0));

 r1 = vsubq_f32 (r1, r0);
 r1 = vmulq_f32 (r1, r5);
 r1 = vaddq_f32 (r1, r0);
 r1 = vminq_f32 (r1, r7);
 r1 = vmaxq_f32 (r1, r6);

 vst1q_f32 (dstR, r1);

 r2 = vsubq_f32 (r2, r0);
 r2 = vmulq_f32 (r2, r5);
 r2 = vaddq_f32 (r2, r0);
 r2 = vminq_f32 (r2, r7);
 r2 = vmaxq_f32 (r2, r6);

 vst1q_f32 (dstG, r2);

 r3 = vsubq_f32 (r3, r0);
 r3 = vmulq_f32 (r3, r5);
 r3 = vaddq_f32 (r3, r0);
 r3 = vminq_f32 (r3, r7);
 r3 = vmaxq_f32 (r3, r6);

 vst1q_f32 (dstB, r3);

 srcR+=4; srcG+=4; srcB+=4;
 dstR+=4; dstG+=4; dstB+=4;
 }
}

 © Department of Networked Systems and Services © Department of Networked Systems and Services 32

PERFORMANCE COMPARISON

● Execution times:

Intel Core i7-2600 Without SIMD 15,166 ms

SSE2 3,829 ms

AVX 3,698 ms

Intel Pentium 4 Without SIMD 139,758 ms

SSE2 36,355 ms

ARM Cortex A9 Without SIMD 155,012 ms

NEON 44,026 ms

 © Department of Networked Systems and Services © Department of Networked Systems and Services 33

	Slide 1
	A FÓLIA címe hosszú is lehet, legfeljebb két soros lesz
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

