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FLYNN TAXONOMY

• Flynn's Taxonomy Based on the Relationship Between Instructions and Data
• SISD (Single Instruction, Single Data):

– Execution of a single sequence of instructions on scalar data.
– This is what we have studied so far.

• SIMD (Single Instruction, Multiple Data):
– A single sequence of instructions operates on multiple data elements 

simultaneously.
– Examples include vector processors, array processors, etc.

• MIMD (Multiple Instruction, Multiple Data):
– Multiple sequences of instructions operate on multiple data elements 

independently.
– Typical of multiprocessor systems.

• MISD (Multiple Instruction, Single Data):
– Used in fault-tolerant systems.
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Vector processors
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VECTOR PROCESSORS

• Instead of using classical scalar data types and operations

– Vector data types

– Vector processing instructions

• Every modern supercomputer has vector processing capabilities
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EXAMPLE

• C code:

• Classical (scalar) solution:                         Vector-based solution:

for (i=0; i<64; i++)
    C[i] = A[i] + B[i];

R4←64
loop:
    D1 ← MEM[R1]
    D2 ← MEM[R2]
    D3 ← D1 + D2
    MEM[R3] ← D3
    R1 ← R1 + 8
    R2 ← R2 + 8
    R3 ← R3 + 8
    R4 ← R4 - 1
    JUMP loop IF R4!=0

VLR ← 64
V1 ← MEM[R1]
V2 ← MEM[R2]
V3 ← V1 + V2
MEM[R3] ← V3
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EXAMPLE

• Why is the vector-based solution better?

– Shorter, more coincise code

– No loops are needed!
● What is wrong with loops?

– In each cycle again and again the CPU has to
● Fetch the instructions of the body
● Decode them
● Execute them

– There is a control hazard in every iteration
– Branch prediction is needed 64 times

– Vector instructions implicitly assume the independence of 
vector elements

● High performance can be achieved with very deep pipeline 
and/or multiple functional units
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ARCHITECTURE OF
VECTOR PROCESSORS

• Type of vector processors:
– Register-register
– Memory-memory

• We’ll consider register-register vectorprocessors only
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OPERATION OF
VECTOR PROCESSORS

• Why do only scalar operands benefit from cache?

– Vector operations are accelerated differently:
→ Through specialized memory handling.

• Why is a scalar memory read slow?

– There are multiple clock cycles between issuing the address and the 
data arriving.

• Why are vector memory operations more efficient?
– Vector loading involves a fixed (large) number of memory operations:
– You issue the address of one element.
– The data doesn’t arrive in the next cycle yet, but you can already issue 

the address of the next element.
– …and so on → a pipeline-like solution.
– For this to work efficiently:

Successive elements must be located in different memory banks.
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INTERLEAVED MEMORY 
ADRESSING

Cycle Bank

1 15636

2 Busy 15640

3 Busy Busy 15644

4 Busy Busy Busy 15648

5 Data[0] Busy Busy Busy 15652

6 15656 Data[1] Busy Busy Busy

7 Busy 15660 Data[2] Busy Busy

8 Busy Busy 15664 Data[3] Busy

9 Busy Busy Busy 15668 Data[4]

10 Data[5] Busy Busy Busy 15672

11 Data[6] Busy Busy Busy 15676

12 15680 Data[7] Busy Busy Busy

13 Busy 15684 Data[8] Busy Busy
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FUNCTIONAL UNITS

• Accelerating vector operations:
• By replicating functional units

– Vector elements are independent
– e.g., with 4 functional units, 4 elements can be processed in 

parallel

• By using a deep data pipeline
– Data pipeline? What’s that?
– Floating-point number representation: Number = (-1)^s × c × 2^q
– Example: Floating-point addition (4 stages):

● Check if either operand is zero
● Align the two operands to the same exponent
● Perform the addition
● Normalize the result
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DATA PIPELINE

• Example: Floating-Point Multiplication (5 Stages)
– Check if either operand is zero
– Add the exponents
– Multiply the mantissas
– Determine the sign bit of the result
– Normalize the result

• As soon as the first stage is complete for one vector element, 
the processor immediately starts the first stage for the next 
element → pipelining
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DATA PIPELINE

1 2 3 4 5 6 7 8 9 10 11

V2[0] ← V0[0]+V1[0] A0 A1 A2 A3

V2[1] ← V0[1]+V1[1] A0 A1 A2 A3

V2[2] ← V0[2]+V1[2] A0 A1 A2 A3

V2[3] ← V0[3]+V1[3] A0 A1 A2 A3

V2[4] ← V0[4]+V1[4] A0 A1 A2 A3

V2[5] ← V0[5]+V1[5] A0 A1 A2 A3

V2[6] ← V0[6]+V1[6] A0 A1 A2 A3

V2[7] ← V0[7]+V1[7] A0 A1 A2 A3
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DATA PIPELINE

● With 2 pipelines:

1 2 3 4 5 6 7 8 9 10 11

V2[0] ← V0[0]+V1[0] A0 A1 A2 A3

V2[1] ← V0[1]+V1[1] A0 A1 A2 A3

V2[2] ← V0[2]+V1[2] A0 A1 A2 A3

V2[3] ← V0[3]+V1[3] A0 A1 A2 A3

V2[4] ← V0[4]+V1[4] A0 A1 A2 A3

V2[5] ← V0[5]+V1[5] A0 A1 A2 A3

V2[6] ← V0[6]+V1[6] A0 A1 A2 A3

V2[7] ← V0[7]+V1[7] A0 A1 A2 A3
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DATA PIPELINE

• Very Important:

– This is a type of pipeline where
● There is no data hazard!

→ No need for waiting or hazard detection logic

→ This allows for arbitrarily deep pipelines

→ And arbitrarily wide pipelines

– The only limiting factor:
● How many sub-stages we can divide an arithmetic 

operation into
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EXAMPLE 1.

• Berkely T0 (Torrent-0, 1995)
• Length-32 vector registers
• 1 lane: responsible for 4 elements

(8 lines on the figure)
• 2 ALUs in each lane
• ...only one of them can multiply
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EXAMPLE 2.

• NEC SX-9 Supercomputer Processor
• The fastest supercomputer of 2008
• Used by: 

German Meteorological Center (2 units)
• In 2011: 976 vector processors 

+ 31 TB of memory
• Per processor:

– Handles vectors of length 256
– Contains 8 pipelined functional units

• Vector ALU runs at 3.2 GHz
• Scalar unit: 4-way out-of-order

execution at 1.6 GHz
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Typical Solutions in Vector Processors
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STRIP-MINING

• Hardware-Supported Vector Length is Fixed:
MVL (Maximum Vector Length)

• We rarely need vectors exactly this size.

– If we compute with a smaller vector:
● Set the VLR (Vector Length Register)
● Smaller VLR → shorter execution time

– If we compute with a larger vector:
● The vector is split into MVL-sized chunks
● The operation is executed on each chunk

→ This is called Strip-mining
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STRIP-MINING EXAMPLE

• C code:                                                  Vectorized:

for (i=0; i<N; i++)
    C[i] = A[i] + B[i];

   VLR ← R0 % MVL
loop:
   V1 ← MEM[R1]
   V2 ← MEM[R2]
   V3 ← V1 + V2
   MEM[R3] ← V3
   R4 ← VLR * 8
   R1 ← R1 + R4
   R2 ← R2 + R4
   R3 ← R3 + R4
   R0 ← R0 - VLR
   VLR ← MVL
   JUMP loop IF R0!=0
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VECTOR MASKING

• There is a special mask register
• ALU skips vector elements where mask=0
• C code:                                           Vectorized:

• Two possible implementations:

– Naive: Vector ALU applies operation on all elements, 
but it does not store masked out elements

– Efficient: The Load/Store unit and the ALU skips masked 
out elements → faster execution

for (i=0; i<N; i++)
    if (B[i]>0)
        C[i] = A[i] / B[i];

V1 ← MEM[R1]
MASK ← V1>0
V0 ← MEM[R0]
V2 ← V0 / V1
MEM[R2] ← V2 
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VECTOR CHAINING

● RAW dependencies exist in vector processors, too:
● V1 ← MEM[R1]

V3 ← V1 + V2
V5 ← V3 * V4

● A solution in vector processors similar to forwarding:
● Vector chaining
● Dependent instruction does not have to wait for the one 

providing the operand
● As soon as the first element of V1 is available, we can start 

working on the first element of V3
● As soon as the first element of V3 is available, we can start 

working on the first element of V5
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EXAMPLE FOR VECTOR CHAINING

Instruction 1 2 3 4 5 6 7 8 9

V1[0]←MEM[R1+0] T0 T1

V1[1]←MEM[R1+8] T0 T1

V1[2]←MEM[R1+16] T0 T1

V1[3]←MEM[R1+24] T0 T1

V1[4]←MEM[R1+32] T0 T1

V1[5]←MEM[R1+40] T0 T1

V3[0]←V1[0]+V2[0] A0 A1 A2

V3[1]←V1[1]+V2[1] A0 A1 A2

V1[6]←MEM[R1+48] T0 T1

V1[7]←MEM[R1+56] T0 T1

V3[2]←V1[2]+V2[2] A0 A1 A2

V3[3]←V1[3]+V2[3] A0 A1 A2

...
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EXAMPLE FOR VECTOR CHAINING

Instruction 1 2 3 4 5 6 7 8 9

V1[8]←MEM[R1+64] T0 T1

V1[9]←MEM[R1+72] T0 T1

V3[4]←V1[4] + V2[4] A0 A1 A2

V3[5]←V1[5] + V2[5] A0 A1 A2

V1[10]←MEM[R1+80] T0 T1

V1[11]←MEM[R1+88] T0 T1

V3[6]←V1[6] + V2[6] A0 A1 A2

V3[7]←V1[7] + V2[7] A0 A1 A2

V5[0]←V3[0] * V4[0] M0 M1 M2 M3

V5[1]←V3[1] * V4[1] M0 M1 M2 M3

...
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SIMD instruction set extensions
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SIMD
INSTRUCTION SET EXTENSIONS

● Vector instructions are useful even for consumer use
● Useful for image processing

● In 3D graphics applications and games

● Even simple scientific computations can be well-vectorized
● Many processors support vector operations
● But that doesn’t make them true vector processors!

● Why not?
● Vector size is very small (at best: 256 bits)
● No Vector Length Register (VLR)
● No mask registers
● No vector chaining
● No data pipeline

● The number of functional units = vector size
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SIMD
INSTRUCTION SET EXTENSIONS

● Instruction types:
● Vector-vector operations

● Inter-vector: between 2 vectors. Result: vector
● For example: adding two vectors

● Intra-vector: on the elements of a vector. Result: scalar
● For example: summing the elements of a vector

● Reordering elements of a vector (shuffling)
● Scalar-vector operations:

● For example: multiplying each vector element by a scalar
● Vector load/store operations:

● Memory ↔ vector register data transfer
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SIMD
INSTRUCTION SET EXTENSIONS

Name ISA Num. vec. regs. Length Type of elements

MMX x86 8 64 bit Int: 8x8, 4x16, 2x32 bit

3DNow x86 8 64 bit Float: 2x32 bit

SSE x86/x64 8 128 bit Float: 4x32 bit

SSE2-4 x86/x64 8/16 128 bit Int: 16x8, 8x16, 4x32 bit. 
Float: 4x32, 2x64 bit

AVX x86/x64 16 256 bit Float: 8x32, 4x64 bit

AltiVec Power 32 128 bit Int: 16x8, 8x16, 4x32 bit
Float: 4x32 bit

NEON ARM 32/16 64/128 bit Int: 8x8, 4x16, 2x32 bit
Float: 2x32 bit
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SIMD OPERATIONS IN
HIGH LEVEL LANGUAGES

● SIMD operations can be used in high level languages, too!

→ „intrinsic” instructions
● Platform dependent

● Usage:
● Include the appropriate C header file

● Introduces vector data types (__m128, float32x4_t)
● Introduces vector operations
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EXAMPLE FOR SIMD IN 
HIGH LEVEL LANGUAGE

● Increasing image saturation, without SIMD:
void saturate () {

    float r, g, b, p, val;

    for (int i=0; i<height*width; i++) {
        r = *srcR;
        g = *srcG;
        b = *srcB;

        p = sqrt (r*r + g*g + b*b);
        val = p + (r - p) * 1.5f;
        *dstR = val>255.0 ? 255.0 : val<0 ? 0 : val;
        val = p + (g - p) * 1.5f;
        *dstG = val>255.0 ? 255.0 : val<0 ? 0 : val;
        val = p + (b - p) * 1.5f;
        *dstB = val>255.0 ? 255.0 : val<0 ? 0 : val;

        srcR++; srcG++; srcB++;
        dstR++; dstG++; dstB++;
    }
}   
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WITH SSE2 INSTRUCTIONS

#include <xmmintrin.h>
void saturateSSE2 () {

    float p, val;
    __m128 r0, r1, r2, r3, r4;
    const __m128 r5 = {1.5f, 1.5f, 1.5f, 1.5f};
    const __m128 r6 = {0.0f, 0.0f, 0.0f, 0.0f};
    const __m128 r7 = {255f, 255f, 255f, 255f};

    for (int i=0; i<height*width; i+=4) {

        r1 = _mm_load_ps (srcR);
        r0 = r1;
        r0 = _mm_mul_ps (r0, r1);

        r2 = _mm_load_ps (srcG);
        r4 = r2;
        r4 = _mm_mul_ps (r4, r2);
        r0 = _mm_add_ps (r0, r4);

        r3 = _mm_load_ps (srcB);
        r4 = r3;
        r4 = _mm_mul_ps (r4, r3);
        r0 = _mm_add_ps (r0, r4);

        r0 = _mm_sqrt_ps (r0);      

        r1 = _mm_sub_ps (r1, r0);
        r1 = _mm_mul_ps (r1, r5);
        r1 = _mm_add_ps (r1, r0);
        r1 = _mm_min_ps (r1, r7);
        r1 = _mm_max_ps (r1, r6);
        
        _mm_store_ps (dstR, r1);
       
        r2 = _mm_sub_ps (r2, r0);
        r2 = _mm_mul_ps (r2, r5);
        r2 = _mm_add_ps (r2, r0);
        r2 = _mm_min_ps (r2, r7);
        r2 = _mm_max_ps (r2, r6);
        
        _mm_store_ps (dstG, r2);
        
        r3 = _mm_sub_ps (r3, r0);
        r3 = _mm_mul_ps (r3, r5);
        r3 = _mm_add_ps (r3, r0);
        r3 = _mm_min_ps (r3, r7);
        r3 = _mm_max_ps (r3, r6);
        
        _mm_store_ps (dstB, r3);        
      
        srcR+=4; srcG+=4; srcB+=4;
        dstR+=4; dstG+=4; dstB+=4;
  }
}
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WITH NEON INSTRUCTIONS

#include <arm_neon.h>
void saturateNEON () {

    float p, val;
    float32x4_t r0, r1, r2, r3, r4;
    const float32x4_t r5 = vdupq_n_f32 (1.5f);
    const float32x4_t r6 = vdupq_n_f32 (0.0f);
    const float32x4_t r7 = vdupq_n_f32 (255.0f);
  
    for (i=0; i<height*width; i+=4) {

        r1 = vld1q_f32 (srcR);
        r0 = vmulq_f32 (r1, r1);

        r2 = vld1q_f32 (srcG);
        r4 = vmulq_f32 (r2, r2);
        r0 = vaddq_f32 (r0, r4);

        r3 = vld1q_f32 (srcB);
        r4 = vmulq_f32 (r3, r3);
        r0 = vaddq_f32 (r0, r4);

        r0 = vrecpeq_f32 (vrsqrteq_f32 (r0));
        

        r1 = vsubq_f32 (r1, r0);
        r1 = vmulq_f32 (r1, r5);
        r1 = vaddq_f32 (r1, r0);
        r1 = vminq_f32 (r1, r7);
        r1 = vmaxq_f32 (r1, r6);
        
        vst1q_f32 (dstR, r1);
       
        r2 = vsubq_f32 (r2, r0);
        r2 = vmulq_f32 (r2, r5);
        r2 = vaddq_f32 (r2, r0);
        r2 = vminq_f32 (r2, r7);
        r2 = vmaxq_f32 (r2, r6);
        
        vst1q_f32 (dstG, r2);
        
        r3 = vsubq_f32 (r3, r0);
        r3 = vmulq_f32 (r3, r5);
        r3 = vaddq_f32 (r3, r0);
        r3 = vminq_f32 (r3, r7);
        r3 = vmaxq_f32 (r3, r6);
        
        vst1q_f32 (dstB, r3);        
      
        srcR+=4; srcG+=4; srcB+=4;
        dstR+=4; dstG+=4; dstB+=4;
    }
}



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 32

PERFORMANCE COMPARISON

● Execution times:

Intel Core i7-2600 Without SIMD 15,166 ms

SSE2 3,829 ms

AVX 3,698 ms

Intel Pentium 4 Without SIMD 139,758 ms

SSE2 36,355 ms

ARM Cortex A9 Without SIMD 155,012 ms

NEON 44,026 ms
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