
     © Department of Networked Systems and Services     © Department of Networked Systems and Services 1

Budapest, 
2025. 03. 11.

COMPUTER ARCHITECTURES

Virtual Memory

Gábor Horváth, ghorvath@hit.bme.hu



     © Department of Networked Systems and Services     © Department of Networked Systems and Services 2

VIRTUAL MEMORY

● Motivation:
● Multi-tasking operating systems

● Tasks come and go continuously
● The memory share available for each task is varying

● There are cheap 64 bit CPUs available
● For instance, AMD64 is capable of using 256 TB RAM
● We can not plug in that much RAM

● The CPU offers all its address space to the programs
● From address 0 to the top of the address space
● Memory size can never be the issue in this case

● This „virtual” (offered) amount of memory needs to be 
covered by physical memory

→ Virtual memory
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VIRTUAL MEMORY

● Programs use: Virtual addresses
● On the address lines of the CPU and the bus we have: 

Physical addresses
● The mapping between virtual and physical is called: 

Address Translation
● Done by: MMU (Memory management unit)

● Built into the CPU in most cases
● Unit of address translation is called: 

● Page, if it has fixed size, or
● Segment, if it has variable size

● If not all pages fit into the memory
→ they are written to the disk (swapping)
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VIRTUAL MEMORY
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ADDRESS TRANSLATION

● The virtual address space is partitioned to fixed size pages
● The physical address space is partitioned to frames, having the same 

size as pages
● Sizes:

● Size of pages = 2 L

● Lower L bits of addresses: offset from the start of the page
● Upper bits:

● In case of virtual memory: Page identifier
● In case of physical memory: Frame identifier

● Page ↔ Frame mapping is stored in the page table
● Contents of the page table:

● The page number
● The frame number
● Protection information (rights to read/write)
● Control bits:

● Valid (means: the given page is in the physical memory)
● Dirty (means: the page has been changed, since it was read from 

disk)
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ADDRESS TRANSLATION

● Remark: this figure is „theoretical”. The implementation of the mapping 
between page numbers and frame numbers will be explained later.
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ADDRESS TRANSLATION

● Assume the program wants to access the memory
● It uses virtual addresses
● The upper bits are the page number
● The page table is looked up to find the frame on which the page is 

stored
● If the page is in the memory according to the page table:

● Knowing the frame number the physical address is assembled
● The upper bits are the frame number
● The lower L bits are the offset

● Copied from the lower L bits of the virtual address
● If the page is not in the memory (page fault):

● The CPU asks the operating system to load the page from the disk
● The operating system throws out a rarely used page from the 

memory
● ...and puts the requested page into its place
● The operating system then updates the page table

● The CPU puts the physical address onto its address lines to serve 
the memory read/write request
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TLB

● Each memory access initiated by the program consists of:
● Address translation: obtain physical address from the virtual one
● The actual memory operation on the physical address

● But the page table is stored in the memory as well!
● 1 memory access of the program

→ costs 2 memory accesses in the reality !!
● But the memory is slow

● And now we need to access it twice as many times!
● Remedy: locality
● TLB: Translation Lookaside Buffer

● A special cache in the CPU that stores the virtual ↔ physical 
mapping of pages that are used most of the time

● When doing address translation the CPU looks into its TLB first
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ADDRESS TRANSLATION WITH 
TLB
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FEATURE OF THE TLB

● TLB coverge: the amount of memory covered by the pages 
that have translation information stored in the TLB

● The larger it is the less we need to access the page table 
residing in the slow memory

● Implementation of the TLB: content addressable memory
→ It has a large surface and consumes a lot of energy
→ It is small :(

TLB size: 16 – 512 entries

TLB hit time: 0.5 – 1 clock cycles

Translation time when TLB misses: 10 – 100 clock cycles

TLB miss rate: 0.01% – 1%
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PAGE TABLE IMPLEMENTATIONS

● Goal:
● Perform address translation as fast as possible

→ we are typically looking for the frame number based on the 
page number

→ while doing the lookup we want to touch the slow memory 
as few as possible

● The page table should consume as few memory as possible
● Solution:

● Special data structures
● Single-level page table
● Multi-level (hierarchical) page table
● Inverse page table
● Etc.
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SINGLE-LEVEL PAGE TABLES

● A single-level page table is simply an array of page table entries
● Entry i.: 

● Valid bit: is the page in the memory, or is it in the disk?
● If valid: the frame where page i. is stored in the physical memory
● If not valid: where on the disk is the page stored
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SINGLE-LEVEL PAGE TABLES

● Lookup procedure: fast
● Finding the entry associated with page i. needs exactly 1 memory 

operation
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SINGLE-LEVEL PAGE TABLES

● Size of the page table entries: small
● The page identifier is not stored → it is the index of the array
● The location on the disk can be stored in case of invalid entries
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SINGLE-LEVEL PAGE TABLES

● Fast, needs a single memory access during lookup, the entries are 
small, ...
...isnt it the ideal way to store the page table?

  Problem: the entire page table needs to be present in the memory 
all of the time!

● Quick calculations:
● With 32 bit addresses and 4 kB pages:

● Page size: 12 bit, number of pages: 32-12 = 20 bit, 1 mega-page
● 4 byte is enough to store 1 entry
● Size of the page table: 4 MB

● With 64 bit addresses and 4 kB pages:
● Page size: 12 bit, number of pages: 64-12 = 52 bit, 252 pages
● 8 byte is enough to store 1 entry
● Size of the page table: 8 * 252 = 32 * 250 = 32 PB !!!
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HIERARCHICAL PAGE TABLES

● Idea: let us cut the page table into pages as well
● The locations of pages storing page table entries are stored in an 

other page. The location of these pages are stored on a third 
page, etc.
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HIERARCHICAL PAGE TABLES

● Only those parts of the page table are stored in the memory that 
are in use indeed

● The memory is touched several times during the traversal 
→ slow!
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TWO-LEVEL HIERARCHICAL 
PAGE TABLE

X X
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HIERARCHICAL PAGE TABLES

● Quick calculation:
● With 32 bit addresses and 4 kB pages:

● Page size: 12 bit, 4 byte is enough to store 1 entry
● One page can store 1024 entries → we need 10 bits to index it
● There are 1024 pages storing page table entries, and a single 

page that contains pointers to these pages
● Partitioning a 32 bit address = 10 + 10 + 12 bit (first level index, 

second level index, offset)
 → Two-level page table is enough

● With 64 bit addresses and 4 kB pages:
● Page size: 12 bit, 8 byte is enough to store 1 entry
● One page can store 512 entries → we need 9 bits to index it
● Partitioning a 64 bit address = 7 + 9 + 9 + 9 + 9 + 9 + 12 bit

 → A six-level page table is required!
6 memory operations are needed for each address 
translation !!!

● X86, ARM architectures are using hierarchical page tables
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HIERARCHICAL PAGE TABLES

● 6 levels are way too many!
● Practical mitigation: usage of a smaller virtual address range
● Example:

      cat /proc/cpuinfo | grep -E "sizes|name" | head -n 2
   model name      : Intel(R) Xeon(R) CPU     E5440  @ 2.83GHz

   address sizes   : 38 bits physical, 48 bits virtual
● Calculation with 48 bit virtual addresses and 4 kB pages:

● Page size: 12 bit, we use 8 bytes to store 1 entry
● One page can store 512 entries → we need 9 bits to index it
● Partitioning a 48 bit address = 9 + 9 + 9 + 9 + 12 bit

● Only four-level page table is required!
● 248 = 28 * 240 = 256 TB virtual address space
● 238 = 28 * 230 = 256 GB physical memory
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HARDWARE MANAGED TLB

● As explained previously
● Address translation: CPU/MMU...

● First it tries to translate the address from the TLB
● In case of TLB miss: it traverses the page table

● Valid = 1: updates TLB, done.
● Valid = 0: Page fault! → calls the operating system and tries again

● Page faults are managed by: The operating system...
● It receives the page number (needed for the address translation)
● It loads it from the disk (with its private algorithms & data structures)
● … if it is on the disk at all!

If nobody else has used that page before, it creates a new one
● It puts it into the physical memory (throws out someone else, if there 

is no space)
● It updates the page table

● Examples: x86, x86-64, ARM, POWER
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SOFTWARE MANAGED TLB

● A less popular alternative solution
● Address translation: CPU/MMU...

● First it tries to translate the address from the TLB
● In case of TLB miss: it calls the operating system, then it tries again

● TLB fault is resolved by: The operating system...
● It receives the page number
● It traverses its own private page table

● Valid = 1: updates the TLB of the CPU with the proper page ↔ frame 
mapping

● Valid = 0: like before (swapping, page table update) 
● It updates the TLB of the CPU

● Benefits:
● No hardware given restrictions, the operating system can introduce a 

more sophisticated page table any time by a software update
● More complicated page tables can also be used

● Drawbacks:
● Much slower address translation (in case of TLB miss)

● Examples: SPARC, Alpha, MIPS, PA-RISC
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DIMENSIONING 
CONSIDERATIONS

● How large the pages should be?
● As large as possible, since

● The TLB coverage will be larger
● Page faults occur less frequently
● At page fault the page is loaded form the disk

● Disk loads large pages as fast as small pages
● Why not to load a larger amount of data at once

● As small as possible, since
● With small pages the page contains only those data that are 

actually used
● ...and we do not want to waste the small and expensive memory 

with storing data which accidentally falls onto the same page but 
which we don’t need

● In the practice: 4 – 8 kB
● For special purposes: huge pages (2MB, 1GB)
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VIRTUAL MEMORY IN A
MULTI-TASKING ENVIRONMENT

● Every task gets the entire virtual address space (from address 0)
● Solution:

● Every task has a separate page table
● At task switching:

● The pointer to the page table is switched
● TLB is invalidated

● Shared memory regions can be defined, with the same underlying frames
● Application: e.g. the code segment of multiple instances of the same program
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