
 © Department of Networked Systems and Services © Department of Networked Systems and Services 1

Budapest,
2025. 04. 16.

COMPUTER ARCHITECTURES

Wide Instruction Pipelines

Gábor Horváth, ghorvath@hit.bme.hu

 © Department of Networked Systems and Services © Department of Networked Systems and Services 2

HOW TO MAKE THE CPU FASTER

Option 1: Make the pipeline deeper
● Let us increase the clock frequency by a factor of 2
● To do so each stage needs to be cut to two sub-phases
● The throughput of the pipeline increased by a factor of 2!

 © Department of Networked Systems and Services © Department of Networked Systems and Services 3

HOW TO MAKE THE CPU FASTER

Option 2: Make the pipeline wider
● Each stage can work on several instructions at the same time

 © Department of Networked Systems and Services © Department of Networked Systems and Services 4

EVALUATION

● Depth: k times, width: m times
→ leads to a speedup of factor m*k in theory

● Practical issues:
● If m*k is large: many instructions are being processed at the

same time → there are lots of data hazards → pipeline stalls
are necessary to resolve them → the efficiency drops

● If the pipeline is too wide → too many forwarding paths' →
complexity, power consumption, price, etc.

● If the pipeline is too deep: the penalty of the speculative
decisions will grow

● The clock frequency can not be arbitrary large
● The read/write latency of the pipeline registers is a physical limit

● Typical values:
● Depth: 5-30
● Width: 1-6

 © Department of Networked Systems and Services © Department of Networked Systems and Services 5

EXAMPLES

Depth Width

Pentium 5 1

Pentium Pro 14 1-3 (1 complex + 2 simple)

Pentium 4 Prescott 31 3

Intel Core 14 4

Intel Core i7 Nehalem 16 4

Intel Core i7 Kaby Lake 14-19 4

Intel Atom 16 2

Alpha 21264 7 4

ARM Cortex A55 8-10 2

ARM Cortex A75 11-12 3

APPLE A10 ? 6

POWER9 12-16 6

 © Department of Networked Systems and Services © Department of Networked Systems and Services 6

MAKING THE PIPELINE WIDER

● Key of the efficiency:
● The program must contain enough number of independent

instructions

● Who collects independent instructions?
● The compiler:

● Static scheduling
● VLIW/EPIC architectures

● The CPU itself, real-time:
● Dynamic scheduling
● Superscalar processors

● In-order: the instructions are executed in the order given by the
program

● Out-of-order

 © Department of Networked Systems and Services © Department of Networked Systems and Services 7

INSTRUCTION SCHEDULING

● There are several possibilities between the purely static and
purely dynamic scheduling

Collect
instructions to

execute in
parallel

Assigning
instructions to
functional units

Determining
when an

instruction is
executed

Superscalar Hardware Hardware Hardware

EPIC Compiler Hardware Hardware

Dynamic VLIW Compiler Compiler Hardware

VLIW Compiler Compiler Compiler

 © Department of Networked Systems and Services © Department of Networked Systems and Services 8

Wide pipelines with dynamic scheduling

 © Department of Networked Systems and Services © Department of Networked Systems and Services 9

SUPERSCALAR PROCESSORS

● The processor can fetch several instructions in a cycle
● The processor is able to...

● ...collect instructions for simultaneous execution
● ...assign instructions to execution units
● ...perform dependency analysis (and schedule instructions)

● If the execution of m instructions can start in the same cycle:
→ m-way superscalar processor

● Two solutions:
● In-order:

● Execution order: given by the program
● Out-of-order:

● Execution order: optimized, to run the program faster
● Yet the semantics of the program is respected

 © Department of Networked Systems and Services © Department of Networked Systems and Services 10

IN-ORDER VS. OUT-OF-ORDER

● Example:

i1: R1 ← R2 + R3
i2: R4 ← R1 – R5
i3: R7 ← R8 – R9
i4: R0 ← R2 – R3

● In case of a two-way superscalar processor:
In-order: Out-of-order:

Clock cycle Instructions

1: i1

2: i2, i3

3: i4

Clock cycle Instructions

1: i1, i3

2: i2, i4

 © Department of Networked Systems and Services © Department of Networked Systems and Services 11

IN-ORDER SUPERSCALAR
PIPELINE

”Ordinary”, non-superscalar CPU

 © Department of Networked Systems and Services © Department of Networked Systems and Services 12

IN-ORDER SUPERSCALAR
PIPELINE

Two-way in-order superscalar CPU

 © Department of Networked Systems and Services © Department of Networked Systems and Services 13

IN-ORDER SUPERSCALAR
PIPELINE

● Not essentially different, compared to simple pipelines
● Needs (2-way in-order superscalar):

● Two decoders
● Two ALUs
● A register file with two ports
● Instruction and data cache with two ports

● Not too difficult to implement
● Problem:

● The pipeline can not be arbitrarily wide, since the number of
forwarding paths increases with a quadratic rate

 © Department of Networked Systems and Services © Department of Networked Systems and Services 14

THE PIPELINE OF ARM CORTEX-A53

● 2-way in-order superscalar pipeline with 8 stages
● IF: 3 phases

● F0: increments PC, for jumps calculates target address
F1: gives address to instruction cache
F2: puts the instruction into the queue

● ID: as usual
● EX: 5 functional units

 © Department of Networked Systems and Services © Department of Networked Systems and Services 15

OUT-OF-ORDER
SUPERSCALAR PROCESSORS

● The out-of-order execution can be easily extended
● In each cycle

● More than one instruction is fetched and decoded
● The execution of more than one instruction can be started

● The out-of-order execution principle is the same as we saw

 © Department of Networked Systems and Services © Department of Networked Systems and Services 16

THE PIPELINE OF INTEL
HASWELL

 © Department of Networked Systems and Services © Department of Networked Systems and Services 17

THE PIPELINE OF APPLE
CYCLONE

 © Department of Networked Systems and Services © Department of Networked Systems and Services 18

Wide pipelines with static scheduling

 © Department of Networked Systems and Services © Department of Networked Systems and Services 19

DYNAMIC SCHEDULING

● What is wrong with dynamic scheduling?
● The CPU is able to make decisions based on the instructions

fetched so far only (those sitting in the reservation station)
● Complexity

● A complex algorithm is used that affects speed and cost

 © Department of Networked Systems and Services © Department of Networked Systems and Services 20

STATIC SCHEDULING

● What is wrong with dynamic scheduling?
● The CPU can make decisions only based on the instructions fetched

so far (those that are already in the reservation station)
● Makes the CPU complex

● The compiler can do the same job! It can detect which instructions
can be executed in parallel at compile time

→ Static scheduling

● Why is it better if the compiler does it instead of the CPU?
● Speed is not an issue at compile time

→ a compiler can use a more sophisticated algorithm that is slower
● The compiler can see all the instructions of the program

→ it can collect independent instructions from a much wider set

 © Department of Networked Systems and Services © Department of Networked Systems and Services 21

THE VLIW ARCHITECTURE

● VLIW = Very Long Instruction Word
● 1 pipeline, but it operates on instruction groups

● Role of the groups:
● To mark independent instructions
● To assign functional units to the instructions

● Unused positions in the group contain a NOP (No operation)
instruction

● Shocking, but
VLIW processors are not able to handle hazards!

● What happens if there is a data hazard, and a stall is required to
resolve it?

● Processor does not care
● The compiler has to detect it
● … and generate a group full of NOPs

 © Department of Networked Systems and Services © Department of Networked Systems and Services 22

THE VLIW ARCHITECTURE

● Example:
● Latencies: integer – 1, memory – 3, floating point – 4

i1: R3 ← MEM[R1+0]
i2: R4 ← MEM[R1+4]
i3: D1 ← MEM[R1+8]
i4: R5 ← R3 + R4
i5: R6 ← R3 – R4
i6: D2 ← D1 * D1
i7: MEM[R2+0] ← R5
i8: MEM[R2+4] ← R6
i9: MEM[R2+8] ← D2

Int 1. Int 2. Mem
1.

Mem
2.

FP 1. FP 2.

1. NOP NOP i1 i2 NOP NOP

2. NOP NOP i3 NOP NOP NOP

3. NOP NOP NOP NOP NOP NOP

4. i4 i5 NOP NOP NOP NOP

5. NOP NOP i7 i8 i6 NOP

6. NOP NOP NOP NOP NOP NOP

7. NOP NOP NOP NOP NOP NOP

8. NOP NOP NOP NOP NOP NOP

9. NOP NOP i9 NOP NOP NOP

 © Department of Networked Systems and Services © Department of Networked Systems and Services 23

THE VLIW ARCHITECTURE

● We were not able to find a lot of independent instructions
● Several NOPs are inserted

→ low utilization

● Summary: Tasks of the compiler:
● Forming groups from instructions

● Trying to achieve the best possible utilization (minimizing the
number of NOPs)

● The instructions in the groups must be independent
● Scheduling the execution of the instructions

● It must detect hazards
● And inject the necessary number of NOPs to resolve the

hazards

 © Department of Networked Systems and Services © Department of Networked Systems and Services 24

THE VLIW ARCHITECTURE

● Typical sizes of instruction groups:
● 3-4, up to 28 instructions in extreme cases

● Everything is done by the compiler
→ CPU has very little to do: it only executes the operations!

● Typical applications of VLIW processors:
● Cheap embedded system requiring low energy consumption
● Digital signal processors (DSP) (e.g. TMS320C6x – 8

instructions/group)
● Graphics processors: a huge number of simple execution units

are needed. AMD graphics cards used a VLIW3 or a VLIW4
architecture for a while

 © Department of Networked Systems and Services © Department of Networked Systems and Services 25

THE VLIW ARCHITECTURE

● Drawbacks:
● The program runs only on the specific processor it has been

compiled to
→ If a new generation of the same processor family appears

● It can not have more functional units
● It can not have lower latency functional units

● Implementing a transparent cache is a problem
● Since with caches the memory instructions do not have a

constant latency any more (cache hit: fast, cache miss: slow)
● Compiler does not know the memory latency at compile time

→ VLIW processors do not have caches
● The size of the programs is very large due to the presence of

the large number of NOPs

 © Department of Networked Systems and Services © Department of Networked Systems and Services 26

THE DYNAMIC VLIW
ARCHITECTURE

● Compared to the classical VLIW, in dynamic VLIW, we have:
● The only task of the compiler is to collect independent

instructions and form groups from them
● Scheduling is done by the processor

● The processor is able to detect hazards
● And inserts the necessary amount of pipeline stalls automatically

● Advantages:
● Cache can be implemented
● Functional units can be faster in the subsequent generations of

the same VLIW processor family
● The program does not need to be re-compiled to utilize the lower

latencies

 © Department of Networked Systems and Services © Department of Networked Systems and Services 27

THE EPIC ARCHITECTURE

● In VLIW, the position in the group selects the functional unit
that executes the instruction as well:

● In EPIC it does not. The only role of instruction groups is to
encapsulate independent instructions:

● Supported template types are part of the ISA
● Later CPU generations MUST support them and may add

further ones (backward compatibility)

 © Department of Networked Systems and Services © Department of Networked Systems and Services 28

THE EPIC ARCHITECTURE

● It is possible to implement a superscalar EPIC processor
● With a large number of functional units
● The CPU is able to execute several instruction groups in

parallel
● Instruction groups can be chained

● Thus the compiler can indicate that it found not only 3, but 6,
9, etc. independent instructions

● → the program does not need to be re-compiled when the
capabilities of the CPU extends

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

