ANNALS OF OPERATIONS RESEARCH 332 pp. 1251-1251. , 1 p. (2024)
\n \n
"
}, {
"otype" : "Patent",
"mtid" : 35076182,
"status" : "APPROVED",
"type" : {
"otype" : "PublicationType",
"mtid" : 26,
"link" : "/api/publicationtype/26",
"label" : "Protection forms",
"code" : 26,
"otypeName" : "Patent",
"listPosition" : 7,
"published" : true,
"oldId" : 26,
"snippet" : true
},
"subType" : {
"otype" : "SubType",
"mtid" : 21,
"mayHaveImpactFactor" : false,
"link" : "/api/subtype/21",
"label" : "International patent (Protection forms)",
"snippet" : true
},
"category" : {
"otype" : "Category",
"mtid" : 1,
"link" : "/api/category/1",
"label" : "Scientific",
"published" : true,
"oldId" : 1,
"snippet" : true
},
"languages" : [ {
"otype" : "Language",
"mtid" : 10002,
"link" : "/api/language/10002",
"label" : "English",
"name" : "Angol",
"nameEng" : "English",
"published" : true,
"oldId" : 2,
"snippet" : true
} ],
"publishedYear" : 2024,
"citationCount" : 0,
"citationCountWoOther" : 0,
"independentCitCountWoOther" : 0,
"independentCitationCount" : 0,
"selfCitationCount" : 0,
"unhandledCitationCount" : 0,
"citingPubCount" : 0,
"independentCitingPubCount" : 0,
"citingPubCountWoOther" : 0,
"independentCitingPubCountWoOther" : 0,
"unhandledCitingPubCount" : 0,
"link" : "/api/publication/35076182",
"label" : "Péter SZILÁGYI et al. Anomaly Detection Using Logs. (2024) WO/2024/074883",
"snippet" : true,
"template" : " \n WO/2024/074883 , Submission Year: 2022 , Submission Number: PCT/IB2022/059636
Publication:35076182 Published Core Protection forms (International patent ) Scientific
Registration number: WO/2024/074883
Submitted: 2022 | Submission Number: PCT/IB2022/059636 | Published year: (2024)
STATISTICAL ANALYSIS AND DATA MINING 16 : 3 pp. 215-223. , 9 p. (2023)
Publication:33629258 Admin approved Core Journal Article (Article ) Scientific
Citing papers: 2 | Independent citation: 2 | Self citation: 0 | Unknown citation: 0 | Number of citations in WoS: 2 | WoS/Scopus assigned: 2 | Number of citations with DOI: 2
TeleDAL: a regression-based template-less unsupervised method for finding anomalies in log sequences
JOURNAL OF SUPERCOMPUTING 79 : 16 pp. 18394-18416. , 23 p. (2023)
\n \n
"
}, {
"otype" : "JournalArticle",
"mtid" : 33794293,
"status" : "APPROVED",
"type" : {
"otype" : "PublicationType",
"mtid" : 24,
"link" : "/api/publicationtype/24",
"label" : "Journal Article",
"code" : 24,
"otypeName" : "JournalArticle",
"listPosition" : 1,
"published" : true,
"oldId" : 24,
"snippet" : true
},
"subType" : {
"otype" : "SubType",
"mtid" : 10000059,
"mayHaveImpactFactor" : true,
"link" : "/api/subtype/10000059",
"label" : "Article (Journal Article)",
"snippet" : true
},
"category" : {
"otype" : "Category",
"mtid" : 1,
"link" : "/api/category/1",
"label" : "Scientific",
"published" : true,
"oldId" : 1,
"snippet" : true
},
"languages" : [ {
"otype" : "Language",
"mtid" : 10002,
"link" : "/api/language/10002",
"label" : "English",
"name" : "Angol",
"nameEng" : "English",
"published" : true,
"oldId" : 2,
"snippet" : true
} ],
"publishedYear" : 2023,
"citationCount" : 1,
"citationCountWoOther" : 1,
"independentCitCountWoOther" : 1,
"independentCitationCount" : 1,
"selfCitationCount" : 0,
"unhandledCitationCount" : 0,
"citingPubCount" : 1,
"independentCitingPubCount" : 1,
"citingPubCountWoOther" : 1,
"independentCitingPubCountWoOther" : 1,
"unhandledCitingPubCount" : 0,
"link" : "/api/publication/33794293",
"label" : "Horváth Gábor et al. The Sub-Sequence Summary Method for Detecting Anomalies in Logs. (2023) IEEE ACCESS 2169-3536 2169-3536 11 37412-37423",
"snippet" : true,
"template" : " \n IEEE ACCESS 11 pp. 37412-37423. , 12 p. (2023)
\n \n
"
}, {
"otype" : "Patent",
"mtid" : 35076205,
"status" : "APPROVED",
"type" : {
"otype" : "PublicationType",
"mtid" : 26,
"link" : "/api/publicationtype/26",
"label" : "Protection forms",
"code" : 26,
"otypeName" : "Patent",
"listPosition" : 7,
"published" : true,
"oldId" : 26,
"snippet" : true
},
"subType" : {
"otype" : "SubType",
"mtid" : 23,
"mayHaveImpactFactor" : false,
"link" : "/api/subtype/23",
"label" : "USA patent (Protection forms)",
"snippet" : true
},
"category" : {
"otype" : "Category",
"mtid" : 1,
"link" : "/api/category/1",
"label" : "Scientific",
"published" : true,
"oldId" : 1,
"snippet" : true
},
"languages" : [ {
"otype" : "Language",
"mtid" : 10002,
"link" : "/api/language/10002",
"label" : "English",
"name" : "Angol",
"nameEng" : "English",
"published" : true,
"oldId" : 2,
"snippet" : true
} ],
"publishedYear" : 2023,
"citationCount" : 0,
"citationCountWoOther" : 0,
"independentCitCountWoOther" : 0,
"independentCitationCount" : 0,
"selfCitationCount" : 0,
"unhandledCitationCount" : 0,
"citingPubCount" : 0,
"independentCitingPubCount" : 0,
"citingPubCountWoOther" : 0,
"independentCitingPubCountWoOther" : 0,
"unhandledCitingPubCount" : 0,
"link" : "/api/publication/35076205",
"label" : "Péter SZILÁGYI et al. Method and Apparatus for Anomaly Detection. (2023) US20230412627",
"snippet" : true,
"template" : " \n US20230412627 , Submission Year: 2023 , Submission Number: 18188677
Publication:35076205 Published Core Protection forms (USA patent ) Scientific
Registration number: US20230412627
Submitted: 2023 | Submission Number: 18188677 | Published year: (2023)
SIGMETRICS PERFORMANCE EVALUATION REVIEW 49 : 4 pp. 29-34. , 6 p. (2022)
\n \n
"
}, {
"otype" : "JournalArticle",
"mtid" : 33099054,
"status" : "VALIDATED",
"type" : {
"otype" : "PublicationType",
"mtid" : 24,
"link" : "/api/publicationtype/24",
"label" : "Journal Article",
"code" : 24,
"otypeName" : "JournalArticle",
"listPosition" : 1,
"published" : true,
"oldId" : 24,
"snippet" : true
},
"subType" : {
"otype" : "SubType",
"mtid" : 10000059,
"mayHaveImpactFactor" : true,
"link" : "/api/subtype/10000059",
"label" : "Article (Journal Article)",
"snippet" : true
},
"category" : {
"otype" : "Category",
"mtid" : 1,
"link" : "/api/category/1",
"label" : "Scientific",
"published" : true,
"oldId" : 1,
"snippet" : true
},
"languages" : [ {
"otype" : "Language",
"mtid" : 10002,
"link" : "/api/language/10002",
"label" : "English",
"name" : "Angol",
"nameEng" : "English",
"published" : true,
"oldId" : 2,
"snippet" : true
} ],
"publishedYear" : 2022,
"abstractText" : "Markov modulated discrete arrival processes have a wide literature, including parameter estimation methods based on expectation–maximization (EM). In this paper, we investigate the adaptation of these EM based methods to Markov modulated fluid arrival processes (MMFAP), and conclude that only the generator matrix of the modulating Markov chain of MMFAPs can be approximated by EM based method. For the rest of the parameters, the fluid rates and the fluid variances, we investigate the efficiency of numerical likelihood maximization.\n\nTo reduce the computational complexity of the likelihood computation, we accelerate the numerical inverse Laplace transformation step of the procedure with function fitting.",
"citationCount" : 4,
"citationCountWoOther" : 4,
"independentCitCountWoOther" : 3,
"independentCitationCount" : 3,
"selfCitationCount" : 1,
"unhandledCitationCount" : 0,
"citingPubCount" : 4,
"independentCitingPubCount" : 3,
"citingPubCountWoOther" : 4,
"independentCitingPubCountWoOther" : 3,
"unhandledCitingPubCount" : 0,
"link" : "/api/publication/33099054",
"label" : "Almousa Salah Al-Deen et al. Parameter estimation of Markov modulated fluid arrival processes. (2022) PERFORMANCE EVALUATION 0166-5316 1872-745X 157-158",
"snippet" : true,
"template" : " \n PERFORMANCE EVALUATION 157-158 Paper: 102316 , 16 p. (2022)
Locked Publication:33099054 Validated Core Citing Journal Article (Article ) Scientific
Citing papers: 4 | Independent citation: 3 | Self citation: 1 | Unknown citation: 0 | Number of citations in WoS: 3 | Number of citations in Scopus: 4 | WoS/Scopus assigned: 4 | Number of citations with DOI: 4
\n \n
"
}, {
"otype" : "JournalArticle",
"mtid" : 31797535,
"status" : "VALIDATED",
"type" : {
"otype" : "PublicationType",
"mtid" : 24,
"link" : "/api/publicationtype/24",
"label" : "Journal Article",
"code" : 24,
"otypeName" : "JournalArticle",
"listPosition" : 1,
"published" : true,
"oldId" : 24,
"snippet" : true
},
"subType" : {
"otype" : "SubType",
"mtid" : 10000059,
"mayHaveImpactFactor" : true,
"link" : "/api/subtype/10000059",
"label" : "Article (Journal Article)",
"snippet" : true
},
"category" : {
"otype" : "Category",
"mtid" : 1,
"link" : "/api/category/1",
"label" : "Scientific",
"published" : true,
"oldId" : 1,
"snippet" : true
},
"languages" : [ {
"otype" : "Language",
"mtid" : 10002,
"link" : "/api/language/10002",
"label" : "English",
"name" : "Angol",
"nameEng" : "English",
"published" : true,
"oldId" : 2,
"snippet" : true
} ],
"publishedYear" : 2022,
"abstractText" : "Piecewise homogeneous Markov fluid models are composed by homogeneous intervals where the model is governed by an interval dependent pair of generators and the model behaviour changes at the boundaries. The main difficulty of the transient analysis of piecewise homogeneous Markov fluid models is the appropriate description of the various boundary cases. The paper proposes an analytical approach to handle the wide variety of the possible boundary cases in a relatively simple to describe and implement manner.",
"citationCount" : 6,
"citationCountWoOther" : 6,
"independentCitCountWoOther" : 2,
"independentCitationCount" : 2,
"selfCitationCount" : 4,
"unhandledCitationCount" : 0,
"citingPubCount" : 6,
"independentCitingPubCount" : 2,
"citingPubCountWoOther" : 6,
"independentCitingPubCountWoOther" : 2,
"unhandledCitingPubCount" : 0,
"link" : "/api/publication/31797535",
"label" : "Almousa Salah Al-Deen et al. Transient analysis of piecewise homogeneous Markov fluid models. (2022) ANNALS OF OPERATIONS RESEARCH 0254-5330 1572-9338 310 2 333-353",
"snippet" : true,
"template" : " \n ANNALS OF OPERATIONS RESEARCH 310 : 2 pp. 333-353. , 21 p. (2022)
Locked Publication:31797535 Validated Core Citing Journal Article (Article ) Scientific
Citing papers: 6 | Independent citation: 2 | Self citation: 4 | Unknown citation: 0 | Number of citations in WoS: 5 | Number of citations in Scopus: 6 | WoS/Scopus assigned: 6 | Number of citations with DOI: 6
\n \n
"
}, {
"otype" : "JournalArticle",
"mtid" : 31397817,
"status" : "VALIDATED",
"type" : {
"otype" : "PublicationType",
"mtid" : 24,
"link" : "/api/publicationtype/24",
"label" : "Journal Article",
"code" : 24,
"otypeName" : "JournalArticle",
"listPosition" : 1,
"published" : true,
"oldId" : 24,
"snippet" : true
},
"subType" : {
"otype" : "SubType",
"mtid" : 10000059,
"mayHaveImpactFactor" : true,
"link" : "/api/subtype/10000059",
"label" : "Article (Journal Article)",
"snippet" : true
},
"category" : {
"otype" : "Category",
"mtid" : 1,
"link" : "/api/category/1",
"label" : "Scientific",
"published" : true,
"oldId" : 1,
"snippet" : true
},
"languages" : [ {
"otype" : "Language",
"mtid" : 10002,
"link" : "/api/language/10002",
"label" : "English",
"name" : "Angol",
"nameEng" : "English",
"published" : true,
"oldId" : 2,
"snippet" : true
} ],
"publishedYear" : 2021,
"abstractText" : "We propose a numerical method to obtain the transient and first passage time distributions of first- and second-order Multi-Regime Markov Fluid Queues (MRMFQ). The method relies on the observation that these transient measures can be computed via the stationary analysis of an auxiliary MRMFQ. This auxiliary MRMFQ is constructed from the original one, using sample path arguments, and has a larger cardinality stemming from the need to keep track of time. The conventional method to approximately model the deterministic time horizon is Erlangization. As an alternative, we propose the so-called ME-fication technique, in which a Concentrated Matrix Exponential (CME) distribution replaces the Erlang distribution for approximating deterministic time horizons. ME-fication results in much lower state-space dimensionalities for the auxiliary MRMFQ than would be with Erlangization. Numerical results are presented to validate the effectiveness of ME-fication along with the proposed numerical method.",
"citationCount" : 9,
"citationCountWoOther" : 9,
"independentCitCountWoOther" : 3,
"independentCitationCount" : 3,
"selfCitationCount" : 6,
"unhandledCitationCount" : 0,
"citingPubCount" : 9,
"independentCitingPubCount" : 3,
"citingPubCountWoOther" : 9,
"independentCitingPubCountWoOther" : 3,
"unhandledCitingPubCount" : 0,
"link" : "/api/publication/31397817",
"label" : "Akar Nail et al. Transient and First Passage Time Distributions of First- and Second-order Multi-regime Markov Fluid Queues via ME-fication. (2021) METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY 1387-5841 1573-7713 23 4 1257-1283",
"snippet" : true,
"template" : " \n METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY 23 : 4 pp. 1257-1283. , 27 p. (2021)
Locked Publication:31397817 Validated Core Citing Journal Article (Article ) Scientific
Citing papers: 9 | Independent citation: 3 | Self citation: 6 | Unknown citation: 0 | Number of citations in WoS: 9 | Number of citations in Scopus: 8 | WoS/Scopus assigned: 9 | Number of citations with DOI: 9
\n \n
"
} ]
}
\n