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Abstract

Queues with Markovian arrival and service processes, i.e.,
MAP/MAP/1 queues, have been useful in the analysis of computer and
communication systems and di�erent representations for their station-
ary sojourn time and queue length distribution have been derived. More
speci�cally, the class of MAP/MAP/1 queues lies at the intersection of
the class of QBD queues and the class of semi-Markovian queues.

While QBD queues have a matrix exponential representation for their
queue length and sojourn time distribution of order N and N2, respec-
tively, where N is the size of the background continuous time Markov
chain, the reverse is true for a semi-Markovian queue. As the class of
MAP/MAP/1 queues lies at the intersection, both the queue length and
sojourn time distribution of a MAP/MAP/1 queue has an order N matrix
exponential representation.

The aim of this paper is to understand why the order N2 distributions
of the sojourn time of a QBD queue and the queue length of a semi-
Markovian queue can be reduced to an order N distribution in the speci�c
case of a MAP/MAP/1 queue. We show that the key observation exists
in establishing the commutativity of some fundamental matrices involved
in the analysis of the MAP/MAP/1 queue.

Keywords: QBD, MAP/MAP/1 queue, sojourn time distribution,
queue length distribution, commuting matrices.

1 Introduction

The class of MAP/MAP/1 queues is a versatile and well-studied class of queue-

ing systems used to model computer and communication systems [5, 6]. Its ef-
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fectiveness lies in the generality of the Markovian arrival process (MAP) which

can be used to �t very di�erent arrival patterns with highly correlated inter-

arrival times [12, 7, 19]. The MAP process can also be used to model the service

process whenever signi�cant correlation exists in the service times of consecu-

tive customers, e.g. [1], and some authors therefore refer to it as the Markovian

service process (MSP). The MAP process has also been extended and analyzed

to allow for batch arrivals and multiple customer types [10, 2].

The queue length distribution of the MAP/MAP/1 queue is well-known to be

matrix exponential of order N , where N is the product of the number of states

of the arrival and service MAP, as its evolution can be captured by means of

a Quasi-Birth-Death Markov chain [11]. The sojourn time distribution of the

MAP/MAP/1 queue on the other hand can be obtained as a special case of a

class of semi-Markovian queues studied by Sengupta [15, 16] and therefore has

a matrix exponential form of order N as well. This result was later generalized

in [4] for queues with multitype MAP arrivals. More recently, the queue length

distribution of a semi-Markovian queue was shown to have a matrix exponential

distribution of order N2 [20], which also gives rise to an order N2 representation

for the queue length distribution of a MAP/MAP/1 queue.

On a di�erent line of research Ozawa studied the sojourn time distribution

of a class of so-called Quasi-Birth-Death (QBD) queues [14] and proved that

it has a matrix exponential representation of order N2, where N is the size of

the background continuous time Markov chain. As the class of MAP/MAP/1

queues forms a subclass of the set of QBD queues (with N equal to the product

of the number of phases of the arrival and service MAP), the result of Ozawa

gives rise to an order N2 representation for the sojourn time distribution of a

MAP/MAP/1 queue.

While the order N2 representations for the queue length of a semi-Markovian

queue and the sojourn time in a QBD queue cannot be reduced in general [20],

the aim of this paper exists in understanding why these representations collapse

to an order N representation in case of the MAP/MAP/1 queue. It turns out

that the key feature is the commutativity of some characteristic matrices that

appear in the analysis of the queue length and sojourn time distribution of

the MAP/MAP/1 queue. Apart from unifying these di�erent representations

for the queue length and sojourn time and proving the required commutativity

property, we also identify several other sets of commuting matrices that have

played a fundamental role in the analysis of the MAP/MAP/1 queue.

The paper is structured as follows. Sections 2 and 3 reintroduce the class of

QBD and semi-Markovian queues, respectively, and also summarize the main

results on their queue length and sojourn time distributions. In Section 4 we

establish two key results that link some of the fundamental matrices and vec-
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tors of the class of QBD and semi-Markovian queues in the speci�c case of a

MAP/MAP/1 queue. Four sets of commuting matrices are identi�ed next in

Section 5. Finally, in Sections 6 and 7 we show how the well known order N

representations for the sojourn time distribution and the queue length distribu-

tion of the MAP/MAP/1 queue, respectively, can be obtained by relying on the

results established Sections 4 and 5.

2 The Quasi-Birth-Death queue

In a QBD queue the arrivals and the services are modulated by a common

continuous time background Markov chain Z(t). Some of the transitions of

the background process are accompanied by an arrival (the associated matrix

is denoted by F ), other transitions of the background process are accompa-

nied by a service completion, assuming that there is at least a customer in the

system (given by matrix B). There may be transitions by which neither an

arrival, nor a service completion occurs (given by matrices L or L′ depend-

ing on whether the system is busy or empty, respectively). When there is at

least one customer in the system the generator of the background process is

denoted by Q = {qij , i, j = 1, . . . , N}. When there is no customer in the queue

the generator of the background process might be di�erent and is denoted by

Q′ = {q′ij , i, j = 1, . . . , N}. Note that Q = B +L+ F and Q′ = L′ + F . The

stochastic process that keeps track of the number of customers in the system is

denoted by X (t).
With a lexicographical numbering of the states the two-dimensional process

{X (t),Z(t), t > 0} is a QBD Markov chain [8], with its generator given by

Π =


L′ F
B L F

B L F
. . .

. . .
. . .

 . (1)

The sojourn time in a QBD queue, V, is de�ned as the time between an arrival

event and the corresponding service instant in steady state assuming a �rst-come

�rst-served (FCFS) service discipline.

Provided that the QBD Markov chain with transition matrix Π is irreducible

and positive recurrent, denote its stationary distribution by π = (π0, π1, . . . ).

The j-th entry of the vector πk corresponds to the steady state probability that

there are k customers in the queue while the background process Z(t) is in state
j. As the steady state distribution of a QBD Markov chain is known to have a

matrix geometric form [8], πk can be written as

πk = π0R
k, k > 0, (2)
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where R is the minimal non-negative solution of the quadratic matrix equation

0 = F +RL+R2B, (3)

and vector π0 is the unique solution of the following set of linear equations:

0 = π0 (L
′ +RB) ,

1 = π0 (I −R)
−1

1. (4)

For later use we also introduce the matrix U andG as the smallest non-negative

solution of

U = L+ F (−U)−1B, (5)

0 = B +LG+ FG2, (6)

respectively. The matrices R, U and G are all de�ned by B,L,F and they are

related such that R = F (−U)−1 and G = (−U)−1B [8]. The mean arrival rate

λ of a QBD queue is given by

λ =

∞∑
i=0

πiF1.

From Equation (2) it is clear that the queue length distribution of a QBD

queue has a matrix geometric form of order N . To express the distribution of the

sojourn time, let entry j of the vector π̂k denote the probability that the QBD

queue is at level k just after the arrival epoch, while the background process is

in state j. Ozawa [14] established the following two theorems, where the second

theorem shows that the sojourn time distribution has a matrix exponential form

of order N2:

Theorem 1. (Theorem 1 in [14]) The vectors π̂k are given by

π̂1 =
1

λ
π0F ,

π̂k = π̂1R̂
k−1

, k = 2, . . . ,∞,
(7)

with R̂ given by

R̂ = (−U)−1F . (8)

Theorem 2. (Theorem 2 in [14]) The distribution of the sojourn time is given

by

P (V < t) = 1− (1T ⊗ η̂)e((L+F )T⊗I)+(BT⊗R̂))tvec〈I〉, (9)

where η̂ is the stationary phase distribution at arrivals

η̂ = π̂1

(
I − R̂

)−1
, (10)

and vec〈〉 denotes the column-stacking operator.
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Remark 1: Theorem 1 was proven using probabilistic arguments in [14], but

can also be proven easily in an algebraic manner as

π̂k =
πk−1F∑∞
i=0 πiF1

=
1

λ
πk−1F =

1

λ
π0R

k−1F

=
1

λ
π0
(
F (−U)−1

)k−1
F =

1

λ
π0F

(
(−U)−1F

)k−1
=

1

λ
π0FR̂

k−1
.

(11)

3 The semi-Markovian queue

The class of semi-Markovian queues considered in this paper was introduced

by Sengupta in [16]. To de�ne this class, consider a bi-variate Markov process

(Xt,Mt)t≥0 , with Xt ≥ 0 andMt ∈ {1, . . . , N}. Assume the process evolves as

follows: Xt increases linearly unless a jump occurs. Three types of jumps can

occur from (x, i)

1. a jump to (x, j) with rate (A0)i,j (for i 6= j),

2. a jump in the interval ([x − u, x), j), for 0 < u < x, with a rate Ai,j(u),

where we denote dAi,j(u) as its density function, and

3. a jump to (0, j) with rate
∫∞
u=x

dAi,j(u).

Finally, de�ne the (negative) diagonal entries of A0 such that (A0 +∫∞
u=0

dA(u))1 = 1 and assume A = A0 +
∫∞
u=0

dA(u) is irreducible.

Such a Markov process has a matrix exponential distribution [15]. In other

words, there exists a size N matrix T such that the length N vector α(x), for

x ≥ 0, which holds the steady-state density of the states (x, 1) to (x,m), can be

written as

α(x) = α(0)eTx. (12)

The matrix T is the smallest non-negative solution to

T = A0 +

∫ ∞
x=0

eTxdA(x),

and α(0) = ζ(−T ), where ζ is the unique invariant vector of A, i.e., ζA = 0

and ζ1 = 1.

Next, consider a single server FCFS queue with an in�nite waiting room.

Observe this queue only when the server is busy and de�ne At ≥ 0 as the

age of the customer in service at time t (of the censored process). Such a

queue belongs to the class of semi-Markovian queues de�ned in [16] if and only

if there exists a bi-variate Markov process (Xt,Mt)t≥0 as de�ned above such
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that Xt = At. In other words, there exists an underlying Markov process with

generator A = A0 +
∫∞
u=0

dA(u), such that A0 captures the evolution of the

underlying chain while the same customer remains in service and (dA(u))i,j

represents the density function of the rate at which service completions occur,

while the inter-arrival time to the next customer equals u and the state of the

underlying chain changes from i to j.

Sengupta showed that the sojourn time distribution of a semi-Markovian

queue has an order N matrix geometric distribution as indicated by the next

theorem:

Theorem 3. (Theorem 3 in [16]) The distribution of the sojourn time of a

semi-Markovian queue is given by

P (V < t) = 1− 1

µ
ζeT t(A−A0)1, (13)

where µ the service rate is given by

µ =

∫ ∞
0

α(x)(A−A0)1 dx = ζ(A−A0)1.

The queue length distribution of a semi-Markovian queue on the other hand

has a matrix exponential distribution of order N2 as proven in [20]:

Theorem 4. (Theorem 2 in [20]) The distribution of the queue length given

that the server is busy Nb of a semi-Markovian queue can be expressed as

P (Nb = n) = (1T ⊗ ζ)(I −M)Mn−1vec〈I〉, (14)

where M is given by

M =

∫ ∞
0

((−A0)
−1dA(x)⊗ eTx).

4 The MAP/MAP/1 queue

The class of MAP/MAP/1 queues lies in the intersection of the class of semi-

Markovian queues introduced by Sengupta [16] and the QBD queues studied

by Ozawa [14]. More speci�cally, if the arrival and service processes of a QBD

queue are controlled by independent Markov chains Z(in)(t) and Z(out)(t), the

QBD queue simpli�es to a MAP/MAP/1 queue. By denoting the matrices of

the MAP that generates the arrivals by D0 and D1 (D0 + D1 = D, D =

{dij , i, j = 1, . . . , N (in)}) and the matrices of the MAP generating the service

events by S0 and S1 (S0 + S1 = S, S = {sij , i, j = 1, . . . , N (out)}) the blocks

6



of the QBD Markov chain can be expressed as

F = D1 ⊗ I,

L = D0 ⊕ S0,

B = I ⊗ S1,

L′ = D0 ⊗ I.

(15)

Similarly, when the matrices A0 and dA(u) characterizing the semi-Markovian

queue are of the form A0 = I ⊗ S0 and

dA(u) = eD0uD1 ⊗ S1,

such that (D0,D1) and (S0,S1) characterize a MAP process, the semi-

Markovian queue reduces to a MAP/MAP/1 queue. In this case, the matrix T

can be expressed via the matrix R̂ ([16], Equation (15)) as

T = (I ⊗ S0) + R̂(I ⊗ S1). (16)

Further A = (I ⊗S0) + ((−D0)
−1D1 ⊗S1) and due to (12) the vector α(0) is

given by

α(0) = (θ ⊗ β)(−T ), (17)

where the vectors β and θ are the solutions of β(S0 + S1) = 0, β1 = 1 and

θ(−D0)
−1D1 = θ, θ1 = 1, respectively.

As (A −A0)1 = (I ⊗ S1)1 and ζ = (θ ⊗ β), the sojourn time distribution

given in Theorem 3 can therefore be written as

P (V < t) = 1− 1

µ
(θ ⊗ β)eT t(I ⊗ S1)1, (18)

where µ = βS11.

Remark 2: It is important to note that in the above de�nitions we assumed

that the phase of the service process is frozen (i.e., remains identical) whenever

the server is idle. In fact, without this assumption the MAP/MAP/1 queue

would not belong to the class of semi-Markovian queues discussed in Section 3,

as the rate of the jumps to (0, j) is no longer given by
∫∞
u=x

dAi,j(u). Assum-

ing a frozen phase during idle periods is quite common when studying queues

with (semi-)Markovian service (e.g., [3]) as it is a natural generalization of the

MAP/PH/1 case (which uses a frozen service phase), though examples in which

the service process evolves also exist (e.g., [13]). It might be possible to gener-

alize some of the results presented in this paper to the case where the service

phase also evolves during idle periods by introducing semi-Markovian queues

with a more general boundary behavior.

We end this section by linking some of the fundamental matrices and vectors

associated with the QBD Markov chain and the age process:
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Theorem 5. For the MAP/MAP/1 queue the boundary vectors π0 and α(0)

de�ned by (4) and (17), respectively, obey the following equation

π0F

λ
= π̂1 =

α(0)

µ
(19)

Proof. We �rst express the probability vector corresponding to an arrival to the

empty queue in two di�erent ways:

• Based on the queue process this probability vector equals π̂1.

• We can express the probability vector that an arrival �nds the queue empty

also via the age process: it is the probability that the next arrival occurs

later than the sojourn time of a customer. Hence we get∫∞
0
α(x)(I ⊗ S1)e

(D0⊗I)x((−D0)
−1D1 ⊗ I)dx∫∞

0
α(x)(I ⊗ S1)1 dx

, (20)

where the denominator is equal to µ (see Theorem 3) and the numerator

is α(0) due to Lemma 2.4 in [15].

Thus, we can conclude that π̂1 = α(0)/µ holds and the result follows from

Theorem 1.

Theorem 6. For the MAP/MAP/1 queue the matrices T and U de�ned by

(16) and (5), respectively, obey the following equation

T (−U)−1 + (−U)−1(D0 ⊗ I) = −I, (21)

Proof. We start by showing that

(−U)−1 =

∫ ∞
u=0

eTu(eD0u ⊗ I)du, (22)

using the stochastic interpretation of (−U)−1 and eTu. This equality is closely

related to Theorem 6 in [16], in fact it follows from this theorem in case D1 can

be inverted. Entry (i, j), with i = (i1, i2) and j = (j1, j2), of (−U)−1 holds the

expected amount of time that the arrival and service processes spend in state

j1 and j2, respectively, while there is a single customer in the queue during a

busy period that was initiated while the arrival and service process were in state

i1 and i2, respectively. Next, consider the probabilistic interpretation of entry

(i, k) of eTu with k = (k1, k2) [15]: it is the expected number of times during

a busy period that the age of the customer c in service equals u, the current

service state equals k2 and the state of the arrival process was k1 when customer

c arrived, given that the busy period was initiated in state i = (i1, i2). Thus,

each of these visits contributes to entry (i, j) of (−U)−1 if j2 = k2 and there

are no arrivals in an interval of length u after customer c arrived and the state
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of the arrival process is k1 at the start and j1 at the end of the interval, which

is given by entry (k1, j1) of the matrix eD0u. This establishes (22).

Further, as eD0u⊗ I = e(D0⊗I)u and X = −
∫∞
u=0

eAuCeBudu is the unique

solution of AX +XB = C if both A and B are stable matrices [9, Theorem

13.19] (that is, the real parts of the eigenvalues of A and B are negative). It is

well known that the matrix D0 is stable, while T is stable due to Lemma 2.4(b)

in [16].

5 Commuting matrices in MAP/MAP/1 queues

In this section we identify four sets of commuting matrices related to the

MAP/MAP/1 queue, where the key equation to prove these is given by (21).

Theorem 7. The matrices R, (I⊗S0)+R(I⊗S1) and (D1⊗I)+R(D0⊗I)

commute.

Proof. Introduce SR = (I ⊗S0) +R(I ⊗S1) and DR = D1 ⊗ I +R(D0 ⊗ I).

By pre-multiplying (21) with (D1 ⊗ I) one �nds

(D1 ⊗ I)T (−U)−1 +R(D0 ⊗ I) = −(D1 ⊗ I).

Using the expression for T and R̃ shows that

(I ⊗ S0)R+R(I ⊗ S1)R = −(D1 ⊗ I)−R(D0 ⊗ I),

that is,

SR R = −(D1 ⊗ I)−R(D0 ⊗ I). (23)

The fact that R and SR commute now follows from the fact that quadratic

equation (3) for R can be written as

R SR = −(D1 ⊗ I)−R(D0 ⊗ I). (24)

Equation (23) implies

R DR = −R SR R,

while (24) yields

DR R = −R SR R,

meaning R and DR commute.

Finally, as R commutes with SR and DR, we have

DR SR = DR (I ⊗ S0) + DR R(I ⊗ S1)

= SR (D0 ⊗ I) +R SR R(D1 ⊗ I) = SR DR.
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Theorem 8. The matrices R̂ and T = I ⊗ S0 + R̂(I ⊗ S1) commute.

Proof. Post-multiplying (21) by (D1 ⊗ I) implies that

T (−U)−1(D1 ⊗ I) = (U−1(D0 ⊗ I)− I)(D1 ⊗ I).

As noted before SR̂ = T and R̂ = (−U)−1(D1 ⊗ I), meaning

SR̂ R̂ = (U−1(D0 ⊗ I)− I)(D1 ⊗ I).

Since U = (D0 ⊗ I) + SR , we therefore get

SR̂ R̂ = −[U−1(I ⊗ S0) +U−1R(I ⊗ S1)](D1 ⊗ I).

As R = (D1⊗ I)(−U)−1, R̂ = (−U)−1(D1⊗ I) and (D1⊗ I) commutes with

(I ⊗ S0) and (I ⊗ S1), this implies

SR̂ R̂ = R̂(I ⊗ S0) + R̂
2
(I ⊗ S1) = R̂ SR̂ .

Remark 3: Given Theorems 7 and 8 one may expect that (D1⊗I)+R̂(D0⊗
I) and R̂ also commute, but numerical experiments indicate that this is not true

in general.

Theorem 9. The matrices G, (D0⊗I)+(D1⊗I)G and (I⊗S1)+(I⊗S0)G

commute.

Proof. To simplify the notation we introduce DG = (D0⊗ I)+ (D1⊗ I)G and

SG = (I ⊗S1) + (I ⊗S0)G. First, post-multiply (21) by (I ⊗S1) and use the

fact that G = (−U)−1(I ⊗ S1) to obtain

TG+G(D0 ⊗ I) = −(I ⊗ S1),

where we also used the fact that (I ⊗ S1) and (D0 ⊗ I) commute. Using (16)

and R̂ = (−U)−1(D1 ⊗ I) yields

(I ⊗ S0)G+G(D1 ⊗ I)G+G(D0 ⊗ I) = −(I ⊗ S1).

In other words,

G DG = −(I ⊗ S0)G− (I ⊗ S1). (25)

From the quadratic equation (6) for G we �nd

DG G = −(I ⊗ S0)G− (I ⊗ S1), (26)

meaning DG G = G DG . By (25)

SG G = −G DG G,
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while by (26), we have

G SG = −G DG G,

which yields G SG = SG G. Finally, if G commutes with DG and SG, then

SG DG = (I ⊗ S1) DG + (I ⊗ S0) DG G

= (D0 ⊗ I) SG + (D1 ⊗ I) SG G = DG SG.

Remark 4: Let Q be the Q-matrix of the workload process of the

MAP/MAP/1 queue as de�ned in [17]. Then entry (i, j), with i = (i1, i2)

and j = (j1, j2), of exp(Qu) holds the state transition probability during the

�rst passage from (u, i1, i2) to (0, j1, j2) [18]. This implies that the matrix G

can be expressed as

G =

∫ ∞
u=0

(I ⊗ exp(S0u))(I ⊗ S1) exp(Qu)du, (27)

as (I ⊗ exp(S0u))(I ⊗ S1) is the density of the amount of work remaining for

the customer in service. Further, by Equation (2.13) in [18], Q can be written

as

Q = (D0 ⊗ I) +

∫ ∞
u=0

(D1 ⊗ I)(I ⊗ exp(S0u)S1) exp(Qu)du,

in other words Q = (D0 ⊗ I) + (D1 ⊗ I)G.

Theorem 10. The matrices Ĝ and D0 ⊗ I + (D1 ⊗ I)Ĝ commute.

Proof. Let DĜ = D0 ⊗ I + (D1 ⊗ I)Ĝ and SR̂ = I ⊗ S0 + R̂(I ⊗ S1).

Pre-multiplying (21) with (I ⊗ S1) gives

Ĝ(D0 ⊗ I) = (I ⊗ S1)[TU−1 − I],

which indicates that

Ĝ DĜ = (I ⊗ S1)[TU−1 − I] + Ĝ(D1 ⊗ I)(I ⊗ S1)(−U)−1

= (I ⊗ S1)[TU−1 − I + R̂(I ⊗ S1)(−U)−1].

Using the expression T = SR̂ yields

Ĝ DĜ = (I ⊗ S1)[(I ⊗ S0)U
−1 − I]. (28)

Further, by de�nition of DĜ and the fact that Ĝ = (I ⊗ S1)(−U)−1 and

Ĝ
2
= (I ⊗ S1)G(−U)−1, we have

DĜ Ĝ = (I ⊗ S1)[(D0 ⊗ I) + (D1 ⊗ I)G](−U)−1.

As U = (I ⊗ S0) +DG, we get

DĜ Ĝ = (I ⊗ S1)[(I ⊗ S0)U
−1 − I]. (29)

Hence, DĜ Ĝ = Ĝ DĜ due to (28) and (29).
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6 Sojourn time distribution of the MAP/MAP/1
queue via QBD Markov chain

In this section we show how an order N = N (in)N (out) representation for the

sojourn time distribution of a MAP/MAP/1 queue can be obtained directly

from the QBD Markov chain. To determine the distribution of the sojourn time

it su�ces to know the distribution of the queue length at arrival instants and the

distribution of the time taken by the QBD queue to generate k service events,

for k ≥ 1.

Recall that entry j of the vector π̂k denotes the probability that the QBD

queue is at level k just after the arrival epoch, while the background process is

in state j. Further, let entry (i, j) of the matrix N(k, t) denote the probability

that exactly k service events occur in a non-idle interval of length t, while the

phase of the underlying process is i and j at the start and end of the interval,

respectively, that is

[N(k, t)]i,j = P (Xs(t) = 1,Z(t) = j|Xs(0) = k + 1,Z(0) = i),

where Xs(t) corresponds to the level of the two-dimensional Markov chain

{Xs(t),Z(t), t > 0} with its generator given by

Π =


L′ + F

B L+ F
B L+ F

. . .
. . .

 . (30)

The matricesN(k, t) are determined by the following set of di�erential equations

[8]:

∂

∂t
N(0, t) = N(0, t)(L+ F ), (31)

∂

∂t
N(k, t) = N(k, t)(L+ F ) +N(k − 1, t)B, (32)

for k = 1, . . . ,∞ with boundary conditions N(0, 0) = I and N(k, 0) = 0 for

k > 0. The generating function of the departure events is de�ned by N∗(z, t) =∑∞
k=0 z

kN(k, t). Multiplying (31) and (32) by zk and summing up for k =

0, 1, . . . gives

∂

∂t
N∗(z, t) = N(z, t)(L+ F + zB), (33)

with initial condition N∗(z, 0) = I. Its solution is given by

N∗(z, t) = e(L+F+zB)t. (34)
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Remark 5: It was also noted in [14, Remark 1] that the sojourn time distri-

bution can also be expressed as P (V > t) = η̂W (t)1, where

W (t) =

∞∑
k=0

R̂
k
N(k, t), (35)

and that W (t) is the solution of the di�erential equation

d

dt
W (t) = W (t)(L+ F ) + R̂W (t)B. (36)

withW (0) = I. Note if R̂ andW (t) were to commute, this di�erential equation

immediately leads to a matrix exponential distribution for the sojourn time of

order N . Ozawa [14] notes that R̂ and W (t) commute for the M/PH/1 queue,

but not in general for the QBD queue. In fact, even for the MAP/M/1 queue

R̂ and W (t) do not commute in general, meaning (36) does not give immediate

rise to an order N representation. More speci�cally, for the MAP/M/1 queue

we can easily see that W (t) can be expressed as

W (t) =

∞∑
k=0

R̂
k
eDt (µt)

k

k!
e−µt = eR̂µte(D−µI)t. (37)

Thus R̂ and W (t) only commute if R̂ and e(D−µI)t commute, which only holds

in some special cases.

Next, we will make a slight modi�cation to W (t) for the MAP/MAP/1

queue such that we obtain a di�erential equation where the modi�ed W (t),

denoted as W̃ (t) directly leads to an order N sojourn time distribution. More

speci�cally, we introduce the matrix W̃ (t) similar to (35) as

W̃ (t) =

∞∑
k=0

R̂
k
Ñ(k, t), (38)

where Ñ(k, t) is de�ned as the solution to the di�erential equation

∂

∂t
Ñ(0, t) = Ñ(0, t)(I ⊗ S0), (39)

∂

∂t
Ñ(k, t) = Ñ(k, t)(I ⊗ S0) + Ñ(k − 1, t)(I ⊗ S1), (40)

for k = 1, . . . ,∞ with Ñ(0, 0) = I and Ñ(k, 0) = 0 for k > 0. Observe that

the de�nition of Ñ(k, t) di�ers from N(k, t) in that Ñ(k, t) does not follow

the evolution of the arrival process, more precisely the phase of the arrival

process remains �xed. This slight di�erence will turn out to be essential in the

subsequent discussion.

We can now establish the following theorem, the proof of which is similar in

nature to the one of Theorem 2 in [14] and is included for completeness:

13



Theorem 11. The sojourn time distribution in a MAP/MAP/1 queue can be

expressed as P (V > t) = η̂W̃ (t)1, where W̃ (t) is the unique solution to the

di�erential equation

d

dt
W̃ (t) = W̃ (t)(I ⊗ S0) + R̂W̃ (t)(I ⊗ S1). (41)

with W̃ (0) = I.

Proof. The probability that the sojourn time of an arriving customer is greater

than t equals the probability that the number of service events generated up to

time t is less than the number of customers the arriving customer found in the

system (including itself). Hence, we have

P (V > t) =

∞∑
n=1

π̂n

n−1∑
k=0

Ñ(k, t)1

=

∞∑
n=1

π̂1R̂
n−1

n−1∑
k=0

Ñ(k, t)1

=

∞∑
k=0

η̂R̂
k
Ñ(k, t)1 = η̂W̃ (t)1,

(42)

where η̂ =
∑∞
k=1 π̂1R̂

k−1
has a closed form given by (10). To obtain the dif-

ferential equation in (41) for W̃ (t), it su�ces to sum (39) and (40) after left-

multiplying them by R̂
k
.

Remark 6: Making use of the vec〈〉 operator and utilizing its properties,

Theorem 11 yields

d

dt
vec〈W̃ (t)〉 = ((I ⊗ S0)

T ⊗ I)vec〈W̃ (t)〉

+ ((I ⊗ S1)
T ⊗ R̂)vec〈W̃ (t)〉,

for which the closed form solution is

vec〈W̃ (t)〉 = e((I⊗S0)
T⊗I)+((I⊗S1)

T⊗R̂))tvec〈I〉, (43)

by noting that W̃ (0) = I. Thus the distribution of the sojourn time in a

MAP/MAP/1 queue can also be expressed as

P (V < t) = 1− η̂W̃ (t)1

= 1− (1T ⊗ η̂)e((I⊗S0)
T⊗I)+((I⊗S1)

T⊗R̂))tvec〈I〉.

This distribution is a matrix exponential distribution of order N2 and is there-

fore of little interest. Theorem 11 is however interesting as it directly leads to

an order N representation for the sojourn time distribution:

14



Theorem 12. The sojourn time distribution of a MAP/MAP/1 queue has an

order N matrix exponential representation given by

P (V < t) = 1− η̂e((I⊗S0)+R̂(I⊗S1))t1. (44)

Proof. We prove that W̃ (t) = eT t = e((I⊗S0)+R̂(I⊗S1))t by showing that it is a

solution of (41). If we plug W̃ (t) = eT t into (41), it su�ces to verify that

d

dt
eT t = eT t(I ⊗ S0) + R̂eT t(I ⊗ S1).

Now, by Theorem 8 the matrices R̂ and T commute, meaning R̂ and eT t com-

mute and W̃ (t) = eT t if

d

dt
eT t = eT t

[
(I ⊗ S0) + R̂(I ⊗ S1)

]
= eT tT ,

which clearly holds.

Remark 7: For the MAP/M/1 queue we can easily see that W̃ (t) is found

as

W̃ (t) =

∞∑
k=0

R̂
k (µt)k

k!
e−µt = e−µt eR̂µt, (45)

meaning R̂ and W̃ (t) commute and Theorem 12 immediately follows from

(41).

Remark 8: The two expressions for the distribution of the sojourn time in

a MAP/MAP/1 queue given by (18) and (44) can be proven to be equal in a

direct manner. Due to (10), we have

P (V > t) = η̂eT t1 = π̂1(I − R̂)−1eT t1.

Theorem 5 and (17) therefore imply

P (V > t) =
1

µ
(θ ⊗ β)(−T )(I − R̂)−1eT t1.

Exploiting the fact that the matrices R̂,T and eT t commute (due to Theorem

8) yields

P (V > t) =
1

µ
(θ ⊗ β)(−T )(I − R̂)−1eT t1

=
1

µ
(θ ⊗ β)eT t(I − R̂)−1(−T )1

=
1

c
(θ ⊗ β)eT t(I ⊗ S1)1,
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where in the last step we utilized that (I − R̂)−1(−T )1 = (I ⊗S1)1 which can

be proven as follows: (16) clearly implies that

−T + (I ⊗ S1) = −(I ⊗ S0) + (I − R̂)(I ⊗ S1),

which yields

(I−R̂)−1(−T ) = (I ⊗ S1)− (I−R̂)−1(I ⊗ (S0+S1)),

and the equality follows by post-multiplying it with 1 as (S0 + S1)1 = 0.

7 Queue length distribution of the MAP/MAP/1
queue via age process

In this section we derive the well-known matrix geometric form of the queue

length distribution of the MAP/MAP/1 queue via the age process by relying

on some of the results presented in Section 4 and 5.

First, let us introduce the matrices L̃(k, u) whose entry (i, j) denotes the

probability that k arrivals occur in an interval of length u while the phase of the

underlying process is i at the start and j at the end of the interval, respectively.

These matrices are determined by the following set of di�erential equations:

∂

∂u
L̃(0, u) = L̃(0, u)(D0 ⊗ I), (46)

∂

∂u
L̃(k, u) = L̃(k, u)(D0 ⊗ I) + L̃(k − 1, u)(D1 ⊗ I), (47)

for k = 1, . . . ,∞ with L̃(0, 0) = I and L̃(k, 0) = 0 for k > 0. Notice that the

de�nition of L̃(k, u) and the corresponding set of di�erential equations are the

dual of the ones de�ned by (39) and (40) in the sense that L̃(k, u) is related

to the arrival process while Ñ(k, u) de�nes the same quantity for the service

process.

Before proceeding to the queue length distribution, let us introduce the

matrices Q̃k, for k ≥ 0, that will play an important role in the sequel as the

counterpart of W̃ (t) introduced in Section 6. The matrices Q̃k are de�ned as

Q̃k =

∫ ∞
u=0

eTuL̃(k, u)du. (48)

The next theorem derives the steady state distribution based on the age

process, similar to Example 5.2 in [4].

Theorem 13. The stationary queue length distribution of the MAP/MAP/1

queue is given by

p0 = 1− ρ, (49)

pk = ρα(0)Q̃k−11, k > 0, (50)
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where the matrices Q̃k are the unique solution of the following matrix Sylvester

equations:

TQ̃0 + Q̃0(D0 ⊗ I) = −I, (51)

TQ̃k + Q̃k(D0 ⊗ I) = −Q̃k−1(D1 ⊗ I), (52)

for k > 0.

Proof. Given that the queue is not empty (with probability ρ) the number of

customers in the system is equal to the number of arrivals during the sojourn

time (the age) of the customer residing in the server, plus one (which is the

customer in the server itself). The age process keeps track of the age of the

customer in service, together with the current service phase and the state of

the arrival process when the customer in service arrived, its density function is

given by α(u) = α(0)eTu, hence

pk = ρ

∫ ∞
u=0

α(0)eTuL̃(k − 1, u)1du = ρα(0)Q̃k−11. (53)

To prove (52) we pre-multiply (47) by eTu and take the integral from 0 to

∞, yielding∫ ∞
u=0

eTu
∂

∂u
L̃(k, u)du =

∫ ∞
u=0

eTuL̃(k, u)du︸ ︷︷ ︸
Q̃k

(D0 ⊗ I)

+

∫ ∞
u=0

eTuL̃(k − 1, u)du︸ ︷︷ ︸
Q̃k−1

(D1 ⊗ I),

(54)

where the integration of the left-hand side by parts results in −TQ̃k if k > 0,

establishing (52). Equation (51) can be proven similarly, by starting from (46)

and applying the same steps.

Remark 9: Based on the results of Theorem 13 and using the vec〈〉 operator
it is possible to obtain an explicit matrix-geometric distribution for the queue

length. From (51) and (52) we have

vec〈Q̃0〉 = −
(
I ⊗ T + (D0 ⊗ I)T ⊗ I

)−1
vec〈I〉, (55)

vec〈Q̃k〉 =
(
I ⊗ T + (D0 ⊗ I)T ⊗ I

)−1(
(D1 ⊗ I)T ⊗ I

)
vec〈Q̃k−1〉, (56)

which yields

pk = −ρ(1T ⊗ α(0))
[(

I ⊗ T + (D0 ⊗ I)T ⊗ I
)−1(

(D1 ⊗ I)T ⊗ I
)]k−1

·
(
I ⊗ T + (D0 ⊗ I)T ⊗ I

)−1
vec〈I〉.

(57)
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This distribution is, however, of order N2, while it is known that standard

matrix-analytic techniques lead to order N queue length distribution (see (2)).

The following theorem states that the order N2 matrix geometric solution col-

lapses to order N due to the commuting property of some matrices proven in

Section 5.

Theorem 14. The stationary queue length distribution of the MAP/MAP/1

queue has an order N matrix-geometric representation given by

p0 = 1− ρ, (58)

pk = ρα(0)R̂
k−1

(−U)−11, k > 0. (59)

Proof. Equation (59) follows from Theorem 13 once we show that Q̃k =

R̂
k
(−U)−1. Plugging Q̃k = R̂

k
(−U)−1 into the matrix Sylvester equation

(52) gives

TR̂
k
(−U)−1 + R̂

k
(−U)−1(D0 ⊗ I) = −R̂

k−1
(−U)−1(D1 ⊗ I)︸ ︷︷ ︸

R̂

. (60)

By observing that the right-hand side is equal to −R̂
k
(see (8)) and that T and

R̂ commute (see Theorem 8), it su�ces to show that

T (−U)−1 + (−U)−1(D0 ⊗ I) = −I (61)

is satis�ed, which is ensured by Theorem 6. Equation (58) can be proven simi-

larly.

Remark 10: For the M/MAP/1 queue we can easily see that Q̃k can be

expressed as

Q̃k =

∫ ∞
u=0

eTu
(λu)k

k!
e−λudu = λk(λI − T )−(k+1), (62)

meaning T and Q̃k commute. Further for the M/MAP/1 queue R = R̂, which

implies that U = T − λI and Theorem 14 now immediately follows from

Theorem 13.

Remark 11: Now we show that the queue length distribution de�ned by (59)

and the one based on the matrix-analytic approach (2) are equivalent. We start

by applying Theorem 5 on (59) and obtain

pk = ρα(0)R̂
k−1

(−U)−11 = ρ
µ

λ
π0(D1 ⊗ I)R̂

k−1
(−U)−11. (63)

Making use of R̂ = (−U)−1(D1 ⊗ I) we get

pk = π0(D1 ⊗ I)
[
(−U)−1(D1 ⊗ I)

]k−1
(−U)−11

= π0
[
(D1 ⊗ I)(−U)−1

]k
1,

(64)
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from which, observing that (D1 ⊗ I)(−U)−1 = R, the well known result pk =

π0R
k
1 follows.
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