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Abstract

In this paper we consider the MMAP/PH/1 priority queue, both the case of
preemptive resume and the case of non-preemptive service. The main idea of
the presented analysis procedure is that the sojourn time of the low priority
jobs in the preemptive case (and the waiting time distribution in the non-
preemptive case) can be represented by the duration of the busy period of a
special Markovian fluid model. By making use of the recent results on the busy
period analysis of Markovian fluid models it is possible to calculate several
queueing performance measures in an efficient way including the sojourn time
distribution (both in the time domain and in the Laplace transform domain),
the moments of the sojourn time, the generating function of the queue length,
the queue length moments and the queue length probabilities.
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1. Introduction

Priority queues belong to the most essential multi-class queueing systems
that allow different job classes to receive differentiated levels of service.
They play an important role in several fields like telecommunication [1],
manufacturing systems [2] or, more recently, in health care [3], [4].
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Priority queues are extensively studied since the middle of the last century
[5], starting with the most basic variant with Poisson arrival process and
exponentially distributed service times. However, in the practice there are
cases when the Poisson assumption is not reasonable. In the last two decades
most research activity on priority queues has considered more general arrival
proceeses like the Markovian arrival process (MAP) or the marked Markovian
arrival process (MMAP).

In [6] the MAP/G/1 preemptive priority queue is analyzed based on the
workload process, and the Laplace-Stieltjes transform (LST) of the sojourn
time distribution of the jobs is derived. The non-preemptive case is investi-
gated in [7] and [8], where the LST of the sojourn time, the moments of the
sojourn time, the generating function (GF) of the queue length, the queue
length moments and the queue length probabilities are provided. [9] studies
the tail probabilities of the low priority waiting times and queue lengths in
the MAP/G/1 non-preemptive priority queue.

After this overview one may think that not too much has left to be done
in the field of MAP driven priority queues. However, all the aforementioned
results assume a general distribution for the service time, which makes the
solution complex and often difficult to implement in a proper way (in the
numerical sense). To address this issue the generally distributed service times
can be replaced by phase-type distributed ones in the hope of the simpler
and numerically more tractable solution.

In [10] the (discrete-time) MAP/PH/1 priority queue is considered by
representing the state space with a quasi birth-death process (QBD) and
exploiting the special structure of the related fundamental matrices. While
this approach is elegant and seems promising, there are some computational
bottlenecks (as pointed out in [11]). There have been efforts to make it more
efficient (see [12] and [11]), but apart from the queue length moments all
performance measures can be computed only in case of a very limited number
of phases.

The solution approach presented in this paper is based on the analysis of
the workload process, like in [6]. The main difference is, however, that in case
of PH distributed service times it is possible to analyze the workload process
and the performance measures through some appropriately defined Markovian
fluid models. Taking advantage of the matrix-analytic solution technique
available for Markovian fluid models we managed to derive several sojourn
time and queue length related quantities in an efficient and numerically
stable way, both with preemptive resume and non-preemptive service. The
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computationally most intensive steps of the procedure are the solutions of
non-symmetric algebraic Riccati equations and Sylvester equations, for which
various mature implementations exist, allowing to compute the performance
measures in a reasonable time even if the number of phases is relatively large.

The rest of the paper is organized as follows. Section 2 introduces the queue
considered in the paper. Section 3 covers Markovian fluid flows (especially
their busy period), as our solution relies on them. For two job classes, the
preemptive priority queue is analyzed in Section 4, and the non-preemptive
case is considered in Section 5. The extension to arbitrary many job classes is
provided in the Appendix. Some numerical examples are presented in Section
6. Finally, Section 7 concludes the paper.

2. The MMAP[K]/PH[K]/1 priority queue

In the MMAP[K]/PH[K]/1 queue K types (classes) of jobs are distin-
guished. The arrival process of the jobs is described by a marked Markovian
arrival process, and the service times are phase-type (PH) distributed. There
is a single server, which always picks the job having the highest priority for
service. If the ongoing service can not be interrupted when a higher priority
job arrives, the service is called to be non-preemptive. In the preemptive
resume case (also referred to as the preemptive case for simplicity), however,
the service of jobs can be interrupted, and resumed later when all higher
priority jobs leave the system.

To introduce the analysis approach, the two-class case (K = 2) is consid-
ered throughout the paper, and the extension to the general case (K > 2) is
provided in the appendix.

The MMAP characterizing the arrivals [13] has a background process, that
is a continuous time Markov chain (CTMC) {J (t), t > 0} with NA states
and generator matrix D (which is assumed to be irreducible). Some of the
transitions of the background process are accompanied by the arrival of high
(low) priority jobs with the corresponding transition rates given by matrix
DH (DL), respectively. The rates of the internal transitions (that do not
generate arrivals) are in matrix D0, thus we have that D = D0 + DL + DH.

The mean arrival rate of high priority jobs is denoted by λH , and it is
calculated by λH = θDH1 with vector θ being the steady state distribution
of the MMAP phase process, which is the unique solution of θD = 0, θ1 = 1
(1 denotes the column vector of ones). The mean arrival rate of low priority
jobs is calculated similarly, it is λL = θDL1.
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The random variable representing the service times of the low priority jobs
SL is PH distributed [14] with NL phases, characterized by σL,SL and sL. Row
vector σL is the initial vector, matrix SL is the transient generator and column
vector sL holds the transition rates to the absorbing state, thus sL = −SL1.
The probability density function (pdf) fSL

(t), its Laplace transform f ∗SL
(s)

and the moments E(SkL) are

fSL
(t)=σLe

SLtsL, f ∗SL
(s)=σL(sI−SL)−1sL, E(SkL)=k!σL(−SL)−k1, (1)

and the mean service rate is µL = 1/E(SL). The PH distribution correspond-
ing to the high priority service times and its properties are defined similarly,
by using subscript H instead of L.

The load of the queue is ρ = λH/µH + λL/µL. Throughout in this paper
ρ < 1 is assumed.

3. Markovian fluid models

3.1. Definition and stationary solution

Markov fluid models (also known as Markovian fluid flows) are character-
ized by a two-dimensional Markov process {X (t),Z(t), t > 0}, where X (t)
represents the fluid level and Z(t) is the underlying CTMC with state space
S of size |S| = N and generator matrix Q that modulates the rate at which
fluid is accumulated in the fluid buffer.

The rate at which the level of the buffer changes in state i of the background
process is denoted by ri. The diagonal matrix R is composed by fluid rates
ri, i = 1, . . . , N . Formally, the behavior of the fluid buffer is as follows,

d

dt
X (t) =

{
rZ(t), if X (t) > 0,
max{0, rZ(t)}, if X (t) = 0.

(2)

Let us denote the row vector of the stationary distribution of the fluid level
for x > 0 by π(x) = {πi(x), i ∈ S} with πi(x) = limt→∞ lim∆→0(1/∆)P (X (t) ∈
(x, x + ∆),Z(t) = i), and the row vector of the stationary probabilities of
empty buffer by p = {pi, i ∈ S} with pi = limt→∞ P (Z(t) = i,X (t) = 0).

In the recent decades it has been recognized that the matrix-analytic
approach basing the efficient analysis of QBDs can be applied to fluid models
as well, making it possible to solve fluid models with a large number of states
(up to several thousand) in a numerically stable way (see [15],[16]). Fluid
models where |ri| = 1,∀i ∈ S are referred to as canonical fluid models, and are
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especially simple to analyze. Here we summarize the main steps of the analysis
of canonical fluid models. We assume that the state space is partitioned
according to the associated fluid rates to two sets S+ = {i ∈ S, ri = 1} and
S− = {i ∈ S, ri = −1} (N+ = |S+|, N− = |S−|) as

Q =

[
Q++ Q+−
Q−+ Q−−

]
, R =

[
I
−I

]
. (3)

The analysis is based on two fundamental matrices, matrix Ψ and K (see
[15]). Matrix Ψ has a simple probabilistic interpretation, entry (Ψ)i,j, i ∈
S+, j ∈ S− is the probability that the background process is in state j when
the fluid level returns to 0 given that it was in state i when the busy period (a
non-empty period of the fluid queue) was initiated. Matrix Ψ is the solution
to the nonsymmetric algebraic Riccati equation (NARE)

ΨQ−+Ψ + ΨQ−− + Q++Ψ + Q+− = 0. (4)

Matrix K has an important role as well. Entry i, j of matrix eKx is the
expected number of crossings of fluid level x in phase j ∈ S+ starting from
level 0 and phase i ∈ S+, before returning to level 0. If the mean fluid rate is
negative, all eigenvalues of matrix K have negative real parts (thus it is full
rank and invertible) and can be expressed from Ψ as

K = Q++ + ΨQ−+. (5)

Based on these matrices the stationary fluid level density vector and
the stationary probability vector of the idle buffer can be computed by the
following theorem.

Theorem 1. If the drift of the queue is negative, vector π(x) is given by

π(x) =
[
π+(x) π−(x)

]
= p−Q−+e

Kx
[
I Ψ

]
, x ≥ 0, (6)

and the probability mass vector p equals to

p =
[
0 p−

]
, (7)

where p− is the solution to the set of linear equations

p−(Q−− + Q−+Ψ) = 0, (8)

p−Q−+(−K)−1
[
I Ψ

]
1 + p−1 = 1. (9)

Proof. The theorem is based on [16], especially on Theorem 2.2.
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3.2. Busy period analysis

In this section we briefly summarize the most essential results of [17] and
[18] on the busy period analysis of fluid models.

As mentioned above, Ψ is the phase transition probability matrix between
the beginning and the end of the busy period. If the duration of the busy
period is also of interest, we can introduce matrix Ψ(t), the time dependent
counterpart of Ψ. Entry (Ψ(t))i,j, i ∈ S+, j ∈ S−, t > 0 is the joint probability
that the duration of the busy period is less than t and the underlying Markov
chain is in state j when the fluid level returns to 0 given that it was in state
i when the busy period was initiated.

According to Theorem 1 of [18], the LST of Ψ(t), denoted by Ψ∗(s)
satisfies the nonsymmetric algebraic Riccati equation

Ψ∗(s)Q−+Ψ∗(s) + Ψ∗(s)Q−− + Q++Ψ∗(s) + Q+− = 2sΨ∗(s). (10)

Let the random variable B denote the length of the busy period of a canon-
ical fluid queue characterized by matrix Q given that the state probability
vector of the background CTMC is κ = {κi, i = 1, . . . , N+} when the busy
period starts.

Theorem 2. The LST of the busy period f ∗B(s) = E(e−sB) is given by

f ∗B(s) = κΨ∗(s)1. (11)

Proof. The theorem follows from the probabilistic interpretation of Ψ(t).

Theorem 3. The kth moment of the busy period is given by

E(Bk) = κ (−1)kΨ(k)1, (12)

where Ψ(0) = Ψ and matrices Ψ(k), k > 0 are defined recursively as

(Q+++ΨQ−+)Ψ(k) + Ψ(k)(Q−−+Q−+Ψ)

= 2kΨ(k−1) −
k−1∑
i=1

(
k

i

)
Ψ(i)Q−+Ψ(k−i).

(13)

Proof. (13) follows from routine derivations with Ψ(k) = dk

dsk
Ψ∗(s)|s=0.
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Since (10) is a NARE and (13) is a Sylvester equation, the LST of the busy
period and the moments can be obtained in a numerically efficient way. The
distribution function in time domain, FB(t) = P (B < t) = κΨ(t)1 is, however,
more involved to calculate. One can rely on a generic numerical Laplace
transform inversion procedure, but according to our experience they are not
always reliable up to the machine precision, and need complex arithmetic.
Instead, a simple and elegant procedure called Erlangization is available [18],

according to which the order-n approximation F
(n)
B (t) is

F
(n)
B (t) =

∫ ∞
0

fE(n,n/t)(u) · FB(u) du, (14)

where fE(n,n/t)(u) is the density of an order-n Erlang distribution with rate

parameter ν = n/t and we have that F
(n)
B (t)→ FB(t) as n→∞. F

(n)
B (t) is

basically the probability that the busy period is shorter than an Erlang(n, ν)
variable.

Specifically for the busy period analysis F
(n)
B (t) can be obtained according

to the next theorem.

Theorem 4. ([18], Theorem 4) The order-n approximation of the busy period
distribution is

F
(n)
B (t) = κ

n−1∑
k=0

Ψν
k1, (15)

where matrices Ψν
k are defined recursively as

(Q+++Ψν
0Q−+−νI)Ψν

k + Ψν
k(Q−−+Q−+Ψν

0−νI)

= −2νΨν
k−1 −

k−1∑
i=1

Ψν
iQ−+Ψν

k−i,
(16)

for k > 0, and Ψν
0 is the solution to the NARE

Ψν
0Q−+Ψν

0 + Ψν
0(Q−− − νI) + (Q++ − νI)Ψν

0 + Q+− = 0. (17)

For the detailed proof of the theorem, see [18]. The idea is to construct a
special fluid model which counts the number of Exp(ν) events during the
busy period. Matrix Ψν

k is the probability that k such events occur before
the end of busy period (with the usual phase-transition probabilities being
the entries of the matrix). If the number of Exp(ν) events is less than n, then
the busy period is shorter than an Erlang(n, ν) variable, providing (14).
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V(t) Workload after low priority arrivals

Inter-
arrival time

Service time

Figure 1: The workload process of the queue

4. Analysis of the preemptive resume priority queue

Our approach is based on the analysis of the workload process, just like
[6] in the context of MAP/G/1 preemptive priority queues. However, by
exploiting the technical simplicity of the PH distributed service times we are
able to arrive to a more intuitive, simpler to implement and numerically more
beneficial solution.

4.1. The workload of the system just after low priority arrival instants

For the analysis of the sojourn time we first need to derive the distribution
of the workload a low priority arrival finds in the system.

The workload process {V(t), t > 0} is the amount of work in the system at
time t, thus the time needed to process all the jobs in the queue if the arrival
process is frozen. V(t) decreases by a slope of one between the arrival epochs,
and jumps up at arrival epochs according to the service time requirement of
the arrival; thus, V(t) is skip-free to the left. An example to the workload
process is depicted in Figure 1. As we have two job classes, there are two
kinds of jumps in the figure, the dotted one corresponds to the high, the
dashed one to the low priority jobs.

To completely characterize the situation an arriving low priority job
finds in the system, the stationary solution of {V(t),J (t)}, thus the joint
distribution of the workload and the MMAP phase needs to be derived.

In our case the inter-arrival times are given by a MMAP and the size of
the jumps is PH distributed, which makes it possible to apply the method
of [19] to transform V(t), which is skip-free to the left, to V ′(t), which is
skip-free to both directions. More precisely, the continuous process with
jumps {V(t),J (t)}, is transformed to {V ′(t),Z(t)} from which the stationary
distribution of {V(t),J (t)} at low priority arrivals is computed.
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V ′(t) Workload after low priority arrivals
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time

Figure 2: The modified workload process of the queue

The transformation to the skip-free process is performed as follows. Let
{V ′(t),Z(t)} be a canonical Markovian fluid model where Z(t) is the under-
lying CTMC with generator matrix Q given by

Q++ =

[
I⊗ SL

I⊗ SH

]
, Q+− =

[
I⊗ sL
I⊗ sH

]
, (18)

Q−+ =
[
DL ⊗ σL DH ⊗ σH

]
, Q−− = D0.

This fluid model behaves like {V(t),J (t)} between arrivals, when it stays
in the negative states S−. Whenever an arrival occurs, however, it switches
to one of the positive state groups (depending on the class of the entering
job), and accumulates the workload increment with a slope of 1. Thus, the
jumps are eliminated and replaced by progressive workload accumulations.
(A similar technique has been used in [20] for the analysis of a multi-type
queue with impatient customers.) The transformed process obtained from
Figure 1 is depicted in Figure 2.

Observe that the joint stationary density of the workload and the MMAP
phase at low priority arrivals are the same in the original and in the trans-
formed process. The stationary solution π(x) of the transformed process (that
is a canonical fluid model) is given by Theorem 1, from which, by embedding
at just after low priority arrivals we get a matrix-exponential solution

π̂(x) =
1

ĉ
π(x)

I⊗ sL
0
0

 =
1

ĉ
p−Q−+e

Kx
[
I Ψ

] I⊗ sL
0
0


=

1

ĉ
p−Q−+︸ ︷︷ ︸

β̂

eKx

[
I⊗ sL

0

]
︸ ︷︷ ︸

B̂

= β̂eKxB̂,
(19)
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where the normalization constant is ĉ = p−Q−+(−K)−1B̂1. Notice that from
the three blocks in the last matrix term the upper two belong to S+ and the
lower belongs to S−.

Due to technical reasons (which will be discussed later) the representation
given by (19) will not be appropriate in the forthcoming derivations, because
in general K1 + B̂1 6= 0. The following theorem provides the representation
transformation that ensures the proper row-sums.

Theorem 5. The joint density of the workload and the phase probability of
the MMAP just after low priority arrivals π̂(x) can be obtained by

π̂(x) = β̂′eK′xB̂′, (20)

with β̂′ = β̂ · diag〈∆〉,K′ = diag〈∆〉−1 ·K · diag〈∆〉 and B̂′ = diag〈∆〉−1 · B̂,
where ∆ = (−K)−1B̂1. Furthermore, we have that

K′1 + B̂′1 = 0. (21)

Proof. The fact that (20) equals to (19) can be proven by

π̂(x) = β̂′eK′xB̂′ = β̂ · diag〈∆〉 · ediag〈∆〉−1·K·diag〈∆〉xdiag〈∆〉−1 · B̂
= β̂ · diag〈∆〉 · diag〈∆〉−1 · eKx · diag〈∆〉diag〈∆〉−1 · B̂ = β̂eKxB̂.

(22)

To prove that (21) holds we have

K′1 + B̂′1 = diag〈∆〉−1(K(−K)−1B̂1 + B̂1) = 0. (23)

4.2. The sojourn time of low priority jobs

For the sojourn time analysis of low priority jobs we introduce the remain-
ing sojourn time process {T (t), t ≥ 0}. At t = 0, T (t) is the workload seen
by a low priority job when it arrives. For t > 0, T (t) decreases by a slope of
one till a high priority arrival occurs, when T (t) has a jump with size given
by a high priority service time. When T (t) reaches zero, it remains zero and
the corresponding low priority job leaves the system (see Figure 3). Hence,
the sojourn time of low priority jobs TL is

TL = inf{t > 0 : T (t) = 0}. (24)

Just like the workload process V(t), the remaining sojourn time process
T (t) is skip-free to the left and has upward jumps. As we did with the
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High priority arrivals
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Low priority sojourn time TL

t=0

Figure 3: The remaining sojourn time of a low priority job

t

T̃ (t)
Initial

workload
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arrival

High pr.
arrival
time

High pr.
service
time

Busy period of the fluid model, B̃

Figure 4: The fluid model for the sojourn time analysis

workload process, we transform T (t) to a process which is easier to handle
numerically, and derive the properties of T (t) from the transformed process.

This transformation is based on [19] again. Let us introduce a canonical
fluid model {T̃ (t), Z̃(t)} where the generator Q̃ of the underlying CTMC is

Q̃++ =

[
K′

I⊗ SH

]
, Q̃+−=

[
B̂′

I⊗ sH

]
, (25)

Q̃−+ =
[
0 DH ⊗ σH

]
, Q̃−−= D0 + DL,

furthermore, let the distribution of Z̃(t) at t = 0 be

κ̃ = {P (Z̃+(0) = i)} =
[
β̂′ 0

]
. (26)

This fluid model has three state groups: there are two state groups in S+,
and S− is the third one.

The role of the first state group is the accumulation of the initial workload,
experienced by a low priority job when it enters the system. Observe that
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the sojourn time density of the first state group, when started from κ̃, is
exactly π̂(x), which is the density of the initial workload. The second group
of states is activated when an arrival occurs, and the corresponding workload
increment is accumulated. The third group of states, the negative ones
represent the periods when the server is processing the low priority workload
and is decreasing the remaining sojourn time of the tagged low priority job.

Note that due to Theorem 5 the usual property of Markovian generators
Q̃1 = 0 holds. The correctness of the solution with the non-Markovian
components K′ and B̂′ is ensured by [21].

The main idea in this section is that, by construction, the relation between
the duration of the busy period B̃ of the fluid model characterized by (κ̃, Q̃)
and the sojourn time of low priority jobs TL is

TL = B̃/2. (27)

This relation is clearly visible when looking at Figures 3 and 4.
Finally, the following corollary expresses the properties of the sojourn

time with the properties of the busy period (detailed in Section 3.2).

Corollary 1. The distribution of TL in time domain, in LST domain, and
its moments can be expressed by

FTL(t) = P (TL < t) = FB̃(2t), (28)

f ∗TL(s) = E(e−sTL) = f ∗B̃(s/2), (29)

E(T kL) = E(B̃k)/2k. (30)

4.3. Number of low priority jobs in the system

First we derive the distribution of the number of low priority jobs at low
priority departure epochs (the corresponding random variable is denoted by
XL), then the one at a random point in time (denoted by YL).

When a low priority job leaves the system, the number of jobs behind
it equals to the number of low priority arrivals during its sojourn in the
system. To analyze this quantity, let us go back to the remaining sojourn
time introduced in Section 4.2, and modify the background process of the
related fluid model such that it counts the number of low priority arrivals.
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Instead of Q̃ we get Q̃′ defined by

Q̃′ =


F0 F1

F0 F1

F0
. . .
. . .

 , (31)

where matrices F0 and F1 are

F0 =

[
Q̃++ Q̃+−

Q̃−+ D0

]
, F1 =

[
0 0
0 DL

]
. (32)

With this generator, matrix Ψ̃′ of the corresponding canonical Markovian
fluid model has an upper block-Toeplitz structure like

Ψ̃′ =


Ψ̃0 Ψ̃1 Ψ̃2 · · ·

Ψ̃0 Ψ̃1 · · ·
Ψ̃0 · · ·

. . .

 , (33)

where the entry (Ψ̃i)k,` is the probability that i low priority arrivals occur
during the sojourn time of a low priority job and the phase of the MMAP is
` at the departure given that the phase was k when it entered the system.

The reason of the upper block-Toeplitz structure is that the number of
low-priority arrivals during the sojourn time can only increase, and that the
MMAP generating the arrivals is independent of the queue length.

Theorem 6. Matrix Ψ̃0 is the solution to the NARE

Ψ̃0Q̃−+Ψ̃0 + Ψ̃0D0 + Q̃++Ψ̃0 + Q̃+− = 0, (34)

and for i > 0 matrices Ψ̃i can be obtained recursively by solving the Sylvester
equation

(Q̃+++Ψ̃0Q̃−+)Ψ̃i + Ψ̃i(D0+Q̃−+Ψ̃0) = −Ψ̃i−1DL −
i−1∑
j=1

Ψ̃jQ̃−+Ψ̃i−j.

(35)
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Proof. Let us partition matrix Q̃′ according to the positive and negative
states. We get

Q̃′′ =

[
Q̃′′++ Q̃′′+−
Q̃′′−+ Q̃′′−−

]
=


Q̃++ Q̃+−

Q̃++ Q̃+−
. . . . . .

Q̃−+ D0 DL

Q̃−+ D0 DL
. . . . . .

 . (36)

Substituting (36) and (33) into the NARE (4) provides the theorem after
some algebraic manipulation.

The probabilities for the number of low priority jobs at low priority
departures xLi = P (XL = i) are obtained from Ψ̃i by taking into consideration
the initial probability vector of the busy period κ̃. For later use, we also
introduce row vector xLi = {P (XL = i,J = j), j = 1, . . . , NA}, the joint
probability of the number of jobs and the phase of the MMAP at departures
(obviously, xLi = xLi 1).

Corollary 2. For the distribution of the number of low priority jobs at low
priority departures we have

xLi = κ̃Ψ̃i. (37)

The significance of (37) lies in the fact that the consecutive queue length
probabilities can be obtained by consecutive solutions of Sylvester equations
calculating Ψ̃i. The prior procedures of the related literature are far more
expensive computationally.

Corollary 3. The generating function (GF) of the distribution of the number
of jobs at departures XL(z) =

∑∞
i=0 z

ixLi can be obtained by

XL(z) = κ̃Ψ̃(z), (38)

where matrix Ψ̃(z) satisfies the NARE

Ψ̃(z)Q̃−+Ψ̃(z) + Ψ̃(z)(D0 + zDL) + Q̃++Ψ̃(z) + Q̃+− = 0. (39)

Proof. Multiplying (35) by zi, summing it from 1 to infinity, then adding
(34) provides (39).
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Finally, the factorial moments of XL can be calculated by taking the
derivatives of the generating function, hence

E(Xk
L) =

∞∑
i=0

ikxLi =
dk

dzk
XL(z)|z=11, (40)

yielding a recursion introduced by the next corollary.

Corollary 4. For the kth factorial moment of XL we have

E(Xk
L) = κ̃Ψ̃(k), E(Xk

L) = E(Xk
L)1, (41)

where Ψ̃(k) = dk

dzk
Ψ̃(z)|z=1. Matrix Ψ̃(0) = Ψ̃ and for k > 0 matrices Ψ̃(k) are

obtained recursively by solving the following Sylvester equations

(Q̃+++Ψ̃(0)Q̃−+)Ψ̃(k) + Ψ̃(k)(Q̃−−+Q̃−+Ψ̃(0))

= −kΨ̃(k−1)DL −
k−1∑
i=1

(
k

i

)
Ψ̃(i)Q̃−+Ψ̃(k−i).

(42)

In the rest of the section we calculate various properties of the number of
low priority jobs at random point in time denoted by YL. Our contribution
in this subsection ends here, since the relations between XL and YL are
extensively studied in [7], which we adopt in this paper, and provide them
for the sake of completeness.

Let us introduce row vector yL
i

= {P (YL = i,J = j), j = 1, . . . , NA}.

Theorem 7. ([7], Theorem 4.6) The generating function of yL
i

, denoted by

YL(z) =
∑∞

i=0 z
iyL
i

is related to XL(z) as

YL(z)(D0 + DH + zDL) = λL(z − 1)XL(z). (43)

Corollary 5. ([7], Corollary 3.11) Vectors yL
i
, i ≥ 0 are recursively obtained

by

yL
0

= λLx
L
0 (−D0 −DH)−1,

yL
i

= (yL
i−1

DL + λLx
L
i − λLxLi−1)(−D0 −DH)−1, i > 0.

(44)

Corollary 6. ([7], Corollary 3.10) The factorial moments of the number of
low priority jobs at random point in time are obtained recursively as

E(Y k
L ) = E(Xk

L) + k
(
E(Xk−1

L )− E(Y k−1
L )DL/λL

)
(1θ −D)−1DL1,

E(Y k
L ) = E(Y k

L )θ + k
(
E(Y k−1

L )DL − λLE(Xk−1
L )

)
(1θ −D)−1,

(45)

for k > 0, and E(Y 0
L ) = θ.
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4.4. The analysis of the high priority class

In case of the preemptive resume service policy the high priority class can
be analyzed in separation, as a single-class MAP/PH/1 queue with arrival
process given by matrices (D0 + DL,DH) and service time distribution given
by (σH ,SH). The number of jobs in the system is matrix-exponentially
distributed, and can be derived from the solution of a QBD (see Section
4.4.1 in [22]). The sojourn time of the jobs in a MAP/PH/1 queue is matrix
exponentially distributed, as proven in [23] based on the analysis of the age
process.

4.5. Extensions of the model

The two-class analysis procedure developed here can be used to solve
models with more than two classes as well. When analyzing the ith class, all
lower priority classes can be neglected, only the higher priority classes need
to be taken into account. The details are provided in Appendix A.

The presented approach can be generalized to handle correlated service
times as well, thus when the service process is a MAP. In this case the state
space of the Markov chains corresponding to the fluid models have to be
extended such that the phase of the service MAP is preserved in the negative
states.

5. Analysis of the non-preemptive priority queue

In the non-preemptive case the service of a low priority job can not be
interrupted. It turns out, that the analysis approach developed in Section 4
can still be used with a small difference. Instead of analyzing the sojourn time
and the number of jobs in the system, in the non-preemptive case we will focus
on the waiting time (which can be interrupted by a high priority arrival any
time) and the number of waiting jobs in the system. The non-interruptible
service time and the number of arrivals during it will be added afterwards to
obtain the sojourn time and the number of jobs in the system.

5.1. The workload of the system just before low priority arrival instants

When a low priority job enters the system, its waiting time equals to the
workload of the system just before its arrival (thus without its own service
time) plus the service times of all high priority jobs arrived during waiting in
the queue. To find out the workload just before the arrival in the example
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of Figure 1 this means that we need the distribution of V(t) just before the
jumps, instead of just after the jumps.

This distribution can be obtained by applying the same transformation
procedure which results in a canonical Markovian fluid model with stationary
fluid density π(x) and probability mass at level zero p. Embedding right
before low priority arrivals we get the density

π̌(x) =
1

č
π(x)

 0
0

DL

 =
1

č
p−Q−+e

Kx
[
I Ψ

]  0
0

DL


=

1

č
p−Q−+︸ ︷︷ ︸

β̌

eKx ΨDL︸ ︷︷ ︸
B̌

= β̌eKxB̌.
(46)

Notice that the workload just before the arrival can be exactly zero as well,
with probability mass

p̌ =
1

č
p−DL. (47)

The normalization constant is č = p−DL1 + p−Q−+(−K)−1B̌1.
Similar to Theorem 5, it is again possible to similarity transform the

representation β̌,K and B̌ to β̌′,K′ and B̌′ such that K′1 + B̌′1 = 0 holds.

5.2. The sojourn time of low priority jobs

As mentioned before, first the waiting time (denoted by WL) is character-
ized, then the service time is added afterwards to get the sojourn time.

As done in Section 4.2, it is possible to introduce the remaining waiting
time process W(t) and construct a canonical fluid model {W̄(t), Z̄(t)} whose
busy period B̄ is closely related to the waiting time. The blocks of the
generator of this fluid model are

Q̄++ =

[
K′

I⊗ SH

]
, Q̄+−=

[
B̌′

I⊗ sH

]
, (48)

Q̄−+ =
[
0 DH ⊗ σH

]
, Q̄−−= D0 + DL, (49)

and the distribution of Z̄(t) at t = 0 (that defines the initial distribution of
the busy period) is

κ̄ = {P (Z̄+(0) = i)} =
[
β̌′ 0

]
. (50)
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Notice that everything is the same as in Section 4.2, except the parameters
of the initial workload distribution. Hence, it is not surprising that WL = B̄/2.

Corollary 7. The distribution of WL in time domain, in LST domain, and
its moments can be expressed by

FWL
(t) = FB̄(2t), f ∗WL

(s) = f ∗B̄(s/2), E(W k
L) = E(B̄k)/2k. (51)

As TL = WL + SL holds, it is straight forward to obtain the LST of the
distribution of TL and its moments.

Corollary 8. The LST of the distribution of TL is given by

f ∗TL(s) = f ∗WL
(s)f ∗SL

(s). (52)

Taking the derivatives of f ∗TL(s) with respect to s and tending s→ 0 yields
the moments of the sojourn time.

Corollary 9. The moments of the sojourn time TL are given by

E(T kL) =
k∑
i=0

(
k

i

)
E(W i

L)E(Sk−iL ). (53)

The distribution function of the sojourn time is more involved to obtain.
One could directly express it as a continuous time convolution of FWL

(t)
and fSL

(t), but it would involve an integral which can be evaluated only
numerically. Remind that both FTL(t) in the preemptive resume case and
FWL

(t) in the non-preemptive case are derived from the distribution of the
busy period of an appropriate fluid model, which is computed in terms of
Erlangization (see Section 3.2), meaning that an order-n approximation is
applied where increasing n improves the accuracy. For the preemptive resume
case we had that the order-n approximation is

F
(n)
TL,preemp.

(t) = P (B̃/2<Erlang(n,
n

t
)) = P (B̃ < Erlang(n,

n

2t
)) = κ̃

n−1∑
k=0

Ψ̃ν
k1,

with ν = n/(2t) and κ̃Ψ̃ν
k1 holding the probabilities that k Exp(ν) events

occur during the busy period.
In the non-preemptive case, however, busy period B̄ corresponds to the

waiting time only. Thus, we have that the sojourn time distribution is

F
(n)
TL

(t) = P (B̄/2 + SL < Erlang(n,
n

t
)).
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Theorem 8. The order-n approximation of the distribution function of TL is

F
(n)
TL

(t) = κ̄
n−1∑
k=0

Ψ̄ν
k1dn−k + p̌1dn, (54)

where ν = n/(2t), matrices Ψ̄ν
k are defined by Theorem 4 with using Q̄ instead

of Q, and probabilities dn are given by

dn = 1− σL
(
I− SL/(2ν)

)−n
1. (55)

Proof. We have that

F
(n)
TL

(t) = P (B̄/2 + SL < Erlang(n,
n

t
)) = P (B̄ + 2SL < Erlang(n, ν))

= κ̄
n−1∑
k=0

Ψ̄ν
k1 · P (2SL < Erlang(n− k, ν))︸ ︷︷ ︸

dn−k

+p̌1 · P (2SL < Erlang(n, ν))︸ ︷︷ ︸
dn

,

where the second term corresponds to the case when WL = 0. The d`
probabilities can be derived as

dn = P (2SL < Erlang(n, ν)) = P (SL < Erlang(n, 2ν))

= 1−
∫ ∞
u=0

(2νu)n−1

(n− 1)!
2νe−2νuσLe

SLu1du

= 1− (−ν)n−1

(n− 1)!
2νσL

∫ ∞
u=0

dn−1

dνn−1
e−2νueSLu1du

= 1− (−ν)n−1

(n− 1)!
2νσL

dn−1

dνn−1
(2νI− SL)−11 = 1− (2ν)nσL(2νI− SL)−n1,

that equals to (55).

5.3. The number of low priority jobs

As in the preemptive resume case, first the number of low priority jobs at
low priority departures is analyzed, from which the results corresponding to
a random point in time are derived.

To obtain the number of low priority jobs at low priority departures
(XL) a tagged low priority job is picked, and the number of low priority
arrivals is counted during its stay in the system. This quantity consists of
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two components: the number of arrivals during the waiting time, and the
number of additional arrivals during the service time.

The number of arrivals during the waiting time can be derived from the
fluid model representing the remaining waiting time process introduced in
Section 5.2. We follow the exactly same recipe as in Section 4.3 with the
preemptive case, thus we modify the background process of the fluid model Q̄
such that it counts the number of arrivals during the busy period and get Q̄′.
The blocks of the corresponding Ψ̄′ matrix, Ψ̄k are holding the probabilities
that k arrivals occurred during the busy period (that is, during the waiting
time) given the initial phase of the MMAP. These matrices can be calculated
as Theorem 6 does in the preemptive resume case, the only difference is that
matrix Q̄ needs to be used instead of matrix Q̃.

As for the second component, let us introduce matrices Ai, i ≥ 0 whose
(k, `)th entry is the probability that the MMAP generates i low priority
arrivals during a low priority service time starting from phase k and the
MMAP phase at the end of service is `. Matrices Ai are matrix-geometric

Ai = α ·Aia, i ≥ 0, (56)

where

α = I⊗ σL, (57)

A = (−(D0 + DH)⊕ SL)−1 (DL ⊗ I), (58)

a = (−(D0 + DH)⊕ SL)−1 (I⊗ sL). (59)

Theorem 9. The joint probability of the number of low priority jobs in the
system and the phase of the MMAP at low priority departure instants is

xLi = hi · a + p̌Ai, (60)

where matrix h0 = κ̄Ψ̄0 and hi, i > 0 is defined recursively as

hi = hi−1 ·A + κ̄Ψ̄iα. (61)

Proof. Let us sum the number of arrivals during the waiting time and
during the service time by convolution, yielding

xLi =
i∑

k=0

κ̄Ψ̄kAi−k + p̌Ai =
i∑

k=0

κ̄Ψ̄kαAi−k

︸ ︷︷ ︸
hi

a + p̌Ai. (62)
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The recursion for hi can be shown by

hi =
i∑

k=0

κ̄Ψ̄kαAi−k =
i−1∑
k=0

κ̄Ψ̄kαAi−1−k

︸ ︷︷ ︸
hi−1

·A + κ̄Ψ̄iα. (63)

By introducing the generating functions Ψ̄(z) =
∑∞

i=0 z
iΨ̄i and A(z) =∑∞

i=0 z
iAi, the generating function XL(z) =

∑∞
i=0 z

ixLi is easy to obtain from
(62) and (56).

Corollary 10. XL(z) is expressed by

XL(z) = κ̄Ψ̄(z)A(z) + p̌A(z), (64)

where matrix A(z) =
∑∞

i=0 z
iAi has the following closed form formula

A(z) = α(I− zA)−1a. (65)

Based on (40) the factorial moments at departures are calculated by
routine derivations of (64).

Corollary 11. For the kth factorial moment of the number of low priority
jobs at low priority departures we have

E(Xk
L) =

k∑
i=0

(
k

i

)
κ̄Ψ̄(i)A(k−i) + p̌A(k), (66)

where matrices Ψ̄(i) = di

dzi
Ψ̄(z)|z=1 are obtained similar to (42) and matrices

A(i) = di

dzi
A(z)|z=1 have the following closed form:

A(i) = i!α(I−A)−i−1Aia. (67)

Having characterized the number of low priority jobs at low priority
departure epochs, the properties of the number of low priority jobs at a
random point in time are given by Theorem 7 and Corollaries 5 and 6.
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t

V ′H(t) Workload after high priority arrivals

Low priority job leaves the system

Figure 5: The modified workload process of the high priority class

5.4. The analysis of the high priority class

In the non-preemptive case the high priority class can not be analyzed in
separation, since a high priority job can not be served immediately when a
low priority job is in the server.

We use the workload process of the high priority class denoted by {VH(t), t >
0} to derive the performance measures1. The trajectory of VH(t) contains
intervals where the slope is zero corresponding to the periods when the server
serves low priority jobs. As before, VH(t) is transformed to a fluid model (see
Figure 5 for an example).

The blocks of the generator matrix of this fluid model are defined by

QH
++ =

[
I⊗ I⊗ SH

I⊗ SH

]
, QH

+−=

[
0

I⊗ sH

]
, QH

+0 =

[
I⊗ I⊗ sH

0

]
,

QH
−+ =

[
0 DH ⊗ σH

]
, QH

−−= D0 + DL, QH
−0 = 0,

QH
0+ =

[
DH ⊗ I⊗ σH 0

]
, QH

0− = I⊗ sL, QH
00 = (D0+DL)⊕ SL.

Four state groups can be identified in the generator. The two state groups of
S+ both correspond to the workload accumulation due to a new high priority
arrival. The difference is that in the first state group the server works on a
low priority job, thus the phase of its service needs to be maintained during
the workload accumulation. In the negative states S− the server is working
on a high, in the zero states S0 the server is working on a low priority job.

The probability of the phases when the workload process leaves level zero,
denoted by vector κH , is not easy to obtain. Regarding this vector we are

1Contrary to Sections 4.1 and 5.1, where the workload process of the entire system is
discussed, the workload process considered here applies only to the high priority class.

22



relying on the results of [7], which we re-formulate and simplify at several
points due to the PH distributed service times.

Let us investigate the system at the departures that leave the high priority
queue empty, and introduce two probability vectors, φ and φ0 associated to
this embedded process. The ith entry of φ0 is the probability that the whole
system is empty at the embedded instant and the phase of the MMAP is i.
Entry i of vector φ is the probability that the embedded process is in state i
in the product space of the MMAP phase and the phase of the low priority
service time.

Theorem 10. Vector φ0 is given by

φ0 =
(1− ρ)p−(−D0)

λLp−1 + (1− ρ)p−DH1
, (68)

where p− is the probability mass vector of the fluid queue representing the
workload process of the whole system (see Sections 4.1 and 5.1).

Vector φ is the unique solution to the linear system

φ = (φ− φ0)(I⊗σL)(−(D0+DL)⊕SL)−1
[
DH⊗I⊗σH 0

]
ΨH

+ (φ− φ0)(I⊗σL)(−(D0+DL)⊕SL)−1(I⊗ sL)

+ φ0(−D0)−1(DL⊗σL)(−(D0+DL)⊕SL)−1
[
DH⊗I⊗σH 0

]
ΨH

+ φ0(−D0)−1(DL⊗σL)(−(D0+DL)⊕SL)−1(I⊗ sL)

+ φ0(−D0)−1
[
0 DH⊗σH

]
ΨH ,

(69)

φ1 = 1, (70)

where ΨH is the solution of the NARE

ΨHQH
−+ΨH + ΨHQH

−− + (QH
++ + QH

+0(−QH
00)−1QH

0+)ΨH

+ QH
+− + QH

+0(−QH
00)−1QH

0− = 0.
(71)

Proof. Eq. (68) follows from [7],Theorem 3.1 and [7],Lemma 3.2.
Eq. (69) has 5 terms. The first one corresponds to the case when there

are low priority jobs in the system when the last high priority job leaves.
The server starts to serve a low priority job. The PH of the service process
and the MMAP evolve together, and the MMAP generates a high priority
arrival before the current service is completed, and initiates the workload
process (see Figure 5). The next departure leaving the high priority class
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empty occurs when the workload of the high priority class returns to level
zero, with the corresponding phase transitions given by ΨH (which satisfies
the usual NARE after censoring out the zero states). According to the second
term the low priority service is completed before the MMAP generates a high
priority job, providing the phase of the next embedded point. In the third
and fourth term the last high priority job leaves the system empty, and the
next arriving job is a low priority one, while in the last term the next arriving
job is a high priority one.

Let us introduce vectors qHL and qH0 as the stationary phase probabilities
that the server is working on a low priority job and that the system is idle
when there are no high priority jobs in the system, respectively. These
probability vectors can be obtained from φ and φ0 by taking into account the
mean amount of time spent in various phases in the system, yielding

qHL =
1

cH
(φ− φ0 + φ0(−D0)−1DL)(I⊗σL)(−(D0+DL)⊕SL)−1,

qH0 =
1

cH
φ0(−D0)−1,

(72)

where cH is a normalization constant. From these vectors the initial phase
distribution vector for the high priority workload process denoted by κH is
given by

κH = qHL
[
DH⊗I⊗σH 0

]
+ qH0

[
0 DH⊗σH

]
= qHL QH

0+ + qH0 QH
−+. (73)

Finally, the next two theorems provide the performance measures for the
high priority jobs.

Theorem 11. The probability density function of the sojourn time of high
priority jobs fTH (t) is matrix-exponential

fTH (t) = ζeZtv, (74)

with parameters

ζ =
[
κH 0

]
/c, Z =

KH

[
1⊗ I⊗ sH

0

]
0 SL

 , v =

 0
1⊗ sH
sL

 , (75)

where KH = QH
++ + QH

+0(−QH
00)−1QH

0+ + ΨHQH
−+ and c is the normalization

constant.
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Proof. The density of the workload at high priority arrival including the
service time requirement the job brought to the system is κHeKHxQH

+0 if the

server works on a low priority job and it is κHeKHxQH
+− otherwise (see the

points marked by circles in Figure 5). In the latter case the sojourn time of
the entering job is x. In the former case, however, the remaining service time
of the low priority job has to be taken into account as well. The phase of the
low priority service is also encoded in the background process, hence we have

fTH (t) =

(
κH
∫ ∞
x=0

eKHxQH
+0(1⊗ I)eSL(t−x)sL dt+ κHeKHxQH

+−1

)
/c. (76)

The convolution of the two matrix exponentials with parameters KH and SL

can be represented by a single matrix exponential with parameter Z according
to [24]. The second term can be expressed using ζeZt as well, by adding
transitions from the first matrix block to the absorbing state with rates

QH
+−1 =

[
0

1⊗ sH

]
. Putting together the two terms provides the theorem.

Corollary 12. The LST of the distribution function and the moments of TH
are given by

f ∗TH (s) = ζ(sI− Z)−1v, E(T kH) = k!ζ(−Z)−k−1v. (77)

For the analysis of the number of high priority jobs in the system we
introduce a quasi birth-death process (QBD, [14]), where the matrices corre-
sponding to level backward, local and level forward transitions (denoted by
A−, A0 and A+, respectively) are

A0 =

[
(D0 + DL)⊕ SL I⊗ sLσH

(D0 + DL)⊕ SH

]
,

A− =

[
I⊗ sHσH

]
, A+ =

[
DH ⊗ I

DH ⊗ I

]
.

In the first group of states the server is working on a low, in the second one
it is working on a high priority job. It is possible to move from the first state
group to second one (see matrix A0), but not the way around at levels > 0.

The entries of vector yH
i

are the probabilities that there are i high priority
jobs in the system and the background process is in different phases. It is
well known that QBDs have a matrix geometric distribution.
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Theorem 12. Vectors yH
i

have the following matrix geometric form:

yH
i

= yH
0

Ri, (78)

where matrix R is the minimal non-negative solution to the matrix-quadratic
equation

A+ + RA0 + R2A− = 0, (79)

and the probability of level 0 is yH0 =
[
qHL qH0

]
/c′. The normalization constant

is c′ =
[
qHL qH0

]
(I−R)−11.

Proof. By definition in (72), vectors qHL and qH0 are the stationary phase
probability vectors given that there are no high priority jobs in the system.
The matrix-geometric stationary distribution is a standard property of QBDs
(see [14]).

Corollary 13. The generating function of the number of high priority jobs
YH(z) =

∑∞
i=0 z

iyH
i
1 and the factorial moments E(Y k

H) are given by

YH(z) = yH0 (I− zR)−11, E(Y k
H) = k!yH0 Rk(I−R)−k−11. (80)

5.5. Extensions of the model to arbitrary many job classes

The presented approach can be generalized to arbitrary many job classes
as well. The details are given in Appendix B.

6. Numerical results

We implemented the presented analysis methods in MATLAB 2. The
implementation computes all performance measures considered in the paper
by both preemptive resume and non-preemptive service, and for any number
of job classes.

In our implementation the NARE problems are solved by the ADDA
procedure [25]. We note that one of the two linear terms in the NAREs in
this paper are block diagonal, which can be exploited by a novel technique
to improve the computation speed further ([26]), but we did not use this

2Our implementation can be downloaded from http://www.hit.bme.hu/~ghorvath/

software
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possibility. The Sylvester equations are solved by the lyap function of
MATLAB, which is based on the Hessenberg-Schur algorithm [27].

In this section we compare our procedure with three prior methods: the
method of [10] (transformed to continuous time), its improved version pub-
lished in [12], and the procedure of [11]. Note that the latter two procedures
are far less general than [10] or the proposed one. They can handle only
preemptive resume service, they do not analyze the sojourn time at all, and
[11] is only able to provide the moments of the number of jobs.

Since all involved procedures are exact, only the scalability is investigated,
that is, the analysis time as the function of the number of phases.

For this purpose let us define the MMAP matrices as

D0
(K) =


• Kν
γ • (K − 1)ν

. . . . . . . . .
(K − 1)γ • ν

Kγ •

 , DL
(K) =


0
rL/K

2rL/K
. . .

rL

 ,
and matrix DH

(K) is defined similarly. The diagonal entries denoted by • are
determined uniquely such that the row sums of D0

(K) + DL
(K) + DH

(K) are
zeroes.

The service times are characterized by order-2 PH distributions with
parameters

σH =
[
0.16667 0.83333

]
, σL=

[
0.58824 0.41176

]
,

SH =

[
−0.66667 0.66667

0 −4

]
, SL=

[
−3.2941 3.2941

0 −5.6

]
,

having service rates µL = 2.8 and µH = 2. The utilization depends on K, it
varies between 0.6 and 0.75.

Figure 6 depicts the analysis time required to obtain the first 10 moments
of the number of low priority jobs in the system in the preemptive case as the
function of K. (This is the only performance measure that is supported by
all the procedures). It is clearly visible that the presented method is at least
an order of magnitude faster than the prior ones, and is able to solve systems
with a large number of phases. No numerical problems were encountered
even with the largest model. Additionally, as opposed to [12] and [11], the
presented procedure can provide sojourn time related performance measures,
and is able to handle the case of non-preemptive service as well.
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Figure 6: Comparison of the execution times of various procedures

An other simple numerical example can be found in the online supplemen-
tary material.

7. Conclusion

This paper presents a unique approach for the analysis of priority queues
with MMAP input and PH distributed service times in the sense that the
performance measures are derived from various properties of the busy period
process of fluid queues. Several recent research results are utilized, including
the workload-based queue analysis approach, the solution of fluid processes
with jumps and the matrix-analytic methods for Markovian fluid models. The
result is an easy to implement procedure, which, according to our numerical
experiments is numerically reliable and at least an order of magnitude faster
that past procedures.
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Appendix A. Preemptive resume priority queues with arbitrary
many job classes

This section gives the outline of the analysis when the number of classes
is greater than 2. Instead of H and L, the classes are denoted by integer
numbers 1 . . . K such that a greater number corresponds to higher priority.
The analysis is provided for class k, 1 ≤ k < K.

To characterize the amount of work in the system found by a class k job
upon its arrival, classes < k can be neglected. For classes ≥ k the workload
process is similar to the one in Figure 1, but we have to distinguish various
types of upward jumps corresponding to various job classes, thus, when a job
arrives, it initiates the phase type distribution representing the service time
of its class. Hence, the blocks of the generator of the fluid model representing
the workload process are (see also (18))

Q
(k)
++ =

I⊗ Sk

. . .

I⊗ SK

 , Q
(k)
+− =

 I⊗ sk
...

I⊗ sK

 , (A.1)

Q
(k)
−+ =

[
Dk ⊗ σk . . . DK ⊗ σK

]
, Q

(k)
−− =

k−1∑
i=0

Di. (A.2)
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From the matrix-exponentially distributed stationary solution of the fluid
model π(k)(x), the density of the workload at class k arrivals, is expressed by

π̂(k)(x) =
1

ĉ(k)
π(k)(x)


I⊗ sk

0
...
0

 =
1

ĉ(k)
p

(k)
− Q

(k)
−+︸ ︷︷ ︸

β̂(k)

eK(k)x


I⊗ sk

0
...
0


︸ ︷︷ ︸

B̂(k)

,
(A.3)

where the normalization constant is ĉ(k) = p
(k)
− Q

(k)
−+(−K(k))−1B̂(k)1.

The (β̂(k),K(k), B̂(k)) representation is transformed to (β̂′
(k)
,K′(k), B̂′

(k)
)

to ensure the proper row-sums by using Theorem 5.
The blocks of the generator of the fluid model corresponding to the

remaining sojourn time process are similar to the ones of the two-class case
(see (25)), the difference is that now there are more than one classes that
have priority over class k. Hence we get

Q̃
(k)
++ =


K′(k)

I⊗ Sk+1

. . .

I⊗ SK

 , Q̃
(k)
+− =


B̂′

(k)

I⊗ sk+1
...

I⊗ sK

 , (A.4)

Q̃
(k)
−+ =

[
0 Dk+1 ⊗ σk+1 . . . DK ⊗ σK

]
, Q̃

(k)
−− =

k∑
i=0

Di,

and the initial phase distribution is

κ̃(k) =
[
β̂′

(k)
0 . . . 0

]
. (A.5)

The performance measures related to the sojourn time can be derived
from this fluid queue exactly as in the two-class case.

For the number of jobs the results of Section 4.3 can be applied with slight
modifications. Instead of DL we have to use Dk. Furthermore, in Theorem 6
and Corollaries 3, and 4 matrix D0 needs to be replaced by

∑k−1
i=0 Di, while

in Theorem 7 and Corollary 5 matrix D0 + DH needs to be replaced by∑K
i=0,i 6=k Di.
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Appendix B. Non-preemptive priority queues with many job classes

This section provides the analysis for class k, 1 < k < K.
To characterize the amount of work in the system when a class k job

arrives, we need to analyze the workload process restricted to the time periods
when class ≥ k jobs are present in the system. This workload process is
similar to the one discussed in Section 5.4, and depicted in Figure 5.

The blocks of the generator of the fluid model representing the workload
process are as follows.

Q
(k)
++ =



I⊗ I1 ⊗ Sk

. . .

I⊗ Ik−1 ⊗ SK

I⊗ Sk

. . .

I⊗ SK


,

Q
(k)
+− =



0
...
0

I⊗ sk
...

I⊗ sK


, Q

(k)
+0 =



I⊗ I1 ⊗ sk
...

I⊗ Ik−1 ⊗ sK

0
...
0


,

Q
(k)
0+ =

 Dk ⊗ I1 ⊗ σk DK ⊗ I1 ⊗ σK 0
. . . . . . 0

Dk ⊗ Ik−1 ⊗ σk DK ⊗ Ik−1 ⊗ σK 0

 ,

Q
(k)
00 =


∑k−1

i=0 Di ⊕ S1

. . . ∑k−1
i=0 Di ⊕ Sk−1

 , Q
(k)
0− =

 I⊗ s1
...

I⊗ sk−1

 ,
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Q
(k)
−+ =

[
0 Dk ⊗ σk . . . DK ⊗ σK

]
, Q

(k)
−− =

k−1∑
i=0

Di,

where matrix Ij is an identity matrix of the same size as Sj.
The states of the background process can be grouped to four state groups.

In the zero states S0 there are class ≥ k jobs in the system, but the server is
working on a class < k one. The class of the current job in the server and
its phase are encoded into S0. When a class ≥ k job arrives, the background
process moves to S+, where the workload is increased by the service time of
the job. Two state groups can be distinguished in S+. In the first state group
there is a low priority job in the server, thus the background process needs
to keep track of 1) the phase of the arrival process, 2) the class of the job in
the server, 3) the phase of the service time of the job in the server, 4) the
class of the job that arrived, and 5) the phase of the service time of the job
that arrived. While the workload is increasing, the arrival process and the
service of the job in the server are frozen. The second state group of S+ takes
care of the increase of the workload when there is no lower priority job in the
server. Finally, S− represents the periods when class ≥ k jobs are served and
the workload decreases by a slope of one accordingly.

The fundamental matrices corresponding to this fluid model are denoted
by Ψ(k) and K(k).

To characterize the steady state behavior of the workload process at
arrivals, it remains to derive the initial phase of the background process when
a class ≥ k job arrives when only class < k jobs are present in the system.
To derive the initial phase probability vector we investigate the system at
those departure instants where the departing job leaves no class ≥ k job in
the system. Similar to vectors φ and φ0 (defined in Section 5.4), we introduce

probability vectors φ
(k)
i . Entry j of φ

(k)
i is the probability that there are no

jobs with priority higher than i in the system at these instants and the phase
of the MMAP is j. Thus,

{φ(k)
i }j = P (phase at departure is j and only ≤ i classes are present

| no class > k jobs in the system at departure)
(B.1)

Vector φ
(k)
k can be obtained as a solution of a set of linear equations.
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Based on Theorem 3 of [8] and (69) we have linear equations

φ
(k)
k =

k∑
i=1

(
φ

(k)
i − φ

(k)
i−1 + φ

(k)
0 (−D0)−1Di

)
(I⊗ σi)

(
−

k∑
j=0

Dj ⊕ Si

)−1

·

(
(I⊗ si) +

K∑
j=k+1

[
0 . . .

jth

Dj ⊗ I⊗ σj . . .0 | 0

]
·Ψ(k+1)

)

+ φ
(k)
0 (−D0)−1

K∑
j=k+1

[
0 | 0 . . .

jth

Dj ⊗ σj . . .0
]
·Ψ(k+1),

(B.2)

where term i in the sum corresponds to the case when the class of the next
job to serve is i (i ≤ k). The service of this job is started. The next departure
in the embedded process can occur when either the service of this job ends, or
when a higher priority job arrives. In the latter case matrix Ψ(k+1) determines
the phase transitions between the beginning and the end of the busy period
of priority > k jobs. The last term is related to the case when the system is
empty at departure, and the next arriving job is a high priority (> k) one.

To get a fully determined system of linear equations for vectors φ
(k)
k the

following relations are also needed (see Lemma 2 and eq. (17) of [8]):

pk = P (no class > k jobs in the system at departure)

=
1

λ

k∑
j=1

λj +
1

λ
κ

K∑
j=k+1

Dj1,

φ
(k)
i · pk = φ

(i)
i · pi, k, i = 1, . . . , K − 1,

where κ is the initial vector of the matrix-exponentially distributed workload
process of the whole system (including all priority classes).

Similar to the two-class case in (72), we introduce vectors q
(k)
i , i =

1, . . . , k − 1 representing the stationary distribution of the phase when there
are no class ≥ k jobs in the system and the server is working on a class i job,
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and vector q
(k)
0 for the case when the system is idle. We have

q
(k)
i =

(
φ

(k−1)
i − φ(k−1)

i−1 + φ
(k−1)
0 (−D0)−1Di

)
(I⊗ σi)

(
−

k−1∑
j=0

Dj ⊕ Si

)−1

,

q
(k)
0 = φ

(k−1)
0 (−D0)−1.

Concatenating vectors q
(k)
i to q

(k)
L = {q(k)

i , i = 1, . . . , k − 1} the initial
vector of the workload process for class ≥ k jobs denoted by κ(k) is given by
(see also (73) for two priorities)

κ(k) = q
(k)
L ·Q

(k)
0+ + q

(k)
0 ·Q

(k)
−+. (B.3)

Now we express the stationary density of the initial workload of class ≥ k
jobs, the amount of workload that a class k arrival finds in the system. Four
cases are distinguished:

• At the class k arrival there are no class ≥ k jobs in the system, but the
server is working on a class < k job. The initial workload for the arrival
equals the remaining service time of the class < k job.

• At the class k arrival there are class ≥ k jobs in the system, but the
server is working on a class < k job. The initial workload equals to
the workload of class ≥ k jobs residing in the queue plus the remaining
service time of the class < k job.

• At the class k arrival there are class ≥ k jobs in the system, and the
server is working on a class ≥ k job. The initial workload equals to the
workload of the class ≥ k jobs residing in the queue.

• At the class k arrival there are no jobs in the system at all. The initial
workload is zero.

Thus, the initial workload equals to either the workload of the class ≥ k jobs,
or to the remaining service time, or to the sum of both. Similar to (75) in
the two-class case, it is matrix-exponentially distributed in the general case
as well,

π̌(k)(x) = ζ(k)eZ(k)tV(k), (B.4)
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with parameters

ζ(k) =

 κ(k) q
(k)
L ·

Dk ⊗ I1

. . .

Dk ⊗ Ik−1


 /č(k), (B.5)

Z(k) =


K(k) (Q

(k)
+0 + Ψ(k)Q

(k)
−0) ·

Dk ⊗ I1

. . .

Dk ⊗ Ik−1


0

I⊗ S1

. . .

I⊗ Sk−1




, (B.6)

V(k) =


Ψ(k)Dk

1⊗ s1
...

1⊗ sk−1

 , (B.7)

and the probability that the initial workload at arrival is zero is given by

p̌(k) =
1

č(k)
q

(k)
0 Dk. (B.8)

The normalization constant is obtained as č(k) = 1/(p̌(k)1+ζ(k)(−Z(k))−1V(k)1).
The first state group of this matrix-exponential distribution generates the
workload of class ≥ k jobs residing in the queue at the arrival, while the
second state group represents the remaining service time of the low priority
job residing in the server.

The fluid model representing the remaining waiting time of class k jobs
can be characterized by the same matrices as in the preemptive resume case
given by (A.4). The only difference is that instead of K′(k), B̂

′(k) and β′(k),
the parameters of the initial workload are Z(k), V(k) and ζ(k) in the non-
preemptive case. Given the fluid model for the remaining waiting time, the
performance measures are derived just like in the two-class case in Section
5.2 and Section 5.3.
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