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Abstract—Reinforcement Learning (RL) is widely applied in
robotics, autonomous systems, and network optimization but
struggles with sensor noise and faulty actions, leading to in-
stability. This paper introduces KFAE, a novel approach that
integrates Proximal Policy Optimization (PPO) with Autoencoder
and Kalman Filter to de-noise observations and correct action
faults, enhancing learning efficiency in noisy environments. KFAE
stabilizes learning, improves decision reliability, and significantly
outperforms the Noisy Environment (NE), achieving a 131.5%
improvement in episode reward mean and an 184.1% increase
in steps till collision. Additionally, KFAE closely approximates the
Default Environment (DE) with minimal deviations, validating its
effectiveness as a robust, fault-tolerant RL framework.

Keywords—Autoencoder; AEs; Kalman Filter; Proximal Policy
Optimization; PPO; Reinforcement Learning; RL.

I. INTRODUCTION

RL has achieved remarkable success in decision-making
tasks across various domains, including autonomous vehicles,
robotics, and games [1]]. RL is a computational framework
where an agent learns optimal policies by interacting with
an environment and maximizing cumulative rewards. Among
various RL algorithms, policy-based methods have gained
significant attention due to their ability to learn complex
behaviors directly from high-dimensional inputs. PPO, in
particular, ensures stable learning by balancing exploration
and exploitation through its clipping surrogate objective. This
property makes PPO sample-efficient, robust, and easy to
implement, positioning it as one of the most widely used
RL algorithms, alongside Trust Region Policy Optimization
(TRPO) and Deep Deterministic Policy Gradient (DDPG) [2].

Despite the impressive performance of RL algorithms in
controlled environments, their reliability significantly degrades
in noisy and faulty environments [3]]. Sensor noise, missing
observations, and action faults disrupt learning, leading to
suboptimal policies and unstable training. For RL agents to
perform effectively in real-world settings, they must adapt
to and mitigate the effects of faulty data, ensuring reliable
decision-making in uncertain conditions.

The methodological approach taken in this study is a mixed
methodology based on the Autoencoder-Kalman Filter tech-
nique. The Autoencoder enables us to reduce the dimensions
of that data, ensuring effectively extracting meaningful repre-
sentations [4]. Additionally, using the property of the Kalman
Filter to enhance the agent behavior across the environment by
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estimating the observation states smoothly [5]]. The approach
to empirical research adopted for our proposal aims to make
the decisions made by the agents in dynamic uncertainty
environments more robust and efficient.

The remainder of this paper is structured as follows:
Section [[] reviews the related works. The methodology and
design are presented in Section [[TI] The experimental setup is
described in Section[[V] The experimental results are discussed
in Section [V] Finally, Section [VI| concludes the paper.

II. RELATED WORKS

To date, several studies have investigated training an agent
in RL environments with an autoencoder on high-dimensional
sensory inputs (e.g., images, LiDAR). The outcome of this
combination is shown to enhance the production of state
representation and reduce the time of policy recovery [6].
Using this approach, researchers have been able to enhance
robustness and generalization, and probabilistic modeling is
proposed, named Variational Autoencoders (VAEs) [7]].

The Kalman filter technique uses a repetition algorithm to
estimate the state of the observation in the environment. It
leverages the predictive correction approach for getting the
optimal estimation state by minimizing the mean squared error
[8]. Combining the Kalman filter in an RL environment will
have a critical impact on the agent for the process of decision-
making. It will reduce the impact of the noise on observation
and the corruption of reading high-dimensional raw data, for
instance. The RL agent will get a smooth representation state,
certain information, and a mostly denoised environment [9].

Several large cross-sectional studies suggest the incorpora-
tion of state estimation techniques in RL to improve policy
learning. For instance, Bayesian filtering methods, such as
the Kalman filter and particle filters, have been applied in
RL for sensor fusion and noise reduction [5]. Researchers
have demonstrated that integrating state estimators into RL
pipelines improves stability and robustness, particularly in
robotics and autonomous systems [[10]

Policy-based RL methods, such as PPO have been aug-
mented with learned representations to enhance performance.
Several studies have combined PPO with convolutional neural
networks (CNNs) to extract features from raw pixels [11].
However, limited research exists on leveraging autoencoders
for PPO in conjunction with state estimation techniques like



Kalman filtering. The combination of these approaches has the
potential to bridge the gap between perception and decision-
making, allowing for improved RL performance in complex
environments. Some researchers propose RL4V2X to enhance
autonomous driving by integrating CNNs, GRUs, and gate
networks to handle intermittent V2X disruptions, improving
safety and efficiency in dynamic traffic conditions [[12]].

Although previous work has demonstrated the benefits of
Auto-encoders for representation learning and Kalman fil-
tering for state estimation, their integration within a PPO-
based RL framework remains largely unexplored. Existing
research often focuses on either representation learning or state
estimation individually but not their combined effect on policy
optimization. This paper aims to fill this gap by proposing
a novel approach that integrates PPO with a Kalman filter
for refined state estimation and an autoencoder for compact
feature extraction, enabling better policy learning in complex,
noisy, and high-dimensional environments.

III. METHODOLOGY

The methodology of our design is illustrated in Fig. |1} which
consists of the following phases: DE, NE, and KFAE. Each
phase builds upon the previous one, progressively incorporat-
ing additional mechanisms and techniques. The final phase
KFAE integrates all previous modifications while introducing
a comprehensive fault-tolerant mechanism to enhance robust-
ness.
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Figure 1. Design Phases

In the first phase, we trained an RL agent using the
PPO algorithm within the highway-fast-vO environment [13],
which is an open-source simulation environment designed for
autonomous driving research. It provides a flexible platform
for testing and training RL agents in high-speed highway
phases.

To simulate realistic faults, we developed a custom Fault
Injection Wrapper Function that dynamically introduces faulty
observations, missing data, and action disturbances. In the
second phase, the environment was modified to simulate
sensor and actuator failures by implementing a Fault Injection
Wrapper Function (adding faulty observations, missing data,
and faulty actions). The faulty observations were computed as
shown in Equation

6t:(0t+/\/(0,0'))'M (1)

where M represents missing data probability. Faulty actions
were perturbed as illustrated in Equation [2}

a/t = Clip(at + 67 07 amax) (2)

for discrete action spaces, where 6 € {—1,1} represents a
random discrete shift, and for continuous action spaces, shown
in Equation [3] where N(0, o) represents Gaussian noise.

at = Clip(at + N(O, 0-)’ Gmin amax) (3)

In addition to the implemented processes in the previous
phases, the third phase introduces KFAE. To ensure the agent’s
robustness, fault injection was applied to both observations
and actions, as described earlier. Additionally, an autoencoder-
Kalman filter mechanism was introduced to process faulty
observations before feeding them into the model. The auto-
encoder performed dimensionality reduction and denoising
using an encoding function as shown in Equation [}

2t = fenc (Ot) “4)

where z; is the latent representation of the original (possibly
faulty) observation o;. The Kalman filter then smoothed the
latent variables using the update rule as shown in Equation [5}

Zt’t = K(Zf) = AZt_l =+ But + Wi (5)

where A and B are transition matrices, u; represents control
inputs, and w; is process noise. The smoothed state Z; was
then used for policy learning.

By integrating these three phases, our methodology system-
atically evaluates the RL agent’s resilience against sensor and
actuator faults.

IV. EXPERIMENTAL SETUP

This section details the evaluation methodology, including
environment modifications and training parameters. The goal
is to assess the robustness and adaptability of the proposed
KFAE framework compared to the baseline environment. To
systematically assess the validity of RL agents under vary-
ing environmental conditions, this study follows a structured
multi-phase evaluation approach. The first phase establishes
a baseline in DE, where the agent operates under ideal
conditions. The second phase introduces NE, incorporating
sensor and actuator faults to analyze the impact of noise on
learning performance. Finally, the last phase applies adaptive



filtering techniques to mitigate the effects of these faults.
This structured approach enables a direct comparison of how
each phase influences decision-making stability in RL-based
autonomous driving.

The experiments were conducted in the highway-fast-vO
environment [13]], an open-source simulation designed for
autonomous driving research. To ensure consistency, the envi-
ronment was modified as follows:

o Episode Length: Extended to 200 steps per episode.

o Collision Handling: A penalty of -1 reward was applied
for collisions.

o Termination Criteria: Off-road termination was enabled.

o The faults were applied dynamically per episode and
randomly varied in duration (200-500 steps) but only
affected the episode for its maximum length of 200 steps.

o 80% of missing data probability.

The RL agent was trained using PPO with a Multilayer Per-
ceptron (MLP) policy. The used hyperparameters are depicted
in Table[l] During evaluation, the number of steps till collision
was recorded across multiple trials to analyze agent stability
under different conditions.

TABLE I. Training Parameters for PPO with MLP Policy

evaluates how reward accumulation evolves under varying
environmental conditions.
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Figure 2. Comparison of episode reward mean across phases

TABLE II. Comparison of improvement for episode reward mean across
phases

Metric DE NE KFAE
Avg. Episode Reward | 1.234 0.355 0.821
Comparison with DE - -71.2% -33.4%
Comparison with NE - - +131.5%

Parameter Value
Training Steps 20,000

Hidden Layers 2 fully connected layers
Neurons per Layer 256

Episodes for Evaluation 50

To analyze the performance of the proposed KFAE model,
the following metrics were used:

o Episode Reward Mean: Measures accumulated rewards
over time, reflecting learning efficiency.

o Steps Till Collision: Evaluate system robustness by de-
termining how long an agent can sustain operation before
failure.

These metrics were collected to provide insights into
KFAE'’s ability to observe the impact of noisy and faulty
environments.

V. PERFORMANCE EVALUATION

The episode reward means and steps till collision reflect
the critical insight for the system analysis regarding learning
efficiency and stability. To stand out the agent’s ability to
make decisions under uncertain environments, we conduct the
accumulated rewards over time where a higher reward means
indicates effective learning and adaptation. On the other hand,
to expose the stability and resilience in dynamic environments,
the steps till the collision metric measured the duration before
failed to reach the end of the episode or collisions. Further
analysis of these metrics will provide a clear view of the
proposed model compared to the baseline case concerning
mitigating noise and improving system performance.

Figure 2] illustrates the episode reward mean across different
phases. The x-axis represents the step count, while the y-axis
corresponds to the episode reward mean. This comparison

The property of optimal learning conditions without inter-
ference on the DE phase (blue line) has achieved the highest
episode reward mean. Compared to the NE phase (red line)
which shows a 71.2% decrease in overall reward, as shown in
Table [l This confirms that environmental noise significantly
disrupts reward optimization and system stability. The substan-
tial gap between NE and DE highlights the negative impact
of noisy conditions on learning efficiency and performance
consistency.

The proposed KFAE model (green line) consistently out-
performs NE, achieving a 131.5% improvement over NE in
episode reward means, as quantified in Table [l This signifi-
cant enhancement confirms that KFAE effectively mitigates the
effects of noise, ensuring a more stable and reliable learning
process. Despite operating in a dynamic environment, KFAE
only falls 33.4% behind DE, demonstrating its ability to ap-
proximate near-optimal learning performance while handling
noise-induced fluctuations.

A key takeaway from Figure [2] and Table [l is that KFAE
significantly reduces reward instability compared to NE, sug-
gesting that the Autoencoder-Kalman Filter framework en-
hances learning adaptability and fault tolerance. The narrower
performance gap between KFAE and DE reinforces its poten-
tial as a viable alternative for optimizing decision-making in
noisy environments. These findings validate KFAE as a robust
congestion control mechanism, capable of sustaining high
reward accumulation and improving reinforcement learning
efficiency in challenging network conditions.
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Figure 3. Comparison of average steps till collision across phases

TABLE III. Comparison of improvement for average steps till collision across
phases

Metric DE NE KFAE
Avg. Steps 155.6 52.1 148.1
Comparison with DE - -66.5% -4.8%
Comparison with NE - - +184.1%

The results presented in Figure [3] and Table [[T] compare
the average steps till collision across different phases: The
horizontal bar plot provides a clear visualization of operational
stability, with error bars indicating standard deviation across
multiple trials, while Table quantifies the performance
differences with exact numerical values.

A key observation is that DE achieves the highest steps till
collision, with an average of 155.6 steps indicating that in
an ideal, interference-free environment, the system maintains
stability for extended periods. This outcome is expected, as
DE operates under optimal conditions without the influence
of noise or external disruptions. In contrast, NE exhibits sig-
nificantly fewer steps till collision, averaging just 52.1, repre-
senting a 66.5% decrease compared to DE. This confirms that
environmental noise severely impacts system performance,
leading to increased packet loss, instability, and premature
collisions.

The proposed KFAE model significantly outperforms NE,
achieving an average of 148.1 steps till collision, which
translates to an 184.1% improvement over NE. The green bar
in Figure [3| confirms that KFAE sustains operation for a con-
siderably longer duration than NE, reinforcing its adaptability
and fault-tolerant nature. Despite operating under non-ideal
conditions, KFAE closely approximates DE’s performance,
with only a minor 4.8% reduction compared to DE. The
Autoencoder-Kalman Filter improves robustness, stabilizes
learning, and mitigates performance degradation under faults
and uncertainties.

A notable trend is the relatively small variance in KFAE
compared to NE, suggesting that KFAE provides more con-
sistent and predictable performance across different trials. This
is further supported by Table [Tl which shows that while
NE struggles with environmental instability, KFAE maintains

nearly the same level of performance as DE. These findings
validate KFAE as a highly adaptive RL framework, capable
of improving system resilience in dynamic and noisy environ-
ments.

Figure [3]and Table [[TI|confirm KFAE’s effectiveness in miti-
gating noise and ensuring stable, fault-tolerant RL. The perfor-
mance gap between NE and KFAE highlights the benefits of
adaptive filtering for reliable decision-making in unpredictable
conditions.

VI. CONCLUSION

To eliminate sensor noise and faulty actions, we propose
KFAE, a hybrid RL framework combining PPO with adaptive
filtering to enhance fault tolerance in noisy environments.
KFAE de-noises observations, corrects action faults, and im-
proves decision reliability. These experiments confirmed that
KFAE outperforms NE, with a 131.5% gain in episode reward
mean and an 184.1% increase in steps till collision, while
closely approximating DE with minor deviations. These results
confirm KFAE’s effectiveness in stabilizing RL performance.
This study highlights the benefits of adaptive filtering in
fault-tolerant RL and suggests future research on real-world
applications, alternative filters, and computational efficiency.
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