



# DOCSIS 3.0

The road to 100 Mbps

Greg White Principal Architect CableLabs

...Revolutionizing Cable Technology\*

#### Historical Peak Modem Throughput Trends Predict 200 Mbps Modems in 2016



## **Cable Network Architecture**

- Cable is FTTN (fiber to the node)
- Total Downstream Capacity with today's technology ~5 Gbps
  - » Mostly used for analog and digital video
  - » Upstream is more limited

#### Modern Cable Data Network (Aggregation Network)



#### Hybrid Fiber-Coaxial Network (Access Network)



# What is DOCSIS?

- DOCSIS defines the PHY & MAC layer protocol for communication and Ethernet frame carriage between the CMTS and the CM.
- DOCSIS also defines a provisioning and management framework
- Four published versions:\*
  - » DOCSIS 1.0 (ca. 1996) (ITU-T J.112-B (3/98))
  - » DOCSIS 1.1 (ca. 1999) (ITU-T J.112-B (3/04))
  - » DOCSIS 2.0 (ca. 2001) (ITU-T J.122)
  - » DOCSIS 3.0 (ca. 2006) (ITU-T J.222)

\*available at www.cablemodem.com

### Cable Modem Protocol Stack

| Application Layer<br>Presentation Layer |                         | SNMP, TFTP, DHCP, ToD, IGMP |               |                    |  |  |
|-----------------------------------------|-------------------------|-----------------------------|---------------|--------------------|--|--|
| Transport Layer                         |                         | UDP                         |               |                    |  |  |
| Network Layer                           |                         | IP, ICMP, ARP               |               |                    |  |  |
| Data<br>Link<br>Layer                   | Link Layer<br>Control   | 802.2 LLC                   | 802.1d Bridge | 802.2 LLC          |  |  |
|                                         | Media Access<br>Control | DOCSIS MAC                  |               | 802.3 MAC          |  |  |
| Physical Layer                          |                         | DOCSIS PHY                  |               | Ethernet, USB      |  |  |
| OSI Ref. Model                          |                         | Cable Interface             | -             | Customer Interface |  |  |

## **HFC Spectrum Allocation**



# **Downstream Physical Layer**

| Region                    | North        | America   | Europe                |           |  |  |
|---------------------------|--------------|-----------|-----------------------|-----------|--|--|
| Standard                  | ITU-T J.83-B |           | ETSI EN 300 429 (DVB) |           |  |  |
| Modulation                | 64QAM        | 256QAM    | 64QAM                 | 256QAM    |  |  |
| Channel Spacing           | 6 MHz        | 6 MHz     | 8 MHz                 | 8 MHz     |  |  |
| Symbol Rate (Mbaud)       | 5.057        | 5.361     | 6.952                 | 6.952     |  |  |
| Raw Data Rate (Mbps)      | 30.34        | 42.88     | 41.71                 | 55.62     |  |  |
| TCM rate                  | 14/15        | 19/20     | N/A                   | N/A       |  |  |
| Reed-Solomon FEC          | (128,122)    | (128,122) | (204,188)             | (204,188) |  |  |
| Post-FEC Data Rate (Mbps) | 26.97        | 38.80     | 38.44                 | 51.25     |  |  |

# **Upstream Physical Layer**

| Version                          | DOCSIS 1.x                   | DOCSIS 2.0/3.0                                                   |  |  |  |
|----------------------------------|------------------------------|------------------------------------------------------------------|--|--|--|
| Format                           | Bursted F/TDMA               | Bursted F/TDMA, F/S-CDMA                                         |  |  |  |
| Modulation                       | QPSK, 16QAM                  | QPSK, <b>8QAM</b> , 16QAM, <b>32QAM,</b><br><b>64QAM, 128QAM</b> |  |  |  |
| Channel Width (MHz)              | 0.2, 0.4, 0.8, 1.6, 3.2      | 0.2, 0.4, 0.8, 1.6, 3.2, <b>6.4</b>                              |  |  |  |
| Symbol Rate (Mbaud)              | 0.16, 0.32, 0.64, 1.28, 2.56 | 0.16, 0.32, 0.64, 1.28, 2.56, <b>5.12</b>                        |  |  |  |
| Raw Data Rate (Mbps)             | 0.32 – 10.24                 | 0.32 – <b>35.84</b>                                              |  |  |  |
| Pre-Equalization                 | 8-tap FIR (opt. in 1.0)      | <b>24</b> -tap FIR                                               |  |  |  |
| Trellis Coded Modulation<br>Rate | N/A                          | Optional: n/n+1                                                  |  |  |  |
| Reed-Solomon FEC                 | T=0-10; k=16-253             | T=0- <b>16</b> ; k=16-253                                        |  |  |  |
| Post-FEC Data Rate<br>(Mbps)     | 0.14 – 10.24                 | 0.11 – 30.72                                                     |  |  |  |

# **DOCSIS Upstream PHY Modes**

- Time Division Multiple Access (TDMA)
  - » CMs take turns transmitting, one at a time, each occupies the entire upstream channel during transmission.
  - » Transmissions consist of: preamble, data burst, guard time
  - » Better immunity to narrowband interferers
  - » Generally performs better above 15 MHz
- Synchronous Code Division Mult. Access (S-CDMA)
  - » DOCSIS 2.0/3.0 only
  - » Direct Sequence Spread Spectrum
  - » Multiple CMs can transmit simultaneously
  - » Much shorter preamble, no guard time
  - » Slightly more efficient, better immunity to burst noise
  - » Generally performs better below 15 MHz

# Ranging

- Ranging is used to synchronize CMs and align them with the CMTS receiver.
  - » TDMA requires coarse alignment (±800 nsec)
  - » S-CDMA requires accurate alignment (±1 nsec).
  - » CM sends a RNG-REQ message
  - » CMTS responds with a RNG-RSP message
    - Contains Timing Adjust (Resolution = 0.3815 nsec.)
    - also Power adjust, Frequency adjust, Pre-EQ params.
- Ranging is a two-step process:
  - » Initial maintenance (coarse time alignment).
  - » Periodic station maintenance (fine time alignment).

# **DOCSIS MAC**

- Media Access Control (MAC) Sub-Layer
  - » Controls access to the Physical Layer (the channel)
  - » Allows multiple users to share a communications channel
- One-to-many architecture
- Separate physical channels (upstream/downstream) controlled by the CMTS
- No direct peer-to-peer (CM-to-CM) communication

# **DOCSIS** Downstream MAC

- Only one transmitter the CMTS
- Multiple receivers the CMs
- CMTS manages its own transmissions
- Quality of Service can be assured by:
  - » Token bucket rate limiting
  - » Reserved data rates
  - » Traffic Priority

# **DOCSIS** Upstream MAC

- Multiple transmitters the CMs
- One receiver the CMTS
- The CMTS arbitrates access to the channel
  - » Each upstream channel is described in minislots
    - $-2^{n*}6.25\mu s$  in TDMA mode
  - » "MAP" messages are broadcast downstream to describe who gets to transmit and when
    - Each CM listens for MAP messages on its "primary" downstream
  - One MAP message per upstream channel per MAP interval (chosen by CMTS, 2-5ms typical)
- Access Control is Reservation based
  - » Reservation requests are sent in contention ("Slotted-Aloha")
  - » Reservations can also be pre-scheduled at periodic intervals

### MAPs are broadcast by the CMTS on "primary" downstream channels



#### The Reservation Mechanism – Requests and Grants

- When a CM has data to send, it:
  - » Randomly selects a Request contention interval among all upstream channels
  - » Transmits a 7-byte REQ message to the CMTS, which:
    - identifies the CM (via Service ID)
    - specifies the number of bytes in queue
  - » Retransmits its request, if no response from the CMTS
- The CMTS then:
  - » Queues/prioritizes REQs
  - » Selects an upstream channel and reserves future minislots for the requesting CMs
  - » An individual request can be split into multiple "grants" on different channels
  - » Communicates the grants to the CMs via MAP messages.

### Continuous Concatenation & Fragmentation

- Grants are not tied to packet boundaries
- CM packs as much data into each grant as will fit
- Segment header provides sequence number, "piggyback" request field, etc.

| CM Data Queue:         | Data                        | a Packet 1 | Data                             | Packet 2       | Data               | Packet 3              | Data<br>Packet 4 |
|------------------------|-----------------------------|------------|----------------------------------|----------------|--------------------|-----------------------|------------------|
|                        | Already transmitted         |            |                                  |                |                    |                       |                  |
| Upstream Data Segment: | Segment Header<br>(8 bytes) |            | Upstream Segment                 |                |                    |                       |                  |
|                        |                             |            |                                  |                |                    |                       |                  |
| Segment Header Detail: | Point<br>(2                 | er Field   | Seq.No. +<br>Cluster<br>(2 bytes | SID<br>ID<br>) | equest<br>2 bytes) | Checksum<br>(2 bytes) | ]                |

# **CM** Provisioning

- During initialization, the CM downloads (via TFTP) a configuration file from the cable operator
- Config file defines:
  - » Quality of Service (QoS) Parameters
    - Priority, rate limiting, bandwidth guarantees, etc.
  - » Filters
    - e.g. block Windows file sharing (netBIOS, SMB, CIFS)
  - » Privacy (encryption) parameters
  - » Etc.
- The CM then sends a Registration Request message to the CMTS containing the QoS parameters

# **CM Initialization Sequence**

- 1. Downstream Channel Acquisition
  - » Scan for digital channels, acquire QAM,FEC,MPEG lock, identify DOCSIS PID (program ID)
  - » Receive MAC Domain Descriptor (MDD) Message
- 2. Topology Resolution & Upstream Channel Acquisition
  - » Tune additional downstream frequencies to determine service group
  - » Select upstream channel listed in MDD
  - » Initial Ranging
    - Find Initial Maintenance interval in MAP messages
    - Send RNG-REQ, receive RNG-RSP, adjust transmitter, repeat if necessary
- 3. Initialize Encryption
  - » CM Authentication & Key exchange with CMTS
- 4. Establish IPv4 or IPv6 Communications (DHCP)
- 5. Download Configuration File (TFTP)
- 6. Registration
  - » Send REG-REQ, receive REG-RSP, send REG-ACK

### **DOCSIS 3.0 Major Features Overview**

- Much higher bandwidth through channel bonding
  - » Starts at 160 Mbps Downstream, 120 Mbps Upstream and goes up from there
  - » Multiple independent channels are bound, treating them logically as one
  - » A minimum of four channels are bound, can be more
  - » Channel bonding in both upstream and downstream
- IPv6 for advanced networking capabilities
  - » Expanded address space
    - IP addresses are lengthened from 32 bits (4.3 billion possible addresses) to 128 bits (3.4 duodecillion possible addresses) so that address space will not run out.
  - » Improved operational capabilities
- IP Multicast to support IPTV-type applications
  - » Use existing standard protocols to manage IP video service
  - » Efficient "switched-video-like" bandwidth usage
    - Programs are only delivered when viewers are present.
  - » Quality-of-Service so network congestion doesn't impact video quality

# **Channel Bonding**

- Feature Description
  - » Simultaneous data transmissions on multiple channels
    - Current requirement is for the support of at least 4 upstream & 4 downstream channels (can support more)
    - Channels don't have to be adjacent
  - » DOCSIS 1.0, 1.1 and 2.0 CMs supported on each channel
- Why was this incorporated?
  - » MSOs expressed a desire to achieve higher data rates
- Benefits
  - » Scalable deployment
    - MSO can choose to bond any number of channels (2,3,4,etc.) to provide adequate bandwidth to their customers
  - » Enables business and backhaul services
  - » Subscriber gain of ~10%-25% more customers per channel due to greater statistical multiplexing

# Channel Bonding (cont.)

- Benefits (cont.)
  - » Higher Data Rates
    - Downstream Capacity with 6MHz & 256QAM
      - Four channels, 160 Mbps
      - Three channels, 120 Mbps
      - Two channels, 80 Mbps
    - Upstream Capacity with 6.4MHz & 64QAM
      - Four channels, 120 Mbps
      - Three channels, 90 Mbps
      - Two channels, 60 Mbps
  - » Increased Robustness
    - CMs can survive loss of all but one channel
    - Flexibility to avoid upstream ingressors
      - Multiple smaller channels can be bonded
- Requirements and restrictions for deployment
  - » Must have available spectrum

# Source Specific Multicast-SSM

- Feature Description
  - » Delivery of multimedia (audio/video) services from one source to multiple subscribers' CPEs (IPv4 & IPv6) based on customer request
- Why was this incorporated?
  - » Previous versions did not support MSO directed multicast (any member of the multicast group could transmit)
- Benefits
  - » Enables operators to offer broadcast-like services over DOCSIS based on subscriber demand (e.g. IPTV service)
  - » Enables bandwidth efficient on-demand multimedia services as compared with unicast
  - » Facilitates offering of interactive video/audio and data services
- Requirements and restrictions for deployment
  - » Requires DOCSIS 3.0 CMTS & 1.1 or greater CM

# **QoS Support for Multicast**

- Feature Description
  - » Provides guaranteed bandwidth for multicast sessions
  - Provides the ability to cap the bandwidth taken up by unsupported multicast traffic
- Why was this incorporated?
  - » Required to offer entertainment quality video services over DOCSIS
- Benefits
  - » Enables differentiation of QoS-enabled multicast services
  - » Enables service level guarantees to be offered to the end customer
  - » Enables offering of QoS-enabled packages to third parties
- Requirements and restrictions for deployment
  - » Requires 3.0 CMTS & 1.1 or greater CM
  - » Cable operator needs to configure QoS parameters for various multicast sessions

### IPv6 Provisioning & Management of CMs

- Feature Description
  - » 3.0 CMs can be provisioned with an IPv6 address
- Why was it incorporated?
  - » Some MSOs are running out of the private IPv4 address space needed to provision & manage CMs
- Benefits
  - » Solves the MSO's address crunch problem without creating isolated networks
- Requirements and restrictions for deployment
  - » MSO Operations Support Systems need to be upgraded to support IPv6
  - » CMTS must be upgraded to support IPv6 based CM provisioning

### Alternative Provisioning Mode & Dual-stack Management Modes for CMs

- Feature Description When enabled by MSOs, allows for:
  - » CMs to failover to IPv4 provisioning when IPv6 provisioning fails & viceversa
  - » MSOs to manage CMs via IPv4 & IPv6 addresses concurrently
- Why was it incorporated?
  - » Enables phased migration strategy
  - » Provides an optional fall-back mode when migrating to IPv6 from IPv4
- Benefits
  - Allows MSOs to begin using IPv6 for provisioning and management without doing a hard cut-over.
  - » Will allow MSOs to communicate with CMs when there are IPv4 or IPv6 specific network outages
- Requirements and restrictions for deployment
  - » CM consumes both an IPv4 and an IPv6 address. (Does not benefit MSOs who are running out of IPv4 address space.)

# **IPv6 Connectivity for CPEs**

- Feature Description
  - » CMTS enables IPv6 address configuration and connectivity to the customer devices
- Why was it incorporated?
  - Other CableLabs specified devices need to be capable of being provisioned and managed via IPv6 due to IPv4 address space constraints
  - » In the future customer devices will look for IPv6 addressing by default
- Benefits
  - Allows MSOs to rollout new IP based services that would not be possible because of the lack of IPv4 address space
- Requirements and restrictions for deployment
  - » MSO CMTS and management systems need to be upgraded to support IPv6
  - » CableLabs specs need to be updated with IPv6 capabilities and devices need to be procured against these specs.

# **DOCSIS 3.0 Major Benefits Summary**

- Higher shared channel capacity, more raw bandwidth
- Higher peak capacity to an individual cable modem
- More efficient usage of the capacity through statistical multiplexing gains
- Support for IPTV services
- Virtually unlimited addressing for IP devices
- Support for device mobility through IPv6
- Simplified device provisioning through IPv6 autoconfiguration

# Roadmap

- Current deployments of "pre-3.0" gear
  - » US: Comcast (50Mbps)
  - » Canada: Videotron (50Mbps)
  - » Singapore: StarHub (100Mbps)
  - » Korea: Hanaro, CJ Cablenet, C&M (100Mbps)
  - » France: Numericable (100Mbps)
  - » Japan: J:Com (160Mbps)
- Deployment "plans"
  - » US: Comcast (20% of footprint in '08)
  - » US: Charter, Mediacom (begin testing in '08)
- Available "Certified" Equipment
  - » CMTS (ARRIS, Casa, Cisco, Motorola)
  - » CableModems (Ambit, ARRIS, Cisco, Motorola and SMC)

