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Exploiting the Phantom-Mode Signal
in DSL Applications

Wim Foubert, Carine Neus, Leo Van Biesen, and Yves Rolain

Abstract—In order to meet the ever-increasing bandwidth de-
mand of the users, new “digital subscriber line” (DSL) technolo-
gies are being developed. In addition to the traditional differential
mode of the telephone line, telecom operators are now looking in
to the exploitation of the phantom-mode signal. New transmission
line models, using the multiconductor transmission lines theory,
were developed to support this extended use. In this paper, it is
shown that the phantom mode is an eigenmode of the quad cable
system, and hence, according to the theory, there is no crosstalk
between this mode and the differential mode.

Index Terms—Digital subscriber line (DSL) technologies, multi-
conductor transmission line, phantom mode, quad.

I. INTRODUCTION

A. DSL Technology

D IGITAL subscriber line (DSL) technology enables high-
speed digital transmission over the copper-twisted pairs

of the existing telephone network [1]. The twisted-wire-pair
infrastructure was originally designed to provide a reliable plain
old telephone service only [2]. This means that the lines were
constructed to carry a single voice signal with frequencies
varying from 300 Hz up to 3.4 kHz (voiceband). All DSL
technologies make use of much higher frequencies, of course,
at the cost of a reduced range.

B. State of the Art

The increasing users’ demand for high-bandwidth appli-
cations encourages the development and the deployment of
new broadband access technologies. The overview of the de-
ployment volumes (the number of new installations or up-
grades) of the successive access techniques over time given by
Ödling et al. [3] clearly shows that, because of the high costs in-
volved in deploying fiber, optical fibers will only enter customer
premises very gradually in the coming years. As a consequence,
copper has still an important role to play. Nowadays, one is
looking into new methods to further increase the bitrate on
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copper. In general, there are three different possible ways to
achieve this goal. All the state-of-the-art DSL technologies use
one of those methods.

A first alternative extends the concept of a two-wired line.
It uses vector signals to transmit a single circuit. An increased
throughput is obtained by coordinating the transmission at the
source side and the reception at the receiver side. The binder
that connects the central office and the last distribution point
contains hundreds of twisted pairs. The vectored source can
reduce and/or exploit crosstalk, particularly near-end crosstalk
(NEXT) [4], to increase cable-level throughput. This results in
vectoring, where only the transmitters are colocated.

In multiple-input–multiple-output (MIMO) DSL, both the
transmitters and the receivers are vectored or colocated. This
buys additional degrees of freedom and enables to ideally
eliminate both the far-end crosstalk (FEXT) and the NEXT. The
MIMO channel response function has already been modeled by
Jakovljevic et al. [5] and Lee et al. [6] and increases the cable-
level throughput further.

Another way to increase the bitrate is by breaking the con-
ventional pairs into two wires to get more circuits when each
wire is used with respect to ground to convey a signal. This is
possible as some DSL binders consist of one or more layers of
metallic sheath enclosing the wire pairs. The grounded shield
can then be treated as a third conductor. It will be used as the
return path for the common-mode signal [7], [8].

Instead of using the shield, one wire in one of the pairs can
also be taken as a reference wire. This idea relies on a lumped
model for the cable, as unbundling results in a very different
characteristic impedance for the different transmission lines. In
[9], Cioffi et al. studied this use of “split pairs,” also called
“single-wire excitation.” For the cable of the last mile entering
the user premises, a quad (two-pair cable) is often used. In a
quad, there are three circuits in a split-pair setup (between the
three remaining wires of the quad and the reference) instead of
two. However, in a real installed network, each pair is loaded
by a balun which hampers the implementation of this split.

In the rest of this paper, we will focus on a third possible
alternative that will be applied on the last segment of the access
network. The idea is to combine the advantages of the previous
approaches (“vectoring” and “breaking the circuit”) to maxi-
mize the practical usability of the method without the need for
rewiring. It results in an approach that is dual to the unbundling
in the sense that it relies on a distributed model of the cable.
To this end, we will continue to use differential signaling only,
to avoid the pitfalls of an uncertain return path. We will use
the eigenmodes of the cable system as orthogonal-independent
circuits instead, since we know that, theoretically speaking,
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those modes do not influence each other. Consequently, if it
should be possible to exploit all the eigenmodes, the achievable
bitrate should increase. We will see that, in this way, three
independent differential signaling paths can also be obtained
for a quad cable.

C. Phantom-Mode Signals

As the access network from the last departure point to the
home often contains two pairs that are wired as a quad, this
topology is a very important one. The current state-of-the-art
DSL systems use only one differential-mode signal that travels
on one single telephone pair. In the near future, it is expected
that the four wires will be exploited together.

In this paper, three differential and mutually orthogonal sig-
nal paths are shown to be present in this configuration. The port
condition is respected, and a full differential setup that matches
the one used in the current infrastructure is used. In addition
to the standard differential-mode signal on each pair, an extra
“phantom mode” pairwise differential signal in between the
pairs is used [10]. This signal is transported independently
of the two other pair signals as it corresponds to the voltage
difference between the arithmetic mean of the voltages on the
two conductors of each pair. In this way, the “phantom-mode”
signal is also a differential-mode signal, but it uses all four wires
simultaneously to carry the signal. It is, therefore, pretty much
a cable-based implementation of the vectoring approach. As
already mentioned earlier, this paper looks for the propagation
eigenmodes of the quad since they are, theoretically speaking,
immune to crosstalk. In order to determine these eigenmodes,
we need an accurate physical quad model.

In Section II, the quad cable model is derived based on
the multiconductor transmission line theory. In Section III,
the eigenmodes of the four-wire system are determined. In
Section IV, we will investigate if our orthogonality assumption
holds: The cable will be excited in one mode, and it will be
investigated how the other modes are influenced. Finally, the
most important conclusions are summarized in Section V.

II. MODELING A QUAD CABLE

A. Multiconductor Transmission Line Theory

To model a multiconductor cable, several possibilities exist.
The most straightforward way is to derive a model based on
measurements [11]. However, in this paper, a quad line will
be modeled using the multiconductor transmission line theory
[12]. The multiconductor transmission line theory relies on the
basic assumption of a uniform line of infinite length. Consider
now an infinitesimal longitudinal section of such a line. Fig. 1
shows the schematic diagram that models a single pair of the
homogeneous line. This can easily be expanded to the four-
wire case, but the graphical representation becomes complex as
R, L, G, and C become 4 × 4 real per-unit matrices called,
respectively, the resistance matrix R, the inductance matrix
L, the conductance matrix G, and the capacitance matrix C.
A good characterization of these matrices is indispensable to
obtain reliable physical models of the cable behavior.

Fig. 1. Infinitesimal section of length Δl of a two-wire transmission line;
extension to a quad is straightforward but crowded.

B. Determination of the Per-Unit Matrices

These matrices are obtained for the given geometry. The full
electromagnetic problem is decoupled into a transversal and
a longitudinal subproblem. Since the diameter of the quad is
much smaller than the wavelength of the transported signals,
a quasi-static field approximation can safely be used in the
transversal plane. This allows one to determine the impedance
matrix and the admittance matrix, yielding the characteristic
impedance and the propagation constant. The resistance matrix
R and the inductance matrix L of the model are determined via
a Newtonian potential formulation [10]. The series impedance
model has been validated in previous work with reflection
measurements [13]. A numerical approximation technique is
used to characterize the capacitance matrix C. The last param-
eter that we must determine in the transversal plane is the
conductance matrix G. This only depends on the properties of
the dielectric. In practice, polyethylene is used as an isolator.
Fortunately, the relative permittivity of polyethylene can be
assumed to be independent of the frequency in the considered
frequency band (0.1–25 MHz), and almost no dielectric losses
occur. As a consequence, G can safely be assumed to be a
constant matrix over the usable frequency band.

C. Relation Between Input and Output Voltages and Currents

Once the RLGC per-unit matrices of the quad cable have
been calculated, we are able to model the behavior of the line
using the transmission line equations given hereinafter as a
function of the frequency in harmonic regime [12]{

−dV
dz = (R + jωL)I = ZI

−dI
dz = (G + jωC)V = Y V

(1)

where Z = R + jωL is the impedance matrix per unit length
∈ C

4×4 and Y = G + jωC is the admittance matrix per unit
length ∈ C

4×4. I and V are, respectively, the current and the
voltage vector ∈ C

4×1 at z = z0. Combining both equations
in (1), we find a second-order differential system of equations,
with respect to the longitudinal coordinate z

d2I(z)
dz2

= Y ZI(z). (2)

This equation is an eigenequation. The eigenvalues of the
matrix Y Z are to be determined. In general, as long as Y Z
is of full rank, it is always possible to find a nonsingular
transformation matrix T , which diagonalizes the product of the
per-unit length admittance and impedance matrices Y Z [12]

T−1Y ZT = γ2. (3)
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Here, γ2 is a diagonal C
4×4 matrix with scalar complex values

γ2
i on the diagonal. These γ2

i are the eigenvalues of the matrix
Y Z. The columns of the orthonormal matrix T are the eigen-
vectors of the matrix.

Consider now a line segment of finite length L. The voltages
and the currents at the two ends of the line can be related by the
chain parameter matrix φ(L) [12][

V (L)
I(L)

]
=

[
φ11(L) φ12(L)
φ21(L) φ22(L)

] [
V (0)
I(0)

]
. (4)

The submatrices are obtained by the following relations that
depend on the eigendecomposition [12]:⎧⎪⎪⎨

⎪⎪⎩
φ11 = 1

2Y −1T (eγl + e−γl)T−1Y
φ12 = − 1

2Y −1Tγ(eγl − e−γl)T−1

φ21 = − 1
2T (eγl − e−γl)γ−1T−1Y

φ22 = 1
2T (eγl + e−γl)T−1.

(5)

With those equations, one is able to calculate the port current
flowing in and the voltage difference across each port at both
ends of the line. One can also turn the problem inside out and
determine the pattern of currents and voltages that define an
eigenmode of the transmission line.

III. EIGENMODES

According to the multiconductor transmission line theory,
for each type of cable, specific propagation eigenmodes exist
[12]. These correspond to specific distributions of voltages and
currents that propagate with their own phase velocity and lineic
attenuation but are independent from each other. Now, the prop-
erties of the eigenmodes of the quad cable will be investigated.
Therefore, the eigenvalues and the corresponding eigenvectors
of the quad are calculated using (3). The considered quad
consists of four conductors that are placed in a square formation
where each conductor has the same radius (0.425 mm) and the
distance between the centers of two neighboring conductors is
4.2 mm. There is no ground connection between both ends of
the line in this setup. The square root γi of the eigenvalues γ2

i

is plotted in Fig. 2 as a function of the frequency. γi represents
the propagation constant of the ith eigenmode of the line. It can
be split in a real and an imaginary part

γi(f) = αi(f) + jβi(f). (6)

The real part αi(f) represents the frequency-dependent atten-
uation constant. Hence, it models the attenuation of a quasi-
TEM wave propagating through the medium. The imaginary
part βi(f) is called the phase constant and determines the phase
velocity of the considered eigenwave. Both the real and the
imaginary parts are shown in Fig. 2 for all the eigenvalues. We
see that the first propagation constant γ1 is zero and corresponds
to a mode that does not propagate over the line. The third (γ3)
and fourth (γ4) eigenvalues are exactly equal. This implies that
a double eigenvalue is present and results in an eigenplane
rather than an eigenvector, which is associated to the double
eigenvalue. The second propagation factor γ2 has the same
phase constant as γ3 and γ4, but its attenuation constant is
different.

Fig. 2. (a) Real and (b) imaginary parts of the propagation constant of the
eigenmodes versus frequency.

First, we take a look at the eigenvectors associated to the
eigenvalues and their evolution as a function of the frequency.
In this way, we learn more about the structure of the eigen-
modes. This will enable us to get insight in the differences
and the similarities between the modes and their relation to the
eigenvalues. Each eigenvector consists of four complex num-
bers that are shown in Figs. 3–5. The x-coordinate gives the real
part, whereas the y-coordinate corresponds to the imaginary
part of the number. The numbers represent the direction and the
magnitude of the currents in the four conductors of the quad.
The direction of the currents for the different modes is shown
in Fig. 6. A cross indicates that the current flows into the cross
section. A bullet denotes that the current flows out the cross
section.

The eigenvector belonging to the first eigenvalue consists of
four times the same current value (see Fig. 3). As a conse-
quence, the currents in the four wires are equal in magnitude
and flow in the same direction. There is no return path other
than the conductor at ∞ as can be seen in Fig. 6. This ex-
plains why the first propagation constant is zero: This mode
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Fig. 3. Eigenmode 1.

Fig. 4. Eigenmode 2.

is physically unrealizable without the presence of the reference
conductor at ∞.

Consider now the second eigenvector (Fig. 4). The magni-
tude of the currents in all the conductors is again the same.
However, now, the current in the second and the fourth wire
flows in the opposite sense as the current in the first and the third
conductor. One can think of the second and the fourth conductor
as the return path for the current. The port condition on the
current is therefore met by this mode, and propagation occurs.
This mode corresponds to the phantom mode of propagation
(see Fig. 6). This means that the phantom mode is indeed an
eigenmode of the system.

The eigenvectors belonging to the third and the fourth eigen-
value are similar but look a lot more messy over the frequency
(Fig. 5). In both cases, two pairs of currents can be distin-
guished. The first and third elements of the eigenvector have
an opposite sign and equal magnitude. Consequently, the first
and third wires present a separate forward and return path for a
current and act as a separate circuit. They account for the first
pair. The second and fourth elements of both eigenvectors also
have opposite sign and equal magnitude, but the magnitudes of
the two pairs are different. Conductors 2 and 4 constitute the
second pair. The amplitude of the currents in the two pairs is

Fig. 5. (a) Eigenmode 3. (b) Eigenmode 4.

different. The corresponding figures for the last two cases in
Fig. 6 show only the direction of the currents. As mentioned
before, the amplitude of the current is the same in the wires
constituting a pair but is different from pair to pair. The last two
eigenmodes, therefore, also require a current to flow in the four
wires, and hence, the pairwise propagation that is commonly
used seems not to be an eigenmode of the cable.

One has to be careful, however, that, as the eigenvalues
associated with the last two modes are exactly equal, this
eigenvalue has a multiplicity of two. Since the eigenvectors
are linearly independent by construction, one must take the
following theorem into consideration:

Theorem 1: If �x, �y, �z, . . . are linearly independent eigenvec-
tors of an operator A corresponding to the same eigenvalue and
α, β, ζ, . . . are arbitrary numbers belonging to the same field as
the elements of the matrix A, then the vector α�x + β�y + ζ�z +
. . . is also an eigenvector corresponding to the same eigenvalue.

For the proof, see [14]. In other words, the linearly inde-
pendent eigenvectors (also called characteristic vectors) form
a basis of a “characteristic” subspace. Each vector in this sub-
space is again an eigenvector associated to the same eigenvalue.
As a consequence, each linear combination of the third and the
fourth eigenvector is also an eigenvector of the last eigenvalue.
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Fig. 6. Current distribution for the different eigenmodes. (a) Eigenmode 1.
(b) Eigenmode 2. (c) Eigenmode 3. (d) Eigenmode 4.

It can be shown that the two differential pair modes form a basis
of the characteristic subspace too, by applying a well-chosen
linear combination{

DM1 = T (:, 3) − T (1,3)
T (1,4)T (:, 4)

DM2 = T (:, 3) − T (2,3)
T (2,4)T (:, 4).

(7)

In those equations, T (:, 3) and T (:, 4) are, respectively, the
third and the fourth column of matrix T that diagonalizes the
original matrix [as found in (3)], and they represent the third
and the fourth eigenvector. T (1, 3) and T (2, 3) are the first and
the second value of the third eigenvector. Similarly, T (1, 4)
and T (2, 4) are the first and the second element of the fourth
eigenvector. In the first differential mode (DM1), neither the
first nor the third wire carries current. Only conductors 2 and 4
are used. In the second differential mode (DM2), the current
flows in the other pair. This means that, in addition to the
phantom mode, also the two differential modes are shown to
be eigenmodes of the system.

As the differential mode uses only two conductors, whereas
the phantom mode exploits the four wires, a difference in at-
tenuation constant between the differential and phantom modes
is to be expected. In phantom mode, the wave attenuation
coefficient is approximately 30% higher than in differential
mode as can be noticed from the attenuation function in Fig. 2.
The phase function shows that the velocity of the waves is the
same in phantom mode as in both differential modes. This is an
important point, as this means that no difference in propagation
delay will exist between the eigenmodes.

IV. CROSSTALK

In this section, the main goal is to determine whether the the-
oretically expected absence of crosstalk between the different
modes is indeed supported by simulations. To verify this, the
system will be carefully excited in one mode at the input, and
the currents in the conductors at the output will be investigated.

Fig. 7. Currents at the (a) near and (b) far ends of the cable for each wire when
the quad is excited in phantom mode. (a) Input. (b) Output.

In the first experiment, the quad is excited in phantom mode.
The amplitude of the currents is the same in the four wires, but
the currents in conductors 2 and 4 flow in the opposite sense
as the currents in wires one and three. Those currents are plotted
in the first picture (a) in Fig. 7. Simulations are repeated for
20 frequencies spread over a band from 100 kHz to 25 MHz.

Next, the currents at the end of each line are calculated
frequency by frequency using the chain parameter matrix (4).
In the second plot (b) in Fig. 7, the currents at the end of the
line are shown.

They are exactly equal for the first and the third conductor
and have opposite sign for the second and the fourth one. At the
far end, the four wires still carry a current of equal amplitude,
but the current flows in the opposite sense in wires 2,4 and 1,3.
Again, we obtain a pure phantom mode. Hence, if we excite the
system in phantom mode, then the response of the line consists
of a phantom mode alone as expected.

In the next experiment, the quad will be used in differential
mode. We will investigate if this will induce a crosstalk signal
on the nonexcited lines. When the first differential mode (only
current in wire two and wire four) is excited at the near-end
input (see Fig. 8), there is indeed no current flowing at the
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Fig. 8. Currents at the (a) near and far (b) ends of the cable for each wire when
the quad is excited in differential mode. (a) Input. (b) Output.

far-end output of the second pair that consists of wire one
and wire three. Neither the second differential mode nor the
phantom mode is influenced by the excitation. The same result
holds when the other differential mode (using wire one and wire
three) is applied on the quad. Hence, if the system is excited in
a strict single-mode setting, only the same mode is found at the
output. No crosstalk appears on the other modes. This means
that exploitation of the phantom mode will indeed lead to higher
bandwidth capacity, since an extra signal path is defined that is
independent of the classical differential-mode signal paths.

V. EXPERIMENTAL VERIFICATION

Now, the previous results will be verified with measurements
on a twisted Belgacom quad line that has a length of 200 m.
The radius of each conductor is 0.25 mm, and the distance
between the centers of two neighboring conductors is 0.9 mm.
The schematic of the measurement setup, used to excite the
system in phantom mode, is shown in Fig. 9.

Both at the near end and at the far end of the line, three
baluns are used to guarantee the port operation. The upper
baluns connect conductors 1 and 3. The lower baluns make the

Fig. 9. Setup used to measure the transfer function and the crosstalk when the
quad line is operating in phantom mode.

Fig. 10. Transfer function and crosstalk functions when the quad is operating
in phantom mode.

connection between conductors 2 and 4. The center taps of the
outer baluns are connected via a center balun. All baluns are
terminated in a 50-Ω resistance, except the center balun at the
input side of the line where a 50-Ω source is used such that the
quad is operating in phantom mode.

The measurements are executed at the external side of the
baluns. In this way, the baluns are taken as an integral part of
the transmission line. Since an isolation transformer is always
present on a line card in the DSLAM, this is representative
for the real-world situation. To determine the phantom-mode
transfer function, the voltage is measured at the external side
of the center balun at the far end. For the determination of
the crosstalk between the phantom mode and the two single-
pair differential modes, the voltage at the two outer baluns
is measured. The transfer function and the FEXT functions
are shown in Fig. 10. Care should be taken because those
measurements are not calibrated yet. However, this is not so
important since one is only interested in the difference in
magnitude between the transfer function and the crosstalk and
not really in the magnitude of each function individually. The
difference should be as big as possible since this will determine
the available capacity.
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As expected, the transfer function is decreasing with increas-
ing frequency. Because the measurements are not calibrated,
the transfer function is larger than 0 dB at low frequencies. The
difference in magnitude between the transfer function and the
crosstalk functions is decreasing from 45 dB at 1 MHz to 23 dB
at 12 MHz. This proves that the crosstalk is small but not really
negligible.

Similar experiments were executed for a quad operating in
a single-pair differential mode. The same conclusion can be
derived.

VI. CONCLUSION

In new DSL technologies, the phantom-mode signal, defined
between two pairs, will also be exploited in addition to the
conventional differential-mode signal on one pair. In this way,
three signal paths can be defined for a quad. In this paper,
it has been shown that both the two differential-mode signals
and the phantom-mode signal are eigenmodes of the system.
Simulations also show that those three modes do not influence
each other. The measurements confirm that the crosstalk is
indeed very small between the different modes. However, it is
not negligible. Since the crosstalk is very small, this new tech-
nology will strongly increase the achievable capacity and con-
sequently support higher bandwidth applications. This increase
will be even much stronger when combining this technique with
vectoring.

REFERENCES

[1] T. Star, J. Cioffi, and P. Silverman, Understanding Digital Subscriber Line
Technology. Upper Saddle River, NJ: Prentice-Hall, 1999.

[2] T. Star, M. Sorbara, J. Cioffi, and P. Silverman, DSL Advances. Upper
Saddle River, NJ: Prentice-Hall, 2003.

[3] P. Ödling, M. Magesacher, S. Höst, P. Börjesson, M. Berg, and
E. Areizaga, “The fourth generation broadband concept,” IEEE Commun.
Mag., vol. 47, no. 1, pp. 62–69, Jan. 2009.

[4] G. Ginis and M. Cioffi, “Vectored transmission for digital subscriber line
systems,” IEEE J. Sel. Areas Commun., vol. 20, no. 5, pp. 1085–1104,
Jun. 2002.

[5] M. Jakovljevic, T. Magesacher, P. Ödling, P. O. Börjesson, M. Sanchez,
and S. Zazo, “Throughput of shielded twisted-pair cables using wire-
shield modes in the presence of radio ingress,” in Proc. 16th Int. Conf.
Digital Signal Process., 2009, vol. 1/2, pp. 1289–1294.

[6] B. Lee, J. M. Cioffi, S. Jagannathan, K. Seong, Y. Kim, M. Mohseni, and
M. H. Brady, “Binder MIMO channels,” IEEE Trans. Commun., vol. 55,
no. 8, pp. 1617–1628, Aug. 2007.

[7] M. Jakovljevic, T. Magesacher, K. Ericson, P. Ödling, P. O. Börjesson, and
S. Zazo, “Common mode characterization and channel model verification
for shielded twisted pair (STP) cable,” in Proc. IEEE Int. Conf. Commun.,
2008, vol. 1–13, pp. 447–451.

[8] T. Magesacher, P. Ödling, P. O. Börjesson, and T. Nordström, “Exploiting
the common-mode signal in xDSL,” in Proc. EUSIPCO, Vienna, Austria,
Sep. 2004, pp. 1217–1220.

[9] J. M. Cioffi, S. Jagannathan, M. Mohseni, and G. Ginis, “CuPON: The
copper alternative to PON 100 Gb/s DSL networks,” IEEE Commun.
Mag., vol. 45, no. 6, pp. 132–139, Jun. 2007.

[10] V. Belevitch, “Theory of the proximity effect in multiwire cables,” Philips
Res. Rep., vol. 32, pp. 16–43, 1977.

[11] T. Magesacher, P. Ödling, P. O. Börjesson, and T. Nordström, “Verification
of multipair copper-cable model by measurements,” IEEE Trans. Instrum.
Meas., vol. 56, no. 5, pp. 1883–1886, Oct. 2007.

[12] C. R. Paul, Analysis of Multiconductor Transmission Lines. Hoboken,
NJ: Wiley, 1994.

[13] W. Foubert, P. Boets, L. Van Biesen, and C. Neus, “Modeling the series
impedance of a quad cable for common mode DSL applications,” IEEE
Trans. Instrum. Meas., vol. 59, no. 2, pp. 259–265, Feb. 2010.

[14] F. Gantmachter, The Theory of Matrices, vol. 1. New York: Chelsea,
1959.

Wim Foubert was born in Geraardsbergen,
Belgium, on February 14, 1983. He received the B.S.
degree in electrical engineering (option electronics
and information processing) from Vrije Universiteit
Brussel, Brussels, Belgium, in July 2006, where he
has been currently working toward the Ph.D. degree
in the Department of Fundamental Electricity and
Instrumentation since December 2006.

His main research interests are on the design of
new transmission channel models for digital sub-
scriber line technology systems.

Carine Neus was born in Anderlecht, Belgium, on
March 16, 1983. She received the B.S. degree in elec-
trical engineering and the Ph.D. degree from Vrije
Universiteit Brussel, Brussels, Belgium, in 2004 and
2011, respectively.

She is currently a Postdoctoral Researcher with
the Department of Fundamental Electricity and In-
strumentation, Vrije Universiteit Brussel. Her main
interests are in the field of telecommunications, pri-
marily digital subscriber line technologies (xDSL).
Her current work is on the modeling of the channel

transfer function and the crosstalk of xDSL lines, and the assessment on the
achievable data rates.

Leo Van Biesen was born in Elsene, Belgium, on
August 31, 1955. He received the B.S. degree in
electromechanical engineering and the Ph.D. degree
from Vrije Universiteit Brussel, Brussels, in 1978
and 1983, respectively.

He is a Full Senior Professor with Vrije Univer-
siteit Brussel. He teaches courses on fundamental
electricity, electrical measurement techniques, signal
theory, computer-controlled measurement systems,
telecommunication, underwater acoustics, and geo-
graphical information systems for sustainable devel-

opment of environments. His current interests are signal theory, modern spectral
estimators, time-domain reflectometry, wireless local loops, digital subscriber
line technologies, underwater acoustics, and expert systems for intelligent
instrumentation.

Dr. Van Biesen was the President of the International Measurement Confed-
eration (IMEKO) until September 2006. He is also a member of the board of the
European Telecommunication Engineers Federation (FITCE) Belgium and the
International Scientific Radio Union (URSI) Belgium. He was the Chairman of
IMEKO TC-7 from 1994 to 2000, a President Elect of IMEKO for the period
2000–2003, and a Liaison Officer between the IEEE and IMEKO.

Yves Rolain is currently active with the De-
partment of Fundamental Electricity and Instru-
mentation, Vrije Universiteit Brussel, Brussels,
Belgium. His main research interests are nonlinear
microwave measurement techniques, applied digital
signal processing, parameter estimation/system iden-
tification, and biological agriculture.


