Reliability and Security in the
CoDeeN Content Distribution Network

Limin Wang' KyoungSoo Park, Ruoming Pang, Vivek Pai and Larry Peterson
Department of Computer Science
Princeton University

Abstract space. The remaining portion, latency-sensitive decen-

tralized systems, remains more elusive, without an easily-
With the advent of large-scale, wide-area networkindentifiable representative. In this paper, we describe
testbeds, researchers can deploy long-running distdbu@oDeeN, an academic Content Distribution Network de-
services that interact with other resources on the Wgloyed on PlanetLab, that uses a decentralized design to
The CoDeeN Content Distribution Network, deployed aaddress a latency-sensitive problem.

PlanetLab, uses a network of caching Web proxy serversyg reduce access latency, content distribution networks
to intelligently distribute and cache requests from a pgse geographically distributed server surrogates, which
tentially large client population. We have been runningiche content from the origin servers, and request redi-
this system nearly continuously since June 2003, alloyéctors, which send client requests to the surrogates.
ing open access from any clu_ent in the world. In_that timgommercial CDNs [2, 23] replicate pages from content
it has become the most heavily-used long-running servigviders and direct clients to the surrogates via custom
on PlanetLab, handling over four million accesses per d@iS servers often coupled with URL rewriting by the
In this paper, we discuss the design of our system, focggntent providers. The infrastructure for these systems is
ing on the reliability and security mechanisms that haygually reverse-mode proxy caches with custom logic that
kept the service in operation. interprets rewritten URLs. This approach is transparent to
Our reliability mechanisms assess node health, prevaqt end user, since content providers make the necessary
ing failing nodes from disrupting the operation of thghanges to utilize the reverse proxies.
overall system. Our security mechanisms protect nodegy,; academic testbed CDN. CoDeeN. also uses
from being exploited and from being implicated in Mgs,ching proxy servers, but due to its non-commercial na-
licious activities, problems that commonly plague othgfre engages clients instead of content providers. Glient
open proxies. We believe that future services, especigllyis currently specify a CoDeeN proxy in their browser
peer-to-peer systems, will require similar mechanisms g+ings, which makes the system demand-driven, and al-
more services are deployed on non-dedicated distribujgds s to capture more information on client access be-
systems, and as their interaction with existing protocq{s,ior Given the high degree of infrastructural overlap,
and systems increases. Our experiences with CoDeeN gfiflftyre work may include support for non-commercial
our data on its availability should serve as an importatfntent providers, or even allowing PlanetLab members
starting point for designers of future systems. to automatically send their HTTP traffic to CoDeeN by
. using transparent proxying.
1 Introduction As shown in Figure 1, a CoDeeN instance consists of a

The recent development of Internet-scale netwoPkOXy operating in both forward and reverse modes, as
testbeds, such as PlanetLab, enables researchers tovgd-as the redirection logic and monitoring infrastruc-
velop and deploy large-scale, wide-area network projeé#ge. When a client sends requests to a CoDeeN proxy,
subjected to real traffic conditions. Previously, sudfe node acts as a forward proxy and tries to satisfy the
systems have either been commercial enterprises (ggduests locally. Cache misses are handled by the redirec-
content distribution networks, or CDNs), or have bedfr to determine where the request should be sent, which
community-focused distributed projects (e.g., free filés generally another CoDeeN node acting as the reverse
sharing networks). If we define a design space of IBLOxy for the origin server. For most requests, the redirec-
tency versus throughput and tightly-controlled versus d@r considers request locality, system load, reliabiétyd
centralized management, we can see that existing CON8ximity when selecting another CoDeeN node. The re-

and file-sharing services occupy three portions of thability and security mechanisms can exclude nodes from
being candidates, and can also reject requests entirely for

*current contact: Dept of EECS, Case Western Reserve Uitivers various reasons described later.

Content Provider Content Providey plaints. Node failure and overload are automatically de-
(origin server) (origin server)

— tected and the monitoring routines provide useful infor-
\ R mation regarding both CoDeeN and PlanetLab. We be-
CoDeeN Node CoDeeN Node lieve our techniques have broader application, ranging
Reverse Proxy _ Reverse Proxy from peer-to-peer systems to general-purpose monitoring
/ \;>’\/\: -\\ services. Obvious beneficiaries include people deploying
_ s \ open proxies for some form of public good, such as shar-
gg%&%’“gp‘g)f‘ye gngzs\/%Np';‘c?fye gg?:SV%NP’;lc?fye ing/tolerating load spikes, avoiding censorship, or pro-
viding community caching. Since ISPs generally employ
transparent proxies, our techniques would allow them to

.ildentify customers abusing other systems before receiv-

Figure 1: CoDeeN architecture — Clients configure thei laints f he victi bell h di
browsers to use a CoDeeN node, which acts as a forward-my3a comp aints from the victims. We believe that any dis-

proxy. Cache misses are deterministically hashed andeadit fibuted system, especially those that are latency-seesit
to another CoDeeN proxy, which acts as a reverse-mode prd®y,that run on non-dedicated environments, can benefit
concentrating requests for a particular URL. In this wawee from our infrastructure for monitoring and avoidance.
requests are forwarded to the origin site. The rest of the paper is organized as follows. In Sec-
tion 2, we discuss system reliability and CoDeeN'’s moni-
toring facilities. We discuss the security problems facing
DeeN in Section 3, followed by our remedies in Sec-

4. We then show some preliminary findings based on
data we collected and discuss the related work.

Although some previous research has simulat
caching in decentralized/peer-to-peer systems [13, 263
we believe that CoDeeN is the first deployed system,
one key insight in this endeavor has been the observation

that practical reliability is more difficult to capture tharp Reliability and Monitoring
traditional fail-stop models assume. In our experience,

running CoDeeN on a small number of PlanetLab nodt&like commercial CDNs, CoDeeN does not operate on
was simple, but overall system reliability degraded Si&_edmated ”Oqes with reliable resources, nor does it em-
nificantly as nodes were added. CoDeeN now runs Bi?y a centra”ze_d Network Qperatloris Center (NOC) to
over 100 nodes, and we have found that the status of thEQlect and distribute status information. CoDeeN runs
proxy nodes are much more dynamic and unpredictaBIré all academic PlanetLab sites in North America, and,

than we had originally expected. Even accounting for tR§ @ result, shares resources with other experintents.
expected problems, such as network disconnections h sharing can lead to resource exhaustion (disk space,

bandwidth contention, did not improve the situation. i@loPal file table entries, physical memory) as well as con-

many cases, we found CoDeeN unsuccessfully Comptgption (network bandwidth, CPU cycles). In such cases,

ing with other PlanetLab projects for system resourcés COP€eN instance may be unable to service requests,

leading to undesirable behavior which would normally lead to overall service degrada-

The other challenging aspect of CoDeeN's design frotrlﬂn or failure. Therefore, to maintain reliable and smooth
a management standpoint, is the decision to allow gperations on QoDeeN, each instance monitors system
nodes to act as “open” proxies, accepting requests frhiegith and provides this data to its local request redirecto
any client in the world instead of just those at organiza-ln_ a Iatency-sen_smve environment such as CoDeeN,
tions hosting PlanetLab nodes. This decision makes f@iding problematic nodes, evenif they (eventually) pro-
system more useful and increases the amount of traﬂiéce a correct result, is prefergble to incurring reil@b-lh
we receive, but the possibility of abuse also increases tHuced delays. Even a seemingly harmless activity such
chances that CoDeeN becomes unavailable due to ndded TCP S,YN retransmlt' mcreases_gser-percewed la-
being disconnected. However, we overestimated how Ioi?@cy' reducing the system's °Yera” Ut'l'tY' For CoDeeN
it would take for others to discover our system and unddf- oPerate smoothly, our distributed redirectors need to
estimated the scope of activities for which people sefRntinually know the state of other proxies and decide
open proxies. Within days of CoDeeN becoming stapfghich reverse proxies should be used for request redirec-
enough to stay continuously running, the PlanetLab 6H)on In practice, what this entails i_s first findirig a.healthy
ministrators began receiving complaints regarding Spaﬁq’bset of the proxies and then letting the redirection-strat
theft of service, abetting identity theft, etc egy decide which one is the best. As a result, CoDeeN in-

After fixing the discovered security-related problem§IUdes significant node health monitoring facilities, much
CoDeeN has been running nearly continuously sin@eWhich is not specific to CoDeeN and can be used in
June 2003. In that time, it has received over 300 mfpiher latency-sensitive peer-to-peer environments.
lion requests from over 5_001000 Uni_que IP addresses (aSresource protection in future PlanetLab kernels will naitigsome
of December 2003), while generating only three comroblems, but this feature may not exist on non-PlanetLatesys.

Two alternatives to active monitoring and avoidance, The local monitor examines the service’s primary re-
using retry/failover or multiple simultaneous requests, asources, such as free file descriptors/sockets, CPU cycles,
not appropriate for this environment. Retrying failed rexnd DNS resolver service. Non-critical information in-
guests requires that failure has already occurred, whidhdes system load averages, node and proxy uptimes,
implies latency before the retry. We have observed faitaffic rates (classified by origin and request type), and
ures where the outbound connection from the reveifsee disk space. Some failure modes were determined by
proxy makes no progress. In this situation, the forwaexperience — when other experiments consumed all avail-
proxy has no information on whether the request has bede sockets, not only could the local node not tell that
sent to the origin server. The problem in this scenarioashers were unable to contact it, but incoming requests ap-
the same reason why multiple simultaneous requests peared to be indefinitely queued inside the kernel, rather
not used — the idempotency of an HTTP request can iloan reporting failure to the requester.
be determined priori. Some requests, such as queriesValues available from the operating system/utilities
with a question mark in the URL, are generally assumeéttlude node uptime, system load averages (both via
to be non-idempotent and uncacheable. However, the Cproc”), and system CPU usage (via “vmstat”). Uptime is
mechanism also allows the query portion of the requestread at startup and updated inside CoDeeN, while load av-
be concatenated to the URL as any other URL comparages are read every 30 seconds. Processor time spentin-
nent. For example, the URL “/directory/program/quengide the OS is queried every 30 seconds, and the 3-minute
may also be represented as “/directory/program?quenyiaximum is kept. Using the maximum over 3 minutes re-
As a result, sending multiple parallel requests and waitidgces fluctuations, and, at 100 nodes, exceeds the gap be-
for the fastest answer can cause errors. tween successive heartbeats (described below) from any

The success of distributed monitoring and its effectivether node. We avoid any node reporting more than 95%
ness in avoiding problems depends on the relative diffsystem CPU time, since we have found it correlates with
ence in time between service failures and monitoring frieernel/scheduler problems. While some applications do
guency. Our measurements indicate that most failuressipend much time in the OS, few spend more than 90%,
CoDeeN are much longer than the monitoring frequeneyyd 95% generally seems failure-induced.
and that short failures, while numerous, can be avoided byOther values, such as free descriptors and DNS resolver
maintaining a recent history of peer nodes. The reseapgrformance, are obtained via simple tests. We create and
challenge here is to devise effective distributed monitatestroy 50 unconnected sockets every 2 seconds to test
ing facilities that help to avoid service disruption and inthe availability of space in the global file table. At our
prove system response latency. Our design uses heartbeaent traffic levels, 50 sockets are generally sufficient t
messages combined with other tests to estimate whi@ndle two seconds of service on a single node. Any fail-
other nodes are healthy and therefore worth using. ures over the past 32 attempts are reported, which causes
2.1 Local Monitoring peers to throttle traffic for roughly one minute to any

o . . node likely to fail. Similarly, a separate program period-
Local monitoring gathers information about the CoDeeaya"y calls get host byname() to exercise the node’s

instance’s state and its host environment, to assesSHRIS resolver. To measure comparable values across
source contention as well as external service availabili%des’ and to reduce off-site lookup traffic, only other
Resource contention arises from .competition from Othﬁz"acheable) PlanetLab node names are queried. Lookups
Processes on a ”Od‘?' as well as incomplete resource Fﬁﬁ'uiring more than 5 seconds are deemed failed, since re-
lation. External services, such as DNS, can become Wjyers default to retrying at 5 seconds. We have observed
available for reasons not related to PlanetLab. DNS failures caused by misconfigured “/etc/resolv.conf”

We believe that the monitoring mechanisms we empl@y.g periodic heavyweight processes running on the name
on PlanetLab may be useful in other contexts, particulad¥ers and heavy DNS traffic from other sources.
for home users joining large peer-to-peer projects. Mqst F;eer Monitoring

PlanetLab nodes tend to host a small number of act e2 })

vservers, which provide a view-isolated environment withnStance employs two mechanisms — a lightweight UDP-
a private root filesystem and security context, but no otHegsed heartbeat and a “heavier” HTTP/TCP-level *fetch”
resource isolation. While this system falls short of treelper. These mechanisms are described below.

virtual machines, it is better than what can be expected®®.1 UDP Heartbeat

other non-dedicated systems, such as multi-tasking hoAsepart of its tests to avoid unhealthy peers, CoDeeN uses
systems. External factors may also be involved in affe¢#DP heartbeats as a simple gauge of liveness. UDP has
ing service health. For example, a site’s DNS server faibw overhead and can be used when socket exhaustion
ure can disrupt the CoDeeN instance, and most of thggevents TCP-based communication. Since it is unreli-
problems appear to be external to PlanetLab [17]. able, only small amounts of non-critical information are

sent using it, and failure to receive acknowledgementsTo augment our simple heartbeat, we also employ a tool
(ACKs) is used to infer packet loss. to fetch pages over HTTP/TCP using a proxy. This tool,

Each proxy sends a heartbeat message once per secondeptually similar to the “wget” program [10], is instru-
to one of its peers, which then responds with informationented to specify what fails when it cannot retrieve a page
about its local state. The piggybacked load informatiovithin the allotted time. Possible causes include socket al
includes the peer’'s average load, system time CPU, fibeation failure, slow/failed DNS lookup, incomplete con-
descriptor availability, proxy and node uptimes, averagection setup, and failure to retrieve data from the remote
hourly traffic, and DNS timing/failure statistics. Even atystem. The DNS resolver timing measurements from this
our current size of over 100 nodes, this heartbeat traffidi®| are fed into the instance’s local monitoring facilitie
acceptably small. For larger deployments, we can redugiece the fetch tool tests the proxying capabilities of the
heartbeat frequency, or we may divide the proxies inp@ers, we must also have “known good” web servers to
smaller groups that only exchange aggregate informatiage as origin servers. For this reason, each CoDeeN in-
across groups. stance also includes a dummy web server that generates a

Heartbeat acknowledgments can get delayed or loypncacheable response page for incoming requests.
giving some insight into the current network/node state.The local node picks one of its presumed live peers to
We consider acknowledgments received within 3 secoraid as the origin server, and iterates through all of the pos-
to be acceptable, while any arriving beyond that are casible peers as proxies using the fetch tool. After one it-
sidered “late”. The typical inter-node RTT on CoDeeN igration, it determines which nodes were unable to serve
less than 100ms, so not receiving an ACK in 3 seconiie requested page. Those nodes are tested to see if they
is abnormal. We maintain information about these latan serve a page from their own dummy server. These
ACKs to distinguish between overloaded peers/links atebts indicate whether a peer has global connectivity or
failed peers/links, for which ACKs are never received. any TCP-level connectivity at all.

Several policies determine when missing ACKs are Over time, all CoDeeN nodes will act as an origin
deemed problematic. Any node that does not respondsgsver and a test proxy for this testing. We keep a history
the most recent ACK is avoided, since it may have just the failed fetches for each peer, and combine this with
recently died. Using a 5% loss rate as a limit, and und#re UDP-level heartbeats to determine if a node is viable
standing the short-term nature of network congestion, @ redirection. To allow for network delays and the pos-
avoid any node missing 2 or more ACKs in the past 3gipility of the origin server becoming unavailable during
since that implies a 6% loss rate. However, we considgre sweep, a node is considered bad if its failure count ex-
viable any node that responds to the most recent 12 ACKsgds the other nodes by more than two. At current scale,
since it has roughly a 54% chance of having 12 consed¢le overhead for this iteration is tolerable. For much large
tive successes with a 5% packet loss rate, and the nodéeployments, a hierarchical structure can limit the number
likely to be usable. of nodes actively communicating with each other.

By coupling the history of ACKs with their piggy-2 3 Aggregate Information

backed local status information, each instance in CoDeglN . L
: _ﬁ]ach CoDeeN proxy stores its local monitoring state as
independently assesses the health of other nodes.

| . .

: o .) _We as its peer summar -

information is used by the redirector to determine which ISP . yt_o disk every 30 seconds, aII_ow
. . . ing offline behavior analysis as well as anomaly detection.

nodes are viable candidates for handling forwarded re=

- . e summary is also published and updated automaticall
quests. Additionally, the UDP heartbeat facility has 8 the CoDeeN central status page [16] every five min-y
mechanism by which a node can request a summary ?f . .

} . S utes. These logs provide the raw data that we use in our
the peer’s health assessment. This mechanism is not uasr?z(jysis in Section 5. A sample | :
. ple log entry, truncated to fit
in normal operation, but is used for our central reportlnlq . P

If the column, is shown in Figure 2.

system to observe overall trends. For example, by query-Most of the fields are the measurements that have been

ing all CoDeeN nodes, we can determine which nodes are .) .
) . . : meéntioned earlier, and the columns in the tabular output
being avoided and which are viable.

represent data about the other nodes in CoDeeN. Values
2.2.2 HTTP/TCP Heartbeat in these lines are usually the counts in base-32 format,
While the UDP-based heartbeat is useful for excludinghere 'w’ represents 32. The exception is SysMxCPU,
some nodes, it cannot definitively determine node healithich is the percentage value divided by 10 and rounded
since it cannot test some of the paths that may leadup. Based on collected information through UDP heart-
service failures. For example, we have experienced diat and HTTP tests, each redirector decides the “Live-
administrators port filtering TCP connections, which caress” for each CoDeeN node, indicating whether the local
lead to UDP packets being exchanged without obstrumde considers that peer node to be viable.

tion, but all TCP connections resulting in failure after In this particular example, this node is avoiding six of
failed retransmission attempts. its peers, mostly because they have missed several UDP

FdTst Hst: 0xO0 1

ProxUptm 36707
NodeUpt m 111788
LoadAvgs: 0.18 0.24 0.33 =< 0.91 1
RegsHrly: 5234 3950 0 788 1004 275 2616 v
DNSFai | s: 0. 00 z 08 1
DNSTi mes: 2. 48 7
SysPtCPU: 221324 g 07r 1
o
s
Liveness: ..X.. ..X.. ... XXX X 5 06]
M ssAcks: 10w00 00001 00000 Ow066 00010 000vO 00020 IS
Lat eAcks: 00000 00000 00000 00000 00000 00000 00000 g 0.5¢ 1
NoFdAcks: 00000 00000 00000 00000 00000 00000 00000 i
Ver sProb: 00000 00000 00000 00000 00000 00000 00000 0.4% T : HEREES A 1
MaxLoads: 41022 11111 11141 20344 11514 14204 11111
SysMKCPU: 81011 11111 11151 10656 11615 15564 11111 03=) = = " s
Wjet Prox: 00w00 00100 00010 Owi10 00000 000sO 00010 10 10 10 10 10 10
Wjet Targ: 11wil 10301 01021 1w220 00111 101t0 11121 # failed SMTP CONNECTS per day
Figure 2:Sample monitoring log entry Figure 3: CONNECT activity for 38 nodes — Aimost 40% of

the samples show no activity, while 20% show over 1000 at-
ACKs. The eighth node, highlighted in boldface, is beingmpts/day. The maximum seen is over 90K attempts to one
avoided because it has a WgetTarg count of 3, indicatingde in one day.
that it has failed the HTTP fetch test (with itself as the
target) three times out of the past 32. More analysis &hone day, one of our nodes captured over 100K spam e-
the statistics for node avoidance is presented in Sectiori&ils destined to 2,000,000 addresses. Another node saw

. traffic jump from 3,000 failed attempts per day to 30,000

3 Security Problems flows in 5 minutes. This increase led to a self-inflicted

To make the system more useful and increase the amdigRial-of-service when the local system administrator saw
of traffic we receive, we allow all CoDeeN nodes to adpe activity spike and disconnected the PlanetLab node.
as “open” proxies, accepting requests from any client in POST/formmail — Some web sites use a CGI program
the world. However, this choice also opens the doorsg!led formmail to allow users to mail web-based feed-
many security problems. In this section, we discuss soRCK forms to the site’s operators. Unfortunately, these
of the problems we encountered during the early develd5©9rams often store the_destlna'uon e-mail address in the
ment and testing of CoDeeN, and the measures we toofQgM's hidden input, relying on browsers to send along
deal with these problems. For the purposes of discussiBfly the e-mail address specified in the form. Spammers
we have broadly classified the problems into those de@Ruse those scripts by generating requests with their vic-
ing with spammers, bandwidth consumption, high requé@s' e-mail addresses as the targets, causing the exgloite

rates, content theft, and anonymity, though we realize ti$4¢ t0 send spam to the victim. _

31 S weak authentication and their immediate, captive audi-
: pammers ence. Most proxies allow CONNECTS to ports above the
The conceptually simplest category of CoDeeN abusemjgtected port threshold of 1024, which affects IRC with
the spammer, though the mechanisms for spamming usiggefault port of 6667. IRC operators have developed
a proxy server are differ_ent from traditional spammingmeir own open proxy blacklist [4], which checks IRC par-
We encountered three different approaches — SMTP tyipant IP addresses for open proxies. We were alerted
nels, CGl/formmail POST requests, and IRC spammingat CoDeeN was being used for IRC spamming, and
These mechanisms exist without the use of proxies, Byfind many of our nodes blacklisted. While the blacklists
gain a level of indirection via proxies, complicating ingjiminate the problem for participating IRC networks, the
vestigation. When faced with complaints, the administrgg|jateral damage can be significant if other sites begin to

tors of the affected system must cooperate with the prosgfyse non-IRC traffic from blacklisted nodes.
administrators to find the actual spammer’s IP address.

SMTP tunnels — Proxies support TCP-level tunnel3-2 Bandwidth Hogs
ing via the CONNECT method, mostly to support endsoDeeN is hosted on PlanetLab nodes, with the hosts ab-
to-end SSL behavior when used as firewalls. After tis@rbing the bandwidth costs. Since most nodes are hosted
client specifies the remote machine and port number, tiehigh-bandwidth universities, they attract people per-
proxy creates a new TCP connection and forwards datddnming bulk data transfers. Due to lack of locality, such
both directions. Our nodes disallow tunneling to port 2Bansfers provide no benefit to other CoDeeN users — they
(SMTP) to prevent facilitating open relay abuse, but conause cache pollution and link congestion.
tinually receive such requests. The prevalence and magniwebcam Trackers— Sites such as SpotLife.com pro-
tude of such attempts is shown in Figure 3. As a test, wiele a simple means to use digital cameras as auto-
directed these requests to local honey-pot SMTP servensdating web cameras. Thssbscription-based service

allows the general public to broadcast their own “we- Google Crawlers — Like password crackers, we
bcams”. We noticed heavy bandwidth usage of tlieund a number of clients performing Google web/image
SpotLife site, with individual IP addresses generatirggarches on a series of sorted words. These were clearly
multiple image requests per second, far above the rate limechanical processes working from a dictionary, and their
its in the official SpotLife software. SpotLife claims taequests were evenly spaced in time. We speculate that
bundle their software with over 60% of digital camerashese clients are trying to populate their own search en-
and a community of high-rate downloaders has formegines or perhaps build offline copies of Google.
to SpotLife’s consternation. These users clearly haveClick-Counters — Ad servers count impressions for
enough bandwidth to access webcams directly, but uegenue purposes, and rarely do we see such accesses not
CoDeeN to mask their identity. tied to actual page views. The one exception we have seen
Cross-Pacific Downloads- CoDeeN nodes in Wash-is a game site called OutWar.com. Points are obtained
ington and California received very high bandwidth convhen people click on a player’s “special link”, which
sumption with both source and destination located alodglivers a Web page containing ad images. The system
the Eastern rim of Asia. The multi-megabyte downloadgpparently counts hits of the player’s link instead of ad
appeared to be for movies, though the reason that theiswvs, which seems to invite abuse. We have noticed a
clients chose a round-trip access across the Pacific Ocg@ady stream of small requests for these links, presum-
is still not clear to us. A direct connection would presun@&bly from players inflating their scores.
ably have much lower latency, but we suspect that th&ﬁsi% Content Theft

clients were banned from these sites, and required hi&])
bandwidth proxies to access them effectively. Given tH&'€ most worrisome abuse we witnessed on CoDeeN was

high international bandwidth costs in Asia, Western (&hat we considered the most sophisticated — unauthorized
proxies were probably easier to find. downloading of licensed content.

Steganographers— While large cross-Pacific trans- Licensed Content Theft — Universities purchase

fers were easy to detect in access logs, others were %%r%s—authentlcatedsne licenses for electronic journals,

obvious. This class had high aggregate traffic, spreé{B'ted to the IP ranges they own. PlanetLab’s acceptable

across uniformly-sized, sub-megabyte files marked %8 policies disallow accessing these sites, but CoDeeN

GIFs and JPEGs. Large images sizes are not uncdipintentionally extended this access worldwide. We dis-
mon in broadband-rich countries such as South Korea,B yered this problem when a site contacted PlanetLab

some size variation is expected given the unpredictabil out suspicious activity. This site had previously exper
of image compression. We downloaded a few of thef ced a coordinated attack that downloaded 50K articles.

large files and found that they generated only tiny imagggfortunately, such sites do not handle Xi&orwarded-

on-screen. From the URL names, we assume that thggr header that some proxies support to identify the orig-

files contain parts of movies stuffed inside image files {?aﬁ clignttIP ?dgreﬁsaThpugh this header can be Lorged,
hide their actual payload. Although there is existing r&-Can be trusted wheaenying access, assuming nobody
uld forge it to deny themselves access to a site.

search on steganography [18], we have not found the &f:? _) ;
propriate decryption tools to confirm our guess. Intra-domain Access — Many university Web pages
are similarly restricted by IP address, but are scat-

3.3 High Request Rates tered within the domain, making them hard to identify.
For example, a department’s web site may intersperse

TCP’s flow/congestion controls mitigate the damage tr@épartment—only pages among publicly-accessible pages.
bulk transfers have on other CoDeeN users. In contrashsqrtynities arise if a node receives a request for a local

another class of users generated enough requests thafi¥{&ment, whether that request was received directly or
were concerned that CoDeeN might be implicated in & < torvarded by another proxy.

denial-of-service attack. i

Password Crackers— We found an alarming number?’-5 Anonymity
of clients using CoDeeN to launch dictionary attacks dithile some people use proxies for anonymity, some
Yahoo, often via multiple CoDeeN nodes. At one poingnonymizers accessing CoDeeN caused us some concern.
we were detecting roughly a dozen new clients per défost added one of more layers of indirection into their
Since Yahoo can detect multiple failed attempts to a singletivities, complicating abuse tracking.
account, these users try a single password across many aBequest Spreaders- We found that CoDeeN nodes
counts. The attacks appear to be for entertainment, simare being advertised on sites that listed open proxies and
any victim will be random rather than someone known 8old additional software to make testing and using proxies
the attacker. The problem, again, is that the requests apsier. Some sites openly state that open proxies can be
pear to come from CoDeeN, and if Yahoo blocks the ised for bulk e-mailing, a euphemism for spam. Many
address, then other PlanetLab services are affected. of these sites sell software that spreads requests over a

collection of proxies. Our concern was that this approatdsecure sites, the motivation for this change diminishes.
could flood a single site from many proxies. To handle overly-aggressive users we needed some

TCP over HTTP — Other request traffic suggestethechanism that could quickly be deployed as a stopgap.
that some sites provided HTTP-to-TCP gateways, nam&sla result, we added an explicit blacklist of client IP ad-
http2tcp, presumably to bypass corporate firewalls. Othdresses, which is relatively crude, but effective in hamglli
than a few archived Usenet messages on Google, we hanablematic users. This blacklist was not originally pdrt o
not been able to find more information about this tool. the security mechanism, but was developed when dictio-

Non-HTTP Port 80 — While port 80 is normally re- nary attacks became too frequent. We originally analyzed
served for HTTP, we also detected CONNECT tunndlse access logs and blacklisted clients conducting dictio-
via port 80, presumably to communicate between mary attacks, but this approach quickly grew to consume
chines without triggering firewalls or intrusion detectiotbo much administrative attention.
systems. However, if someone were creating malformedThe problem with the dictionary attacks and even the
HTTP requests to attack remote web sites, port 80 tunnelénerability tests is that they elude our other tests and
would complicate investigations. can cause problems despite our rate limits. However, both

Vulnerability Testing — We found bursts of odd- have fairly recognizable characteristics, so we used those
looking URLSs passing through CoDeeN, often having thproperties to build a fairly simple signature detector. Re-
same URI portion of the URL and different host namegquests with specific signatures are “charged” at a much
We found lists of such URLs on the Web, designed to riigher rate than other rate-limited requests. We effelgtive
motely test known buffer overflow problems, URL pardimit Yahoo login attempts to about 30 per day, frustrat-
ing errors, and other security weaknesses. In one ing dictionary attacks. We charge vulnerability signasure
stance, these URLSs triggered an intrusion detection systh a day’s worth of traffic, preventing any attempts from
tem, which then identified CoDeeN as the culprit. being served and banning the user for a day.

. Reducing the impact of traffic spreaders is more diffi-

4 Protectlng CoDeeN cult, but cz?n be har;ldled in varioups ways. The most le-
Our guiding principle in developing solutions to addresgent approach, allowing any client to use multiple nodes
these security problems is to allow users at PlanetLab sig&§h that the sum does not exceed the request rate, re-
as much access to the Web as they would have with@yires much extra communication. A stricter interpreta-
using a proxy, and to allow other users as much “safon could specify that no client is allowed to use more
access as possible. To tailor access policies, we clas8ign K proxies within a specified time period, and would
client IP addresses into three groups — those local to thi more tractable. We opt for a middle ground that pro-
CoDeeN node, those local to any site hosting a Planetl\d@es some protection against abusing multiple proxies.
node, and those outside of PlanetLab. Note that our seculn CoDeeN, cache misses are handled by two proxies
rity concerns focus on how we handle possibly maliciotsone acting as the client’s forward proxy, and the other
client traffic, and not node compromise, which is outsides the server’s reverse proxy. By recording usage informa-
the scope of this paper. tion at both, heavy usage of a single proxy or heavy aggre-
4.1 Rate Limiting gate use can be detected. We forward client information

. to the reverse proxies, which can then detect clients using

The “outside” clients face the most restrictions on USINg, tiple forward proxies. While forwarding queries pro-

CoDeeN, limiting request types as well as resource CHtices no caching benefit, forwarding them from outside

sumption. Only their GET requests are honored, a”mﬂf’sers allows request rate accounting to include this case.

I'Pk? tl'gacr)nst_? dov;/r?lc;ad pagis a]{]d perf_orrg_ S'Tple (sjeasrgl’gg; users attempting to perform Yahoo dictionary attacks
€ method, used Torforms, 1S disallowed. SN are query-based) from multiple CoDeeN nodes

forms are often used for_ changl_ng pa§swc_)rds, sendin ifid that using more nodes does not increase the maxi-
ma|l,_ and other types of interactions with S|de_-effecte,t um number of requests allowed. With these changes,
restr|ct|pn on P.OST h?‘S the eﬁect of preventl_ng CODPT‘? in attempts passed to Yahoo have dropped by a factor
from pemg implicated in many kinds of damaging Web gl 30 even as the number of attackers has tripled.
teractions. For the allowed requests, both request rate an o)

bandwidth are controlled, with measurement performdd2 ~ Privilege Separation

at multiple scales — the past minute, the past hour, afwladdress the issue of restricting access to content, we
the past day. Such accounting allows short-term burstaploy privilege separation, which works by observing
of activity, while keeping the longer-term averages undévat when a proxy forwards a request, the request as-
control. Disallowing POST limits some activities, notablgumes the privilege level of the proxy since it now has the
on e-commerce sites that do not use SSL/HTTPS. We grexy’s IP address. Therefore, by carefully controlling
investigating mechanisms to determine which POST arhich proxies handle requests, appropriate access privi-
tions are reasonably safe, but as more transactions miegees can be maintained. The ideal solution for protect-

ing licensed content would be to insert an 'X-Forwarded- Since our security mechanisms depend on comparing
For’ header, but it requires cooperation from the contembst names, we also disallow “outside” accesses to ma-
site — checking whether both the proxy address and fohines identified only by IP addresses. After implement-
warded address are authorized. Although this is a simplg this approach, we found that some requests using nu-
change, there are some sites that do not handle the headerical IP addresses were still being accepted. In the
For such sites, content protection requires CoDeeN Hd TP protocol, proxies receive requests that can contain
identify what content is licensed and we take an appraxfull URL, with host name, as the first request line. Ad-
imate approach. Using Princeton’s e-journal subscrigitional header lines will also identify the host by name.
tion list as a starting point, we extracted all host name¢e found some requests were arriving with differing in-
and pruned them to coalesce similarly-named sites, mefi@rmation in the first line and in the Host header. We had
ing journall.example.com and journal2.example.com imot observed that behavior in any Web browser, so we as-
just example.com. We do not precisely associate subscgpme such requests were custom-generated, and modified
tions with universities, since that determination would kmur redirector to reject such abnormal requests.
constantly-changing and error-prone.

When accessing licensed content, we current only é]'—s Effectiveness of the Solutions

low requests that preserve privilege. Clients must chodsfe have received a handful of queries/complaints from
a CoDeeN forward proxy in their own local domain irsystem administrators at the local PlanetLab sites, and all
order to access such content. Thészl clients are as- but one have been false alarms. Most queries have been
sumed to have the same privilege as the CoDeeN forwarised by system administrators or others using/testing
proxy, so this approach does not create additional exploe proxies, surfing through them, and then concluding
sure risks. These requests are sent directly to the ctirat they are open proxies.

tent provider by the forward proxy, since using a reverseWe have been using CoDeeN daily, and have found that
proxy would again affect the privilege level. All othetthe security restrictions have few effects for local users.
client requests for licensed content currently receivereriUsing non-Princeton nodes as our forward proxy, we have
messages. Whether the local client can ultimately accéssnd that the restrictions on licensed sites can be overly
the site is then a decision that the content provider makgsct at times. We expect that in the future, when we
using the CoDeeN node’s IP address. Though we c@ounce such requests to completely unprivileged proxies,
not guarantee the completeness of the subscription lie special handling for those sites will not be noticeable.
in practice this approach appears to work well. We ha¥@ese bounced requests will obtain the privilege level of
seen requests rejected by this filter, and we have not tifese proxies (i.e., no subscriptions), and will be able to
ceived any other complaints from content providers. btcess unrestricted portions of those sites. By changing
the future, when dealing with accesses to licensed sitgfs configuration information, we have also been able to
we may redirect clients from other CoDeeN sites to theise CoDeeN as an outside user would see it. Even on
local proxies, and direct all “outside” clients to CoDeelNur high-speed links, the request rates limits have not im-
proxies at sites without any subscriptions. pacted our daily browsing.

A trickier situation occurs when restricted content is Restricting outside users from using POST does not ap-
hosted in the same domain as a CoDeeN node, such@ar to cause significant problems in daily use. Searches
when part of a university’s Web site is restricted to ongre commonly handled using the GET method instead of
those within the university. Protecting these pages frdfie POST method, and many logins are being handled via
outside exposure cannot use the coarse-grained blackliStTPS/SSL, which bypasses the proxy. The most no-
ing approach suitable for licensed content. Otherwise, digeable restrictions on outsiders using POST has been the
tire university sites and departments would become ing&garch function on Amazon.com and some chat rooms.
cessible. To address this problem, we preserve the pfaxer two months, local users have generated fewer than
ilege of local clients, and de-escalate the privilege of r800 POST requests, with the heaviest generator being
mote clients. We determine if a request to example.esftware update checkers from Apple and Microsoft.
originates locally at example.edu, and if so, the request iOur security measures have caused some confusion
handled directly by the CoDeeN forward proxy. Otheemongst malicious users, and they could not figure out
wise, the request is forwarded to a CoDeeN node at avhether or not CoDeeN is a network of real “open” prox-
other site, and thereby gets its privilege level droppedits. We routinely observe clients testing proxies and then
that of the remote site through this “bouncing” procesgenerating requests at very high rates, sometimes exceed-
To eliminate the exposure caused by forwarding a requiegt 50K reqs/hour. However, rarely do CoDeeN nodes see
to a site where it is local, we modify our forwarding logienore than 20K valid reqs/hour. Some clients have gener-
—no request is forwarded to a CoDeeN proxy that has thted over a million unsuccessful requests in stretches last
same domain as the requested content. ing longer than a day.

11000 18
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

>5sec
16 >10sec -

14 1
12 q

10 1

of clients per day
with MISS/000

% of Redirected Requests taking >5/10sec

0 o L= S 2 P T TR)
06/01 07/01 08/01 09/01 10/01 11/01 12/01 06/01 07/01 08/01 09/01 10/01 11/01 12/01
Date Date

Figure 4:Daily Client Population (Unique IP) on CoDeeN Figure 6:Percentage of Non-serviced Redirected Requests

=
o

all reqhests M- 80 all reduests (>5§ec)
9 successful requests - § 8 successful requests (>5sec) -
3 all requests (>10sec) -
o 8¢ H S 25 successful requests (>10sec) 1
g 7| ooz
=] i £ B
= $m 20
< 6 =)
La
= oV
S 5¢r Sg 15 1
1] i)
o 4L xc
g ' 8%
s 2 o
®o2r ¥ 1 3
o
1 4 kS
X
06/01 07/01 08/01 09/01 10/01 11/01 12/01 86/01 07}01 08}01 09)01 10}01 11)01 12}01
Date Date
Figure 5:Daily Requests Received on CoDeeN Figure 7:Percentage of Redirected RequestslOKB)
5 Results avoiding bad nodes. In the future, we may work to-

In this section, we analyze the data we collected duriHgrds optimizing response time by improving the redi-
six months of CoDeeN’s operation. These results not odfetor logic, but that has not been our focus to date.

show the status of CoDeeN over time, but also provideThe results of our efforts to detect/avoid bad nodes can
insights into the monitoring and security measures. b€ seen in Figure 6, which shows requests that did not
51 Traffic receive any service within specific time intervals. When

this occurs, the client is likely to stop the connection or

Since startlng-our public beta test at the end of May, tOFsit another page, yielding an easily-identifiable access
number of unique IP addresses psed to access QODﬁf'd\lentry (MISS/000). These failures can be the result of
has passed 500,000, W't.h the daily values shown in F{ﬂ'e origin server being slow or a failure within CoDeeN.

ure 4. Some of these clle_nts appear to be_human, Whtlfe trend shows that both the magnitude and frequency
others are programs that interact with PrOXIES. NOW, O the failure spikes are decreasing over time. Our most
daily trafn_c regul_arly exceeds 7,000 unique IPs. recent change, DNS failure detection, was added in late

The daily traffic served by CoDeeN now hovers abovg st and appears to have yielded positive results.
more than 4 million requests, and peaks at 7 million, aSgince we cannot “normalize” the traffic over CoDeeN,

seen in Figure 5. The total count of daily requests, Irmlugt'her measurements are noisier, but also instructive. Fig-

|dng tho(sje thali ar(: ;ejeﬁlt_ed, |s\,NapEroach|Ing 7 mllllqn E[)Slre 7 shows the fraction of small/failed responses that take
dy and peaks at = miflion. Ve began 1ogging rejec ?rqore than a specific amount of time. Here, we only show
requests in late July, so earlier figures are not available

fedirected requests, which means they are not serviced
5.2 Response Performance from the forward proxy cache. By focusing on small re-
Since reliability has been one of the main thrusts of osponses, we can remove the effects of slow clients down-
current work, the response time behavior of CoDeeNIlading large files. We see a similar trend where the fail-
largely a function of how well the system performs imre rate decreases over time. The actual overall response

20

100

all redirected requésts
18 successful redirected requests - 1
redirected requests with size <10K -
< 16 1 80 -
f5d
25 @
o 14 =1
£ £
= (5] L
o 12 8 60
2 &
S 10 p
g £
& 8 8 40t
L 15
g 6 L=)
g
I 4 20
2
0 . . . 0 . . .
06/01 07/01 08/01 09/01 10/01 11/01 12/01 10 100 1000 10000 100000
Date System Stable Time Period (seconds)

Figure 8:Average Response Time of Redirected Requests Figure 9:System Stability View from Individual Proxies

times for successful requests, shown in Figure 8, has a,
less interesting profile. After a problematic beginning, re |

sponses have been relatively smooth. As seen from Fig- ®
ure 5, since the beginning of October, we have received
a rapidly increasing number of requests on CoDeeN, antl

consequently, the average response time for all requeS§554°
slightly increases over time. However, the average re§ bl
sponse time for small files is steady and keeps decreas- | ‘ ‘ 0 el
ing_ This result is not Surprising’ since we have focused W 100 1000 10000 100000 10 100 1000 10000 100000 le+06
on reducing failures rather than reducing SUCCesS Iatency. System Stable Time Period (seconds) System Stable Time Period (seconds)

100

80

60

40

pr-l ——
ny-1 -
uw-1 =
stl e

pr-1 ——
ny-1 e
uw-1 =

Skl e

20

Cumulative Percentage

5.3 Node Stability (a) Divided into 2 Groups (b) Divided into 4 Groups
The distributed node health monitoring system employed
by CoDeeN, described in Section 2.2, provides data about

the dynamics of the system and insight into the suitability .
of our choices regarding monitoring. One would expe€Ye"Y 30 seconds (our measurement interval). In Table 1,

that if the system is extremely stable and has few stal¢ Show the 50 and the 90" percentiles of the stable
changes, an active monitoring facility may not be Vel@ﬁrlods. For 50% of time, the I|veness_status of the sys-
critical and probably just increases overhead. Convers&gM changes at least once every 6-7 minutes. For 90% of
if most failures are short, then avoidance is pointlessesirfine, the longest stable period is about 20-30 minutes. It
the health data is too stale to be useful. Also, the r&t@OWs thatin general, the system is quite dynamic —more
of status changes can guide the decisions regarding g88p What one would expect from few joins/exits.
group size upper bounds, since larger groups will requireThe tradeoff between peer group size and stability is an
more frequent monitoring to maintain tolerable staleneg¥en area for research, and our data suggests, quite natu-
Our measurements confirm our earlier hypothesis ab&lly, that stability increases as group size shrinks. The
the importance of taking a monitoring and avoidance agPnverse, that large groups become less stable, implies
proach. They show that our system exhibits fairly dyhat large-scale peer-to-peer systems will need to sacri-
namic liveness behavior. Avoiding bad peers is essenfige latency (via multiple hops) for stability. To measure
and most failure time is in long failures so avoidance g€ stability of smaller groups, we divide the 40 proxies
an effective strategy. Figure 9 depicts the stability of theto 2 groups of 20 and then 4 groups of 10 and measure
CoDeeN system with 40 proxies from four of our CoDeeSroup-wide stability. The results are shown in Figure 10
redirectors’ local views. We consider the system to be sgfid also in Table 1. As we can see, with smaller groups,
ble if the status of all 40 nodes is unchanged between tita¢ stability improves with longer stable periods for both
monitoring intervals. We exclude the cases where the ¢Be 50" and 90" percentiles.
server is partitioned and sees no other proxies alive. Th& he effectiveness of monitoring-based avoidance de-
z-axis is the stable period length in seconds, andgthepends on the node failure duration. To investigate this is-
axis is the cumulative percentage of total time. As we cane, we calculate node avoidance duration as seen by each
see, these 4 proxies have very similar views. For abawde and as seen by the sum of all nodes. The distribution
8% of the time, the liveness status of all proxies changafsthese values is shown in Figure 11, where “Individ-

Figure 10:System stability for smaller groups

40-node 2 x 20-node | 4 x 10-node Site | Fetch | Miss ACKs | Node Down | Late ACKs | DNS

50% | 90% | 50% 90% | 50% 90% pr-1 6.2 18.3 206 13.6 321

pr-1 445 | 2224 | 1345 | 6069 | 3267 | 22752 ny-1 47 16.1 31.7 14.0 33.0

ny-1 512 | 3451 | 1837 | 10020 | 4804 | 25099 uw-1 | 10.4 16.8 30.0 12.8 297

uw-1 431 | 2085 | 1279 5324 | 3071 | 19579 st-1 5.0 14.7 272 15.4 34.3
st-1 381 | 2052 | 1256 | 5436 | 3008 | 14334

Table 1:System Stable Time Period (Seconds) Table 2:Average Percentage of Reasons to Avoid A Node

x 10
3

Il fetch

|| Il miss acks
[node down
[late acks

r{ BB no FDs
Il DNS

100 =

—
1=
>

80

=)
>

P=
S

60 /

40 /

20 — Individual

— System-Wide
10° 10 10
Failure Duration (seconds)

o~
S

% of # of Occurrences
~
% of Total Time (%)

[N
>

> [— Individual
/ — System-Wide
4 6

10° 10 10
Failure Duration (seconds)

of avoidance counts

o
o

6

10
Days since August 27, 2003

15 20 25
(a) CDF by # of Occur-

rences

(b) CDF by Total Time

Figure 11:Node Failure Duration Distribution. Failures span- Figure 12:Daily counts of avoidance on ny-1 proxy

ning across a system-wide downtime are excluded from this

measurement, so that it only includieslividual node failures.

Also, due to the interval of node monitoring, it may take up tACKs. Even simple overload, in the form of late ACKs, is
40 seconds for a node to be probed by another nodes, thus &isignificant driver of avoidance. Finally, the HTTP fetch
ures that last a shorter time might be neglected. helper process can detect TCP-level or application-level

R o connectivity problems.
ual” represents the distribution as seen by each node, ana .
n terms of design, these measurements show that a

“System-Wide” counts a node as failed if all nodes see, . o
X - . S . P-only heartbeat mechanism will significantly under-
as failed. By examining the durations of individual failure o -
. R .~ perform our more sophisticated detection. Not only are
intervals, shown in Figure 11a, we see that most failurgs .
& multiple schemes useful, but they are complementary.
are short, and last less than 100 seconds. Only about 10% _,. -
. . ariation occurs not only across nodes, but also within a
of all failures last for 1000 seconds or more. Figure 11 .
node over a span of multiple days. The data for the ny-1

shows the failures in terms of their contribution to the to- . 7 P
. . . n?de, calculated on a daily basis, is shown in Figure 12.
tal amount of time spent in failures. Here, we see tha

these small failures are relatively insignificant — faikird5.5 DNS behaviors

less than 100 seconds represent 2% of the total time, apd yescribed earlier, during our HTTP fetch tests, we
even those less than 1000 seconds are only 30% of theaqyre the time of local DNS lookups. When local name
total. These measurements suggest that r_10de MoNitodAA,ers are having problems, DNS lookups can take many
can successfully avoid the most problematic nodes. ¢aconds to finish, despite usually taking only a few mil-
5.4 Reasons to Avoid a Node liseconds. We further investigate how DNS lookups be-
Similar to other research on peer-to-peer systems, we imgve on each proxy by looking at DNS failure rates and
tially assumed that churn, the act of nodes joining aaderage response time for successful queries. If a DNS
leaving the system, would be the underlying cause lobkup takes longer than 5 seconds, we regard it as a DNS
staleness-related failures. However, as can be seen ffaiture, since this value is the resolver’s default timeout
the stability results, failure occurs at a much greater rateFigures 13 and 14 show the DNS failure rates and DNS
than churn. To investigate the root causes, we gather éverage lookup time for successful queries on 2 of our
logs from 4 of redirectors and investigate what caussampling proxies, ny-1 on east coast and st-1 on west
nodes to switch from viable to avoided. Therefore, ogpast. DNS lookup time is usually short (generally well
counts also take time into account, and a long node fdikelow 50ms), but there are spikes of 50-100ms. Recall
ure receives more weight. We present each reason th#t these lookups are only for the controlled set of the
egory with a non-negligible percentage in Table 2. Wetra-CoDeeN “fetch” lookups. Since these mappings are
find that the underlying cause is roughly common acrossble, well-advertised, and cacheable, responses should
nodes — mainly dominated by DNS-related avoidance alpel fast for well-behaved name servers. Anything more
many nodes down for long periods, followed by missatan tens of milliseconds implies the local nameservers

100 T T T T 100 100

80 1 80
=] =}
2 60 2 60 °
T T @
Loa0f e 40 g
= > L

20 1 20 <

0 I B 0
0 5 10 15 20 25 0 5 10 15 20 25 ‘ A ke
Time (days) Time (days) Y o 5 10 15 20 o5
Time (days)
(a) ny-1 proxy (b) st-1 proxy

. . . . A te DNS fail t 25d
Figure 13:DNS lookup failure at different proxies (a) Aggregate allure rate over ays

al
(=3
o

— — ;\S
3 B S
3 2 400 - &
= E 300 5 80|
& & 200 S
& 4 a 60
100 | @
(= (=2 =t
> > [=3
z Iz o0 E 4ol
0 5 10 15 20 25 0 5 10 15 20 25 3
Time (days) Time (days) QL
£ 20}
=
g
a) ny-1 prox b) st-1 prox o 0= ‘ ‘
(a) ny-1 proxy (b) st-1 proxy o 10° o 0

Failure Percentage (%)

Figure 14:DNS lookup time at different proxies

. L. (b) Cumulative distribution DNS failure rate
are having problems. These statistics also help to reveal

some major problems._ For examplg, the st-1 proxy ha%@ure 15: DNS failure rate of 20 nodes, i.e. the probability
period OT 100% D_NS failure rate, which is due to the Name ot least one node having DNS difficulty. The abnormal peak
server disappearing. The problem was resolved when fagund day 5 in (a) is caused by the same peak in Figure 13(b).
node’s resolv.conf file was manually modified to point tphus when computing the cumulative distribution in (b) wéyon
working name servers. considered the last 15 days.

Though DNS failure rates on individual proxies are o) o
relatively low, the combined impact of DNS failures o0t only will this result in fewer DNS lookups, but it will
web content retrieval is alarming. Downloading a conf/SO €xploit persistent connections in HTTP. The second
mon web page often involves fetching the attached objefigdification to reduce the problems stemming from DNS
such as images, and the corresponding requests can be$d- Middleware DNS brokering service we have devel-
warded to different proxies. Supposing an HTTP sessiBR€d, called CoDNS. This layer can mask local DNS re-
involves 20 proxies, Figure 15 shows the probability of irsolver failure by using remote resolvers, and is described
curring at least one DNS failure in the session. From tRewhere [17].
cumulative distribution we can see that for more than 4086 Requests Rejected for Security Reasons
of time we have DNS failure probability of at least 10%n Section 3, we explored the idea of rejecting requests
which would lead to a pretty unpleasant surfing expethat could cause security problems or abuse system re-
ence if we did not avoid nodes with DNS problems. Nources. Figure 17 shows a snapshot of the statistics
that these problems often appear to stem from factors Bgout various reasons for rejecting requests. Three ma-
yond our control — Figure 16 shows a DNS namesenyer reasons include clients exceeding the maximum rate,
exhibiting periodic failure spikes. Such spikes are corequests using methods other than GET and requests with
mon across many nameservers, and we believe that theyhost field, indicating non-standard browsers. Most of
reflect a cron-initiated process running on the nameservaeg time, these three comprise more than 80% of the re-

To avoid such problems, we have taken two approachested traffic. The query count represents the number of
to reduce the impact of DNS lookups in CoDeeN. The firsandwidth capped CGI queries which include all sorts of
is a change in redirector policy that is intended to semahlicious behaviors previously mentioned. Disallowed
all requests from a single page to the same reverse pr&@@NNECTs and POSTs indicate attempts to send spam
node. If a request contains a valid “referer” header, it tkrough our system. CONNECTSs alone constitute, on the
used in the hashing process instead of the URL. If no sumerage, over 5% and sometimes 30% of all rejected re-
header exists, the last component of the URL is omittgdests. From this graph, we can get an idea of how many
when hashing. Both of these techniques will tend to seschvenging attempts are being made through the open
all requests from a single page to the same reverse prgapxies like CoDeeN.

approaches to provide higher reliability and robustness

N
o

£ s DNS Failures Rate 1 than fail-stop assumptions provide [1, 5]. While such
§ *o :k k K f\ k k 1 schemes, including state machine replication in gen-
E o, - . N eral, may seem appealing for handling failing nodes in

o 2 a 6 8 10 iz

CoDeeN, the fact that origin servers are not under our con-
E OIS Response Time 1 trol limits their utility. Since we cannot tell that an acses
WJJ\MWW to an origin server is idempotent, we cannot issue multi-
° 2 T e courey © 0 2 ple simultaneous requests for one object due to the pos-
sibility of side-effects. Such an approach could be used
Figure 16:DNS failures, response times for the Stanford prox§0N9 CoDeeN's reverse proxies if the object is known
to be cached.
In the cluster environment, systems with a front
| end [11] can deploy service-specific load monitoring rou-
tines in the front end to monitor the status of server farms
and decide to avoid failing nodes. These generally oper-
ate in a tightly-coupled environment with centralized con-
trol. There are also general cluster monitoring facilities
that can watch the status of different nodes, such as the
Ganglia tools [9], which have already been used on Plan-
etLab. We can potentially take advantage of Ganglia to
collect system level information. However, we are also
o 10 20 30 40 50 interested in application-level metrics such as HTTP/TCP
Days since July 22, 2003 ..
connectivity, and some of resources such as DNS behav-
iors that are not monitored by Ganglia.
Cooperative proxy cache schemes have been previously
studied in the literature [6, 19, 25, 27], and CoDeeN

We assume most of this traffic is being generated ayl2r€S many similar goals. However, to the best of our
tomatically by running some custom programs. We afgowledge, the only two deployed systems have used the
now studying how to identify these malicious progran{'slar,ves_t'“ke approach with proxy cache hierarchies. The
versus normal human users and innocuous programs &N differences between CoDeeN and these systems are

web crawlers, in order to provide an application-level Qd8 the scale, the nature of who can access, and the type

FRENNGWA
ououiomomo

Response Time (ms)

x 10°
14

head
post
rate — static

12

rate — query
no host
other

connect

10

of rejected requests

Figure 17:Daily counts of rejected requests on CoDeeN

depending on client classification. of service provided. Neither system uses open proxies.
The NLANR Global Caching Hierarchy [15] operates ten
6 Related Work proxy caches that only accept requests from other proxies

Similar to CoDeeN,, peer-to-peer systems [20, 22, 24] aland one end-user proxy cache that allows password-based

P Y Y ypically yan g an access control list to specify which sites should not

failover scr_\em_e to deal with fa|I|ng_ nodes while FOUtingy torwarded to other caches. Entries on this list include
to the destinations. Although practically, these trials cg,

Aectronicjournals.
be expected by peer-to-peer system users, the extra de-

: . . new Akamai-like system, CoralCDN [8], is in the
lays in retrying different next hops can cause latency prob- . .

. o . rocess of being deployed. Bad nodes are avoided by
lems. For latency-sensitive applications implemented o

peer-to-peer substrate, multiple hops or trials in each %EIS—based redirection, sometimes using an explicit UDP
' C for status checking.

eration become even more problematic [7]. The Globe

(j_lstrlbut|qn network also Ieve_rage; hierarchy and Ioc?h Conclusion

tion caching to manage mobile objects [3]. To address

multiple-hop latency, recent research has started pushimghis paper, we present our experience with a contin-

more membership information into each node in a peemwusly running prototype CDN on PlanetLab. We de-

to-peer system to achieve one-hop lookups [12, 21]. daribe our reliability mechanisms that assess node health

this regard, similar arguments can be made that each nadd prevent failing nodes from disrupting the operation of

could monitor the status of other nodes. the overall system. We also discuss our security mecha-
Some researchers have used Byzantine fault toleraisims that protect nodes from being exploited and from

being implicated in malicious activities. The intentionals] M. Castro and B. Liskov. Practical byzantine fault talece. In
dual use of CoDeeN both as a CDN and as an open ProceedingsoftheThirdS/rmosiumonOperating Systems Design
proxy network and the resource competition on Planet- 2™ 'mplementation, 1999.
Lab nodes make it a very valuable testbed. We belied@ A Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Sckayar
. . .~ and K. J. Worrell. A hierarchical internet object cacheUSENIX

that fUtur_e Services, espemally peer-to-peer system, Wi annual Technical Conference, pages 153-164, 1996.
require S|m|!ar mechan_|3ms as more services are_d_eployﬁ]j R. Cox, A. Muthitacharoen, and R. Morris. Serving dnsngsi
on non-dedicated distributed systems, and as their interac chord. InProceedings of the 1st International Workshop on Peer-
tion with existing protocols and systems increases. to-Peer Systems (IPTPS'02), 2002.

Our distributed monitoring facilities prove to be effec-8] M. Ff%dmglf_h E. Ffel_lﬂemhalh 6::;1 Dée'zl_azier(%fS-h Dlemmimi
: : RH HH : content publication with coral. roCH ings of the 1st Sj +
tive at detecting and th_u; avoiding failing or problematic posium on Networked System Design and Implementation (NSDI
nodes. The net benefit is robustness against component:os) 2004.
disruptions and improved response latency. Alt_hOl{g!@] Ganglia. http://ganglia.sourceforge.net.
some _of the aspects of thgse facilities seem applicatigfy GNU wget. http://www.gnu.org/software/wget/wgetrh
specific, the)_/ are not Confmed_ to CDN services. Othfﬁﬁ] G. Goldszmidt and G. Hunt. Netdispatcher: A tcp coniect
latency-sensitive services running in a non-dedicated dis router. IBM Research White Paper.
tributed environment can potentially benefit from themu2] A. Gupta, B. Liskov, and R. Rodrigues. One hop lookupspfeer-
since they also need to do extra reliability checks. Our ex- to-peer overlays. INinth Workshop on Hot Topics in Operating
periences also reveal that reliability-induced problems o YSems (HOtOS1X), 2003. _ _
cur almost two orders of magnitude more frequently th&s) S: !y, A- Rowstron, and P. Druschel. Sqirrel: A décalized

.. . . o peer-to-peer web cache. Rroceedings of the 21st Symposium on
node joins/leaves, which makes active monitoring neces- principles of Distributed Computing (PODC), 2002.

sary and important for other systems such as peer-to-peajf. JANET web Cache Service. http://wwwcache.ja.net.

_ Our security measures consist of CIaSS'f'Cat'On' r348) National Laboratory for Applied Network Research (NNR). Ir-
limiting, and privilege separation. They provide a model cache project. http://www.ircache.net/.
for other Web-accessible services. For example, somgiaf Network Systems Group, Princeton University. CoDeeNGDN
the security mechanisms we are developing are suitable on PlanetLab. http:/codeen.cs.princeton.edu.
for ISPs to deploy on their own networks to detect mi§L7] K.Park, Z. Wang, V. Pai, and L. Peterson. CODNS: MasimyS
behaving customers before problems arise. Other systems 9€/2ys via cooperative lookups. Technical Report TR-680-0

.. Princeton University Computer Science Department, Fe®420

that allow open access to Web resources may face sim l% . .

. . L. . N. Provos and P. Honeyman. Detecting steganograpmtenbon
situations, and may pe able to adopt similar mechanisms.” e intemnet. I1SOC NDSS 02, Feb. 2002.

.Our eXpe”e_ncels_ with CoDeeN and the ‘_jata W_e have ?RJ] M. Rabinovich, J. Chase, and S. Gadde. Not all hits agated
tained on availability can serve as a starting point for de- equal: cooperative proxy caching over a wide-area netwdokn-
signers of future systems. We demonstrate that effective puter Networks and ISDN Systems, 30(22-23):2253-2259, 1998.
monitoring is critical for system proper operation, and sB0] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Snigire
curity measures are important for preventing the system A scalable content-addressable network.Ptoceedings of ACM

from beina abused SIGCOMM’01, Aug. 2001.
9) [21] R. Rodrigues, B. Liskov, and L. Shrira. The design of hust

peer-to-peer system. [Fenth ACM S GOPS European Workshop,
Acknowledgments 0

This research is supported in part by DARPA contraiep] A. Rowstron and P. Druschel. Pastry: Scalable, disteih ob-
F30602—00—2—0561. We thank our shepherd, Atul Adya, ject location and routing for Iarge-scalt_e p_eer-to-peetems. In
for his guidance and helpful input. We also thank our ;g:séﬁfﬂhfd:j?g;a;?gzlgggrgggef%g',\%anz%“gf Systems Plat-
anonymous reviewers for their valuable comments on irf%] Speedera. http:/fwww.speedera.com.

proving this paper. [24] 1. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Baish-

REferenCES nan. Chord: A scalable peer-to-peer lookup service forrate
applications. IrProceedings of ACM S GCOMM 2001, San Diego,
[1] A.Adya, W. J. Bolosky, M. Castro, G. Cermak, R. ChaikenRJ California, Aug. 2001.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watte25] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design catfera-
hofer. FARSITE: Federated, available, and reliable stifag an tions for distributed caching on the internet.| hternational Con-
incompletely trusted environment. Froceedings of the Fourth ference on Distributed Computing Systems, pages 273284, 1999.

g@%%téf; on Operating Systems Design and Implementation, [26] L. Wang, V. Pai, and L. Peterson. The Effectiveness afjuest
€c. ’ Redirecion on CDN Robustness. Pnoceedings of the Fifth Sym-
[2] Akamai. Content Delivery Network. http://www.akanm@im. posiumon Operating Systems Design and Implementation, Boston,

[3] A.Baggio, G. Ballintijn, M. van Steen, and A. S. TanenbalEffi- MA, December 2002.
cient tracking of mobile objects in Glob&he Computer Journal, [27] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. ia,
44(5):340-353, 2001. and H. M. Levy. On the scale and performance of cooperative we

[4] BOPM. Blitzed Open Proxy Monitor proxy caching. InSymposium on Operating Systems Principles,
http://lwww.blitzed.org/bopm/. pages 16-31, 1999.

