
IEEE MELECON 2004, May 12-15,2004, Dubrovnik, Croatia

A Closer Look at a Content Delivery Network
Implementation

B. Molina, V. Ruiz, I. Alonso C. E. Palau, J.C. Guerri, M. Esteve
Communication Department, Polytechnic University of Valencia (UPV)

C/ Camino de Vera s/n 46022 Valencia, Spain
Phone:+34963877301

Abstract -- Success in Internet applications involves user
interactions whose quality is mainly affected by application
response time. Content Delivey Networks (CDNs) have
shortly appeared as a distributed solution to serve content
faster than contacting a centralized server. Their
effectiveness has been showed by larger com panies such as
Akamai and Speedera. However, there is currently a certain
gap about implementations issues of this technology, and
only arquitectural designs and performance reports are
published. This article tries to describe a CDN from a
different point of view, paying much attention on the
implementation process of a CDN.

I. INTRODUCTION

With the explosive growth of the World Wide Web,
popular web sites receive an enormous share of Internet
traffic. These sites have a competitive motivation to offer
better service to their clients at lower cost. For this
reason, there has been currently an increasing trend
towards placing content (globally or partially) in content
delivery networks or using P2P schemas.
A Content Delivery Network (CDN) is an overlay
network on top of the Internet which pushes content
closer to end users. It is achieved by strategically placing
servers, called surrogates, next to these users and serving
them the desired content. The surrogates act typically as
intelligent and transparent proxy caches that retrieve
content previously from the origin server before
responding. As the origin server is less accesed, backbone
traffic is reduced and network bandwith is efficiently
used. Besides, load can be balanced among the servers.
Existing work on CDNs has primarily focused on
techniques for efficiently redirecting user requests to
appropriate surrogates to reduce request latency and
balance load, and placement strategies to place server
replicas in order to achieve better performance. Little
attention has been paid to implementation issues of a
CDN, although many CDN service providers like Akamai
[I] offer some ‘overview’ whitepapers, they hide the real
implementation as a private secret and fundamental key
of their business success. This paper tries to provide some
implementation hints to establish a CDN basis.
The rest of the paper is structured as follows. Section 2
introduces the motivation and previous work. In section 3
we present our CDN model architecture with the
description of the main building blocks from an

\

Fax: +34 963877309

implementional point of view. The paper finishes with the
conclusions and future work.

11. MOTIVATION AND RELATED WORK

A CDN is a global scale-out approach attempting to
reduce netwok latency by avoidance of congestion paths.
Leading CDN companies have placed from hundreds up
to thousands of servers throughout the world, being able
to serve content from a nearby surrogate. How to
correctly deploy and manage such huge content networks
is a case study in this article.
Previous research has focussed on the performance of
CDNs, which is largely determined by its ability to direct
client requests to the most appropriate server [2]. Some
studies address the DNS effectiveness, paying attention
on the incurred overhead in the process [3]. There are
other studies that evaluate the accuracy of the server
selection algorithm at choosing the optimal server [4].
Recently, some analytical models have been proposed to
test the behaviour of a CDN and its performance [5].
However, very little has been done at implementing a real
(and free for study) CDN. PRISM testbed architecture of
AT&T Labs describes basic functionality of a streaming
oriented CDN [6]. Globule is probably the most current
reference for an open CDN nowadays, and includes
various interesting and descriptive published articles [7].
Our approach is less specific in a certain sense, as it tries
to put some clearness before coming into details. We
firmly think that this design step between description and
implementation, though often not considered, is really
important.

111. CONTENT DISTRIBUTION ARCHITECTURE

A. General architecture

G. Peng [8] proposes the architecture shown in Fig. 1,
which comprises six basic elements. The relationships
between blocks are as follows: the origin server delegates
its URI namespace to the request routing system (I), and
publishes content (2) to be distributed to the remote
surrogates (3) by the distribution system. A client
requests a content from what he perceives to be the origin
server, but his request is treated by the request routing
system (4) which redirects him to the optimum surrogate
server (5). The surrogate servers periodically send

0-7803-827 1 -4/04/$20.00 02004 IEEE 685

Authorized licensed use limited to: BME OMIKK. Downloaded on March 18,2010 at 07:39:33 EDT from IEEE Xplore. Restrictions apply.

information to the accounting system (6), which
summarizes it in detail statistics and sends it as feedback
to the origin server (7) and the request routing system (8).

1
4

Figure 1 . General architecture of a CDN

B. Integrating the tasks inside real processes

The above architecture suffers from its abstract overview
at implementation time. One has to convert the blocks
into real objects to be programmed. Furthermore, it is
essential to define all the tasks on each functional
module, as well 3s their relationship and temporalization.
Let’s start from the following sequence of actions that
takes place in a content transaction.

The client will connect to a portal, e.g.
www.porta1. corn, through a web browser. A portal
consists of a set of surrogates that build together a
CDN.
The request is processed by the authoritative DNS
server, which is responsible to map the name
www.portal.com into at least one IP address. This is
the best point to introduce the Request Routing
System, and is mostly used by current CDN
companies. In fact, the DNS server is nothing but an
interface: another process, call it Redirector, is the
one in charge for determining the optimal surrogate.
The process Redirector is mainly composed by an
algorithm that accepts input parameters and produces
a response, tipically a list of 1P addresses. The
choice of an appropiate server depends on client
proximity, server overhead and network congestion.
Server overhead and network congestion implies
some type of continuous monitorization, for
example, through SNMP. This is addressed by
another process, say SNMP Monitor, responsible for
capturing periodical information of the servers and
the network.
The client will retrieve a list of IP addresses
decrementally ordered by optimal performance
estimated by the Redirector process. Once the client
enters the portal from one of the surrogates, it has to
select a content. This content is typically in a
multimedia format and is delivered streamlined by a
media server. So we need both a web server and a
media server.
Once the desired content is selected by a user, a new
resolution phase is needed, as this selected content
supposes a new input parameter. It is also important
to note that target web surrogates could be different

from target media surrogates. The resolution phase
takes place at HTTP level, acting the first contacted
surrogate as interface.
In order to distribute the content in a streamlined
multimedia format, some kind of plug-in is required
inside the browser, such as Realplayer, QuickTime
or, in an open way, a simple Java applet. This plug-in
connects to the media server in order to retrieve the
content.

0

C. A closer look at the components

Once the processes have been basically described, it is
time to study feasible ways of implementation. Though
there are possibly many interesting tools in the business
market, the open approach of the CDN suggests the
search for open protocols and solutions.
Following the previous order and obviating the client
browser, let’s start with the DNS server. The function of
our DNS is to simply map CDN name servers into CDN
identifiers. Once a client request for a certain website
arrives at the DNS server, it filters it depending on the
content: if the site is associated to a certain CDN, then the
DNS server obtains the corresponding CDN identifier and
resends the request to the Redirector module. Otherwise,
the request can be forwarded to a local DNS server
following the hierarchical DNS operation.
The Redirector is a key process of the whole system, as is
the one in charge of deciding an adequate surrogate for
each client request. There are two different functional
modes, though similar, related with the number of input
parameters that the included algorithm supports. In the
first mode, which takes place at DNS resolution phase,
the Redirector module retrieves the CDN identifier and a
client IP address. The latter parameter (IP address) is at
this stage unnecessary if only scalability is targeted. The
second mode takes place after the client has selected the
content. This time the surrogate that is serving him has to
interact in background with the Redirector module to
retrieve an optimal surrogate for serving this content,
which is a key parameter in the selection strategy.
Now it is also important to serve content from a nearby
surrogate in order to obtain a low response time;
therefore, client proximity is estimated and taken into
account. If the CDN environment remains local (iCDN)
and the number of surrogates is not considerable, a
simple way of calculating proximity consists of sending
pings from each surrogate to the client. The algorithm
used to balance load among the surrogates is based on [9]
but takes as input parameter a linear combination of
available server resources, such as CPU utilization,
memory usage and number of established connections.
After that, an assignation probability weigth is targeted to
all surrogates of the portal. If all servers are equally
loaded within a time interval, each of them will serve a
client request with the same probability (l/Ns). On the
contrary, there is also an admission control routine: if a
surrogate is overloaded above an established limit, it will
not be considered in the algorithm.

686

Authorized licensed use limited to: BME OMIKK. Downloaded on March 18,2010 at 07:39:33 EDT from IEEE Xplore. Restrictions apply.

http://www.portal.com

The SNMP Monitor captures status information from the
surrogates. This information is of two types: on the one
hand, the monitor stores data about available resources in
each portal or surrogate (memory, CPU utilization and
number of connections); on the other hand, the monitor
tracks information about network status between clients
and portals. Whereas the first type of data is periodically
readed, the second type is asynchronously requested from
the Redirector module each time a client issues a request
to the CDN.
The surrogates or portals act as CDN entry points for the
clients and are in charge of serving them the desired
content. The portals store static content (web pages) and
generate dynamic content. Once a portal receives a client
request for a streaming media content, it firstly interacts
with the Redirector module to obtain an optimum
surrogate IP address. After that, the portal generates an
applet that contains a media player and sends it to the
client, including the IP address of the optimum server.
The client then initiates the applet and reproduces the
multimedia content.
The CDN Manager is responsible for initializing all CDN
parameter values, as well as managing how and where to
store content according to a certain policy. That includes
cache time control, content transfers between portals,
content inclusion, content deletion, etc.

D. Database design

Any system that stores and bases its behaviour on stored
data (at least partially) must include an effective design of
its database structure. The database design is highly
dependent of the desired content to be published. For this
article, we will assume that content is oriented to e-
learning applications. For other applications, design may
vary significantly. In the case of our CDN, there are
various important .databases associated to the different

modules of the architecture. There is a global content
database that includes three data tables:
- table-lessons: it includes some important

information for reference (the title of the lesson, the
correspondent subject, faculty and teacher).

- lessons-CDN: it associates a lesson with a portal.
- copies-lessons: it indicates which surrogate has an

available copy of a certain lesson.
The first two data tables of the content database are
remotely replicated on each surrogate, so that each
surrogate has local knowledge of the available content in
the CDN. The SNMP Monitor has its own database to
store all the information obtained by the SNMP agents
etiher periodically -CPU usage, used memory and
connections - or asynchronously - pings and network
hops. Note that ping mechanisms may suppose a problem
if a client incorporates a firewall that rejects ICMP
messages The redirection algorithm, as part of the
Redirector Module, also has its own database to store
values of server load and server proximity.

E. Data exchange between the components

A well performance of a CDN significantly depends on
the correct communication of each process of the system.
This communication takes place in form of messages,
whose exchange is illustrated in Fig. 2.
Two different routes can be distinguished: a DNS
resolution that redirects a client to a portal using a load
balancing algorithm (4 steps), and a portal resolution
phase when the client has already entered a portal and is
going to select a streamlined multimedia content from a
list of available ones (7 steps). If no server is available, an
empty list is sent and an error message is forwarded to the
client. Besides these messages that occur in a content
transaction, there are additional ones related to
management tasks, such as content transfers, cache
control, etc.

9 Bncontent

: JDBC

Figure 2. Data exchange among architectural modules

687

Authorized licensed use limited to: BME OMIKK. Downloaded on March 18,2010 at 07:39:33 EDT from IEEE Xplore. Restrictions apply.

E. Some intermediate results

Though our CDN is still in deployment stage, some
theoretical results as well as practical ones can be
presented in this article. Table I shows mean values
for two types of operations where a small web page
is requested. The first operation implies a request
without going through our CDN architecture,
whereas the second one traverses our Redirector
module. Note that the latter is significantly slower,
as the 'redirector' delay supposes about 80% of the
total delay experienced by a user. However, this is
due to the extra time used in sending HTTP-SOAP
messages (similar as in web services), not in the
algorithm itself.
Table I1 shows a simulation result that tests the
balancing capability of the redirection algorithm.
Five initially equal-loaded surrogates representing a
CDN have to deal with a set of arriving client
requests (from 50 up to 500). The table shows for
two surrogates the mean number of connections
that they have received as well as the mean
standard deviation. As can be seen, the Redirector
module balances between servers. If one surrogate
would be initially more loaded, it would have
received less connections compared to the others
(supposing that all of them have the same power).

TABLE I.
MEAN TIME MEASUREMENTS FOR A CONTENT TRANSACTION

WITH AND WITHOUT CDN

Transference I 19,67524
DNS I 13,0641

TABLE 11.
MEAN NUMBER OF CONNECTIONS RECEIVED BY TWO

SURROGATES AND THEIR STANDARD DEVIATION.

IV. CONCLUSIONS

The excitement that surrounds modern technologies
sometimes overshadows associated implementation
and management issues. Current Content
Distribution Networks are one of those technologies
that commonly remain in private property for their
business potential. Therefore, some stages of their

design and implementation phases stay unknown.
This article has attempted to put some clarity in a
practical way to build a CDN, identifying the main
building blocks and the means they interact
exchanging messages..
Appart from clients, surrogates that serve content
as well as a CDN Manager are required. The
surrogates behave as web or media servers, and
must include logging activity to be managed by the
acounting system of the CDN. The CDN Manager
owns a redirector module which uses an algorithm
to choose an optimum surrogate for each client.
This algorithm suposses a trade-off among server
proximity, network congestion and content
availability. Besides redirection capacity, the CDN
Manager is also in charge of managing the whole
system. Most of the monitorization is addresed by
an independent SNMP process that periodically
scanns portal parameters. Network distances
between clients and surrogates are measured in
terms of latency (ping) and network hops (TTL)
within an adjustable balanced equation. As our
working environment corresponds to a campus
intranet, we have control of clients and network
equipment so that firewalling does not become a
drawback. In a real scenario with filtering activity,
however, firther considerations h y e to be
considered, such as BGP routing information
mostly used by current CDNs. This is an open issue
that will be treated in future work.

V. REFERENCES

Akamai Technologies, http://www.akamai.com
J. Kangashaju, K. W. Ross and J.W Roberts. Performance
Evaluation of Redirection Schemes in Content
Distribution Networks. 5'h International Workshop on Web
Caching and Content Distribution, Lisbon (Portugal), June
2000.
A. Shaikh, R. Tewari and M. Agrawal. On the
effectiveness of DNS-based server selection. IEEE
Infocom'Ol, Anchorage (USA), April 2001.
K. L Johnson, J.F. Carr, M . S . Day and M . F . Kaashoek.
The measured performance of content distribution
networks. 5'h International Workshop on Web Caching and
Content Distribution, Lisbon (Portugal), June 2000.
B. Krishnamurthy, C. Wills and Y . Zhang. On the use and
performance of content delivery networks. ACM Sigcomm
Internet Measurements Workshop 2001, San Diego
(USA), August 200 1.
C. Cranor et al. Enhanced Streaming Services in a content
distribution network. IEEE Internet Computing July-Agost
200 1. pp 66-75.
G. Pierre, M. van Steen. Globule: a platform for self
replicating Web documents. In Proceedings of the gLh
lnternational Conference on Protocols for Multimedia
Systems, LNCS 2213, pages 1-1 1, Oct. 2001.
G. Peng. "CDN: Conienf Distribution Nehvorx-". January
2003. Experimental Computer Systems Lab. Technical
Reports (TR-125)
M. Castro, M. Dwyer and M. Rumsewicz. '' Load
balancing and control for distributed World Wide Web
servers ", Proceeding sof the 1999 IEEE Intemaiional
Conference on Control Applicaiions, Kohala Coast-Island
of Hawaii, USA, August22-27, 1999

688

Authorized licensed use limited to: BME OMIKK. Downloaded on March 18,2010 at 07:39:33 EDT from IEEE Xplore. Restrictions apply.

http://www.akamai.com

