
A Survey and Evaluation of Data Center Network Topologies

Brian Lebiednik, Aman Mangal
{blebiednik3, amanmangal}@gatech.edu

School of Computer Science
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Niharika Tiwari
ntiwari6@gatech.edu

School of Electrical and Computer Engineering
College of Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Abstract—Data centers are becoming increasingly popular for
their flexibility and processing capabilities in the modern
computing environment. They are managed by a single en-
tity (administrator) and allow dynamic resource provisioning,
performance optimization as well as efficient utilization of
available resources. Each data center consists of massive com-
pute, network and storage resources connected with physical
wires. The large scale nature of data centers requires careful
planning of compute, storage, network nodes, interconnection
as well as inter-communication for their effective and efficient
operations. In this paper, we present a comprehensive survey
and taxonomy of network topologies either used in commercial
data centers, or proposed by researchers working in this space.
We also compare and evaluate some of those topologies using
mininet as well as gem5 simulator for different traffic patterns,
based on various metrics including throughput, latency and
bisection bandwidth.

1. Introduction

A data center is a facility used to house computer
systems and associated components, such as telecommuni-
cations and storage systems [1]. They are key enabler for
cloud computing to provide Software-as-a-service (SaaS),
Infrastructure-as-a-service (IaaS) for online web services,
big data computing, large simulations etc. Today’s data
center network (DCN) contains thousands of compute nodes
with significant network bandwidth requirements. Compa-
nies like Amazon, Google and Microsoft are building large
data centers for cloud computing [2] to keep up with
application demands. Recent trends show companies like
Dropbox, Apple embracing the move to build their own
private cloud in order to gain better control, security and
higher efficiency [3], [4]. The popularity of cloud, scale of
data centers and desire to achieve highest level of application
performance requires careful planning of compute, storage
and the interconnection network or topology.

While data centers offer tremendous benefits, bandwidth
demands are doubling every 12-15 months as shown in
Figure 1. A number of recent trends drive this growth. Many
data center applications require bandwidth intensive one-to-

one, one-to-several (e.g. distributed file systems [5]), one-
to-all (e.g. application data broadcasting), or all-to-all (e.g.
MapReduce) [6] communication. Data set sizes are continu-
ing to explode with more photo/video content, logs, and the
proliferation of internet-connected sensors. As a result, net-
work intensive data processing pipelines must operate over
ever-larger data sets. However, today, deployment of even
the highest-end enterprise network equipment only delivers
50% of the available bandwidth. The vital challenges faced
by the legacy DCN architecture trigger the need for new
DCN architectures, to accommodate the growing demands
of the cloud computing paradigm.

Figure 1: Aggregate server traffic in Google’s Data Centers

In this paper, we present history and taxonomy of var-
ious DCN topologies that have been proposed so far and
how they have advanced the state-of-the-art technology to
overcome aforementioned challenges. The main focus while
designing the DCN architecture, has been scalability, cost,
latency, extensiblity. Further, we have implemented Google
Fat Tree [7], Facebook Fat Tree [8] and DCell [9] on two
different network simulators - gem5 [10] and mininet [11].
We present our evaluation results and compare latency and
throughput metrics for different network traffic patterns.
With this work, we hope to present a general overview of
various DCN topologies, as well as experimental results to
corroborate our analysis.

This paper is organized as follows. Section 2 elaborates
on general architecture of data centers along with illustrating

1

ar
X

iv
:1

60
5.

01
70

1v
1 

 [
cs

.D
C

] 
 5

 M
ay

 2
01

6



Figure 2: Legacy DCN Architecture

terms that are used frequently in this space. Section 3
explains fundamental differences in topologies for DCN
compared to Network on Chip (NoCs). We provide summary
of various topologies that have been used in commercial data
centers or proposed by researchers in Section 4. Taxonomy
of DCN topologies is presented in Section 5. Section 6
presents simulation results from our experiments on both
gem5 and mininet. Finally, we discuss our conclusion and
future work in Section 7.

2. Background

Data Center Networks (DCN) today, are typically based
on the three tier, hierarchical, tree based architecture as
shown in figure 2. It has a core tier at the root of the
tree, an aggregation layer in the middle and edge tier at the
leaves of tree. A group of hosts (mostly 16/32) is connected
to one switch, called ToR switch (Top of Rack), building
the edge (access) layer of the hierarchical tree structure.
Core layer and aggregation layer uses high end switches
aggregating the traffic coming from the lower layers. Rout-
ing is performed by traversing up the tree until the lowest
common ancestor and then, down the tree to reach to the
final destination. There exists redundant paths among two
hosts in the network allowing packet delivery in case of
switch failures. Unlike Network on Chip (NoCs), data center
hosts and switches implement much more complex protocols
to ensure reliability of communication. We discuss some of
the most widely used protocol as follows.

2.1. Ethernet

Ethernet is a data link layer protocol to send packets
(frames) from one point to another point (host or switch), di-
rectly connected to each other. It provides best effort service
based on collision detection (CD) without any flow control.
Frames are dropped if the queues are full at the receiver
without notifying the sender. Further, Ethernet switches are
similar to a NoC crossbar and implement FIFO model for
packet processing.

2.2. TCP/IP

IP is a network layer protocol to ensure routing of
packets from one host to any other host in the network.

TCP runs on top of IP layer and implements: (a) flow
control to prevent receiver’s buffer from overflowing, (b) re-
transmission to ensure reliable data transfer, and (c) conges-
tion control to minimize packet loss. Note that data centers,
therefore, only implement end to end flow control and there
is no mechanism to ensure point to point (i.e. link level)
packet delivery as Ethernet only provides best effort service.

2.3. Over-subscription

Many data center designs introduce over-subscription as
a means to lower the total cost of the design. We define
the term over-subscription to be the ratio of the worst-case
achievable aggregate bandwidth among the end hosts to
the total bisection bandwidth of a particular communication
topology. An over-subscription of 1:1 indicates that all hosts
may potentially communicate with arbitrary other hosts at
the full bandwidth of their network interface. An over-
subscription value of 5:1 means that only 20% of avail-
able host bandwidth is available for some communication
patterns. Although data centers with over-subscription of
1:1 are possible, the cost for such designs is typically
prohibitive, even for modest-size data centers [7].

3. Comparison with NoCs

Data Center Network topologies are inspired from the
world of Network on Chip (NoC). However, there are some
key differences. We highlight some of them as below -

• High Radix Routers: Data centers typically employ
high radix routers in order to utilize more path
diversity to achieve higher throughput. The number
of links is not a concern in comparison to on chip
networks, as space is an inexpensive commodity.

• Link Bandwidths: In off chip networks, the band-
width available usually differ among links belonging
to different levels (tiers) in the hierarchy. This allows
the number of downlinks at a router to exceed the
number of uplinks. Hence, to equalize total incoming
and outgoing bandwidth, link capacity is usually
seen to increase as we go up the hierarchy.

• Routing Algorithms: NoCs commonly tend to be
two/three dimensional and hence, adopt dimensional

2



routing such as XY routing, turn model based rout-
ing. Whereas, off chip networks tend to use algo-
rithms such as ECMP (Equal Cost Multipath Rout-
ing) to make use of redundant paths in the network.

• Flow Control: Off chips networks do not perform
any kind of link level flow control unlike NoCs as
discussed in section 2. A packet may get dropped
when output output buffers are full.

• Routing delay and Link Latency: Both routing
delay and link latency tend to be typically higher in
off chip networks, merely due to much larger size of
the components. That is why, diameter for off chip
topology is typically smaller compared to NoCs.

4. History of Data Center Networks

In this section, we describe some of the data center
network (DCN) topologies that have been proposed over the
time. We have organized all of these topologies on a timeline
based on when the corresponding paper was published, as
shown in figure 3.

1953 Clos Topologies for Telephony Networks [12]

1985 Fat Tree for NoCs [13]

1994 Hierarchical Interconnection Networks [14]

1999 Random Networks [15]

2008 Google Fat Tree [7]

2008 DCell [9]

2009 BCube [16]

2009 MDCube [17]

2010 Scafida [18]

2011 BCN - Bidimensional Compound Networks [19]

2012 Jellyfish [20]

2013 F10 - Fault Tolerant Engineered Network [21]

2014 Facebook Fat Tree [8]

2015 Update on Google Fat Tree [22]

Figure 3: Timeline of DCN Topologies

4.1. Fat Tree Topology

More than 50 years ago, Charles Clos proposed non-
blocking Clos network topologies for telephone circuits [12]
that delivers high bandwidth. Many of the commercial data
center networks adopt a special instance of clos topologies
called Fat Tree [13]. FT was originally proposed for on

chip networks (NoCs) organizing processors in a complete
binary tree as show in Figure 4. Each Processor is connected
to one router (switching node) with a duplex link (two
channels/links - one uplink and other downlink). Packet
routing is also highly simplified and requires only 2 log(n)
space for destination. Any node can be reached from any
other node by traversing a unique path through the common
ancestor. Fat Tree topologies are popular for their non-
blocking nature, providing many redundant paths between
any 2 hosts. Such topologies are later used to build fast and
efficient super computers such as BlackWidow [23] along
with successful use in commercial data centers [7], [8].

Figure 4: Fat Tree for NoCs (taken from [13])

4.2. Google Fat Tree

Google implemented a slight modification of Fat Tree
topology to interconnect commodity Ethernet switches in or-
der to produce scalable large data centers [7]. The topology
consists of k-port routers along with commodity compute
nodes at the leaves of the tree as shown in figure 5. The
basic building block of the data center is called a pod. A
Fat Tree consists of k pods, each containing two layers of k/2
switches. Each k-port switch in the lower layer is directly
connected to k/2 hosts. Each of the remaining k/2 ports is
connected to k/2 of the k ports in the aggregation layer of
the hierarchy. There are (k/2)2 k-port core switches. Each
core switch has one port connected to each of the k pods.

Figure 5: Google Fat Tree Topology (taken from [7])

Routing in Fat Tree is implemented as follows. Each
flowlet takes a unique path out of all possible paths to reach

3



the common ancestor while avoiding reordering of packets.
A flowlet is a collection of TCP segments (packets) sent
in a quick succession. After reaching the common ancestor,
it traverses downwards taking the only possible path. This
design allows to build the data centers using commodity
switches instead of very expensive routers reducing the
overall cost significantly. It can use all the available redun-
dant paths to send packets between two nodes while also
benefiting from adaptive routing.

4.3. DCell

DCell is a server-centric hybrid DCN architecture where
one server is directly connected to many other servers [9].
A server in a DCell is equipped with multiple Network
interface cards (NICs). The DCell follows a recursively build
hierarchy of cells as shown in Figure 6. A cell0 is the basic
unit and building block of DCell topology arranged in mul-
tiple levels, where a higher level cell contains multiple lower
layer cells. A cell0 contains n servers and one commodity
network switch. The network switch is only used to connect
the server within a cell0. A cell1 contains k = n+ 1 cell0
cells, and similarly a cell2 contains k ∗n+1 cell1. A Dcell
can be built recursively resulting in more than 3.26 million
servers with an average diameter of less than 10 (k=3, n=6).
Routing in Dcell follows a divide and conquer approach. For
packets to reach from a source host to destination host, it
needs to traverse from source to common ancestor DCell,
a link connecting the previous level DCells and finally,
to the destination. The exact path can be found similarly
in a recursive fashion. The protocol is further extended
to implement fault tolerant routing (DFR) to cope with
link or node failures. Overall, DCell is highly scalable and
fault tolerant topology however, it provides low bisection
bandwidth.

Figure 6: DCell1 network when n=4, composed of 5 DCell0,
forming a fully connected graph. (taken from [9])

4.4. BCube

BCube network architecture takes a server-centric ap-
proach to produce a modular data center (MDC) using
commodity switches. It places intelligence on MDC servers

and works with low end COTS mini switches. There are
two types of devices in BCube: servers with multiple ports
and switches that connect to a constant number of servers.
It is recursively defined structure with BCube0 simply
being n servers connected to an n-port switch. BCubek is
constructed with n BCubek−1 having nk− 1 switches each
connecting same index server from all the BCubek−1. With
8-port mini-switches, it can support up to 4096 servers in
one BCube3. The figure 7 shows a BCube1 with n=4 with 2
levels. Source based routing is performed using intermediate
nodes as packet forwarder ensuring, decreasing hamming
distance between each consecutive intermediate host to the
destination. Periodic search for optimal path is performed
in order to cope with failures in the network. One-to-all,
all-to-one and all-to-all traffic can also be routed by using
redundant (k+1) ports at each hosts.

Figure 7: BCube Topology (taken from [16])

4.5. MDCube

In order to build a large data center, MDCube [17] uses
BCube [16] as its building block and allows to interconnect
hundreds and thousands of BCube containers in 1-D or 2-D
fashion to achieve high network capacity as shown in figure
8. It connects two containers in the same dimension (i.e.
row or column) with a direct link to form a basic complete
graph among all containers similar to a Flattened Butterfly.
Single path routing is performed topology by finding a pair
of switches in an intermediate container.

Figure 8: A 2-D MDCube Topology constructed from 9=3*3
BCube1 containers with n=2, k=1 (taken from [17])

4



4.6. Scafida

Scafida [18] is a asymmetric scale-free data center net-
work topology to achieve short distance, high error toler-
ance and incremental build. Scale-free networks have two
important properties - small diameter and high resistance
to random failures. The same set of properties are highly
desirable in data center network topologies. Scafida pro-
vides methodologies to construct such a topology for data
centers while making reasonable modifications to original
scale-free network paradigm [15]. Scafida consists of het-
erogeneous set of switches and hosts in terms number of
ports/links/interfaces. The topology is built incrementally
by adding a node and then, randomly connecting all the
available ports to existing empty ports. The number of ports
are limited by the available ports on a node unlike original
scale-free networks. Such a network provides high fault
tolerance. Results show that even if 20% of the switches
fail, more than 90% of the server pairs still have 2 disjoint
paths. Examples of a scale-free topology is shown in figure
9. No routing algorithm is proposed yet for such networks
though, the idea of random construction of a data center
looks promising. However, wiring, handling failure of nodes
with large degree, routing algorithm are still major issues
that needs to be addressed.

(a) (b)

Figure 9: (a) Scale Free Network (SFN), (b) SFN with
maximal degree 5 (taken from [18])

4.7. HCN & BCN

Hierarchical Irregular Compound Network (HCN) and
Bidimensional Compound Network (BCN) [19] are dual-
port-server based, symmetric, regular and extensible archi-
tectures. HCN is recursively defined structure. HCN(n, 0)
is the base case, consisting of n dual port servers, each of
them connected to n port switch on one of the two ports.
Each of the server will have 1 port free, resulting in n total
free ports in HCN(n, 0). A HCN(n, 1) is then, constructed
using n HCN(n, 0) modules by connecting (n − 1) out
of n available ports of each HCN(n, 0) with rest of the
(n− 1) HCN(n, 0). Each of the HCN(n, 0) module will
have 1 port left free and allowing a further extension using
total of n free ports in HCN(n, 1). In general, a high-
level HCN(n, h) employs n modules of HCN(n, h − 1)

consisting of n free ports for further extending the topology.
An example of HCN(4, 2) is shown in figure 10.

Figure 10: HCN(n=4, h=2) (taken from [19])

BCN is multi-level irregular compound graph recursively
defined in the first dimension, and a level one regular
compound graph in the second dimension. BCN(α, β, 0)
has (n = α + β) where only α ports are available for
further extension similar to HCN. These α servers having
the α ports available are called master servers. In the
second dimension, it is a closed structure (i.e. cannot be
extended further) and constructs a fully connected graph
of BCN(α, β, h) modules on the available αh · β servers,
called slave servers. This provides flexibility in extensiblility
of the topology as necessary by controlling the parameters α
and β. Routing in BCN is performed similar by recursively
finding an intermediate link that interconnects the two BCN
modules where source and destination are located.

4.8. Jellyfish

Jellyfish is a flexibility and high bandwidth oriented
network topology consisting of n port switches. Each switch
has r ports connected to other switches and rest of the
k = (n−r) ports connected to hosts. The links are added by
randomly connecting a pair of switches that are not already
connected (i.e. not neighbors) and having at least one free
port. The topology can be further extended by removing
existing (x, y) link and adding (x, p1) and (x, p2) link where
p1, p2 are free ports on the new switch. Such random graphs
have higher throughput because they have low average path
lengths in comparison to symmetric topologies such as
fat tree. However, routing, packaging issues needs to be
addressed for practical use of the topology.

4.9. F10 (Fault Tolerant Engineered Network)

F10 [21] is a simple modification to Fat Tree topology
to gain better fault tolerance properties. The key weakness
in the standard Fat Tree is that all sub-trees at level i are
wired to the parents at level i + 1 in an identical fashion.
A parent attempting to detour around a failed child must
use roundabout paths (with inflation of at least four hops)

5



because all paths from its rest of the children to the target
sub-tree use the same failed node. The AB FatTree in
F10 solves this problem by defining two types of sub-trees
(called type A and type B) that are wired to their parents in
two different ways as show in figure 11. With this simple
change, a parent with a failed child in a type A sub-tree can
detour to that sub-tree in two hops through the parents of
a child in a type B sub-tree (and vice versa), because those
parents do not rely on the failed node.

Figure 11: F10 Topology, blue links are part of A sub-tree,
red links are part of B sub-tree (taken from [21])

4.10. Facebook Fat Tree

Facebook deployed a version of Fat Tree topology in
order to achieve high bisection bandwidth, rapid network
deployment and performance scalability to keep up with the
agile nature of applications running in the data centers. It
consists of pods, a standard unit of network as show in
figure 12. The uplink bandwidth of each TOR is 4 times
(4*40G = 16*10G) the downlink bandwidth for each server
connected to it. To implement building-wide connectivity, it
created four independent ”planes” of spine switches [Tier 3
switch], each scalable up to 48 independent devices within
a plane. Border Gateway Protocol (BGP4) is used as a con-
trol protocol for routing whereas a centralized controller is
deployed to be able to override any routing paths whenever
required, taking a ”distributed control, centralized override”
approach. In order to use all the available paths between 2
hosts, ECMP (Equal Cost Multiple Path) routing with flow
based hashing is implemented.

Figure 12: Facebook Fat Tree Topology (taken from [8])

5. Taxonomy of DCN Topologies

In this section, we present taxonomy of the DCN topolo-
gies that we have discussed so far. We believe that following

criterion are subset of degrees of freedom that are available
to a data center network architecture while designing a new
topology or choosing from existing topologies.

5.1. Build Approach

Data centers can be built either by adding links between
2 nodes randomly or in deterministic pattern (see Table 1).
Random topologies have lower diameter but suffer from
complex routing algorithms and wiring issues.

Build
Approach Description Examples

Random Add links between nodes
using a randomized algorithm Scafida, Jellyfish

Deterministic Add links between nodes in a
deterministic pattern

Fat Tree, DCell,
BCN, BCube

TABLE 1: DCN Topologies based on build approach

5.2. Server-Centric v/s Switch-Centric

Some DCN topologies have hosts that take part in
routing and forwarding of packets. It requires them to have
additional logic of forwarding and routing traffic. Software
routing may have degraded performance and can affect the
applications running on the hosts.

Description Examples
Server-
Centric

Both routers and hosts
forward traffic

DCell, MDCube,
Scafida, BCN

Switch-
Centric Only routers forward traffic Fat Tree,

Jellyfish

TABLE 2: Server v/s Switch Centric DCN Topologies

5.3. Direct v/s Indirect

Description Examples

Direct All routers have host(s)
attached to them

DCell, MDCube,
Scafida, BCN

Indirect Routers may not have host(s)
attached to them Fat Tree

TABLE 3: Direct v/s Indirect DCN Topologies

5.4. Symmetric v/s Asymmetric

Symmetric DCN architectures allow uniform packaging
and simplified wiring of the topology. Examples of symmet-
ric topologies are Fat Tree, MDCube, HCN whereas DCell,
Scafida and Jellfish are asymmetric architectures. Note that
deterministic topologies may not necessarily be symmetric
such as DCell.

5.5. Extensibility

HCN, BCN, Scafida, Jellyfish are a few examples of
extensible DCN architectures. The size of these topologies
can be easily increased without any upper limit. However,
size of Fat Tree and DCell topologies is limited due to
limited number of available ports on the switches.

6



5.6. Deployment Methodology

Data centers are built using switches and hosts. A mod-
ular data center system is a portable method of deploying
data center capacity.

Deployment
Methodology Description Examples

Modular Portable building block
(shipping container) BCube, MDCube

Non-Modular Switch and host (native) Fat Tree, DCell,
Jellyfish, Scfida

TABLE 4: Topologies based on deployment methodology

5.7. Over-subscription

Typically, DCN topologies are over-subscribed in order
to reduce the total cost of design as discussed in section 2.

Over-
subscription Description Examples

Non-
blocking

no over-subscription
(over-subscription = 1) Fat Tree

Blocking over-subscription < 1 DCell, MDCube,
BCN, Scafida, Jellyfish

TABLE 5: Over-subscription based DCN Topologies

5.8. Number of Tiers (Levels)

DCN architectures may be defined recursively in which
case, the number of levels are not preset and increases as
the size of topology increases. Further details are available
in Table 6.

Number
of Tiers Description Examples

Flat Only single tier topology Scafida, Jellyfish
Fixed Predefined number of tiers Fat Tree

n-tier Number of tiers vary as size
of topology increases

DCell, BCN,
MDCube

TABLE 6: Number of Tiers based DCN Topologies

6. Evaluation

In this section, we present an experimental comparison
of Google Fat Tree, Facebook and DCell topologies using
gem5 and mininet.

6.1. Topologies Evaluated

Google Fat Tree. We implement the Google Fat Tree
Topology for (k = 4). It consists of 8 servers (hosts) and
20 routers (switches) as follows: 4 core, 8 aggregate, 8 edge
switches. Each edge switch could support multiple hosts for
further testing. The limiting factor for this topology is the
network diameter which is greater than rest of the topologies

DCell. We implement 5 cell, 2 levels DCell topology for
evaluation purposes. Each cell has 4 hosts and an edge
switch to connect to the servers (hosts). In case of mininet,
linux hosts have trouble forwarding packets as they see
each interface on the same network (broadcast domain). An
additional switch, therefore, was added as the edge switch
to ensure that the hosts could reach every destination. In
order to test all of the links in the topology simultaneously,
we place four hosts in each cell with a total of five cells.
The limiting factor for the DCell topology is the single
edge switch in each cell. The single edge switch creates
a bottleneck in the cell limiting the performance of the
topology.

Facebook Fat Tree. We implement a smaller version of
Facebook data center. The smaller version has 48 edge
routers and 4 aggregate routers. The limiting factor for the
Facebook design is the bottleneck created by connecting 48
edge routers to the 4 aggregate routers. When a 48 port
switch or router has all of the connections to other switches
that have servers attached then it will be tough for that
switch to process packets as fast as they arrive. Theoreti-
cally, the saturation throughput for a switch or routers with
N ports as N approaches infinity is 2 -

√
2 or around 58.6%.

6.2. Traffic Patterns

We have evaluated the above topologies with a subset
of following traffic patterns -

• Uniform Random Traffic: Each packet is sent to
any other node with equal probability.

• Bit Complement Traffic: Each node exchanges
packets with a node on the opposite side of the net-
work. To compute the destination address, a bit wise
inversion is carried out of the source coordinates.
This traffic provides a well balanced traffic across
the network.

• Bit Reverse Traffic: A message originating from a
host having host address as B1B2 . . . Bn is destined
for a host with the address BnBn−1 . . . B1.

• Tornado Traffic: Each node i sends traffic to(
i+ N−1

2

)
modN where N is total number of hosts.

6.3. Mininet

For evaluation, we used Mininet as our network emulator
and POX as the OpenFlow controller. The exact code can be
found at https://github.com/lebiednik/ICNmininet. Mininet
was chosen because of the ease of use with Python. POX
was chosen because it provided the best network conver-
gence rates among the OpenFlow controllers tested (RIPL-
POX, OpenDaylight, and Floodlight).

Originally, we began programming the topologies with
routers instead of switches but with even a scaled version
of the Google Fat Tree topology there are forty networks or
broadcast domains. Thus, for each router (programmed as
its own class of host in Mininet), forty commands (network

7

https://github.com/lebiednik/ICNmininet


address and next hop) would need to be entered before
the router knows about every destination in the network.
Similarly,for DCell and Facebook topologies, the routers
would need to know about 35 and 240 networks respectively.

Tests were performed with iperf and ping. The iperf
command can calculate the bandwidth available between any
two hosts by creating a client-server Transmission Control
Protocol (TCP) connection. The ping command can not only
provide connectivity results in the network but can also be
used for latency measures. Ping also provides the capability
to determine the size of the packet that you are sending on
the network which allows sending larger packets to emulate
sending larger files. All tests were run on a dedicates 64-bit
Ubuntu server with 8 vCPUs and 15 GB memory.

Bisection Bandwidth Testing. To test the bisection band-
width, the team used iperf to create Transmission Control
Protocol (TCP) connections between bit complement hosts.
The iperf command provides a variable time connection
between two end devices, one will act as the host and
the other the server. The command provides a readout of
the client to server connection in bits per second (bps).
Since iperf acts as a client to server connection, the test
would designate one side as the client side and the other
as the server side and then switch the sides to pass as
much data across the bisection as possible. Each test was
then averaged and then provided a percentage of the total
bisection bandwidth to normalize the data.

0

25

50

75

100

DCell Facebook Fat Tree
Topology

B
is

ec
tio

n 
B

an
dw

id
th

Figure 13: Percentage of Bisection Bandwidth Achieved

Figure 13 shows that the Google Fat Tree topology
slightly outperforms the Facebook topology. The test was
run several times and the Google and Facebook topology
continually showed performance in the 95% range on all
links. The DCell Topology provided around 95% utilization
on most links but with the bottleneck (many connections
to the same router) close to the hosts, one link would show
around 78% total utilization dropping the average utilization
greatly. Since DCell is using an edge switch or the multi-
honed (multiple connections to the same host) server, this
result would make sense as the server would have greater
difficulty multiplexing on all of the links simultaneously
while an edge switch would create a bottleneck in the
network.

Packet Size Testing. The Maximum Transmission Unit
(MTU) is the largest packet allowed on the network links.
Based off old Ethernet standards, the largest packet allowed
on the network is 1500 bytes. Routers and hosts drop
anything larger to prevent ”Ping of Death” attacks and to
maintain the standard. For comparison, the normal ping
packet size is 82 bytes. Network designers would know
the average packet size that they would want to design for
their networks. For example, moving large amounts of data
within a data center would require lower latency with larger
packets. The design would need to prevent bottlenecks.
Whereas a network that has a smaller average packet size
could have potential bottlenecks as long as the link speeds
were fast enough.

● ● ●

●
●

●

●

●

●

●

● ●

●

● ●

0.0

0.5

1.0

1.5

0 500 1000 1500
Packet Size (bytes)

La
te

nc
y Topology

● DCell

Facebook

Fat Tree

Figure 14: Average Latency (ms) vs Packet Size(bytes)

Figure 14 shows the average latency of each of the
networks versus the size of the packet placed on the network.
As expected the Facebook topology provides the lowest
latency in the network because of the diameter of the
network. The DCell topology begins to bottleneck when
the size of the packet increases over 200 bytes. The DCell
Topology still provides less latency. The Facebook topology
displays the lowest latency despite the size of the network
and the potential for bottlenecks. The Facebook topology
has a shorter overall diameter but the aggregation of 48 edge
routers with hosts to four aggregate routers has the potential
for a large bottleneck when compared with the Google Fat
Tree which has equal links between all of the devices in the
topology.

Network Saturation Testing. To test the networks during
periods of high utilization, hosts pinged their bit comple-
ment with a maximum packet size for a three times as
long as the other tests. The purpose of this was two-fold.
First, it would provide a greater amount of time for the
network to reach saturation, much like test in NoCs perform.
Second, the team wanted to test the bisection capacity with
the largest packets sizes available on the network.

Figure 15 shows the average latency for packets sent in
over the course of the 30 second test. The DCell topology
slightly outperforms the Facebook topology by less than
a tenth of a millisecond. Based on the diameter of the
network and the hops each packet would take, Facebook

8



0.0

0.5

1.0

1.5

DCell Facebook Fat Tree
Topology

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy

Figure 15: Latency Test for 30 seconds at MTU(ms)

should outperform DCell. This test could show that Face-
book reaches its saturation and starts under-performing due
to the bottleneck at the core level. The bottleneck of the
Facebook topology is much bigger than the bottleneck of
the DCell with an average of 12 connections from the edge
level to the aggregate level. Whereas, DCell has 4 hosts
connected to one router at the edge level. The diameter of the
Google Fat Tree topology causes the higher latency in the
network. Based off these results, the topology diameter has a
significant impact on the latency but so does any bottlenecks
in the network.

0

10

20

30

DCell Facebook Fat Tree
Topology

A
ve

ra
ge

 P
ac

ke
ts

 s
en

t

Figure 16: Packets Sent During Stress Test per host

Overall, during the stress test, each host was able to
send over 30 packets apiece successfully. Figure 16 provides
the average number of packets sent by each host in each
topology. The Facebook hosts sent almost one packet more
per host during the period than the Google Fat Tree. So
in comparison, the Facebook topology was able to send 48
more packets or 72KB with the 10 Mbps links.

Scalability Testing. To further evaluate the network perfor-
mance for each of the topologies, the team began adding
more hosts to the edge switches. This scalability testing is
important as it helps to determine the optimal number of
servers that the data center engineer would want to place
under each edge switch.

As shown in Figure 17, each topology provides less
latency at different amounts of hosts. The team ran the
simulations several times at each of the points and obtained
similar results. Although at the bases state Fat Tree has

●

●

●

●

●

●

0

2

4

6

0 300 600 900 1200
Number of Hosts

La
te

nc
y Topology

● DCell

Facebook

Fat Tree

Figure 17: Traffic Latency versus number of hosts(ms)

greater latency, by the time that there are a similar amount
of hosts on the network, Google Fat Tree has less latency
than the Facebook topology. All of the topologies have an
interesting peak latency in the 50 to 300 host range but then
level off towards an equilibrium. The Facebook topology
outperforms all others from 144 hosts onward.

6.4. Evaluation Using gem5

gem5 [10] is a simulation platform for computer-system
architecture research. It came as a merger of the m5 simu-
lator [24] from the University of Michigan Ann Arbor and
the GEMS simulator [25] from the University of Wisconsin
Madison. gem5 uses garnet to simulate the interconnection
network for NoCs. We modeled Google Fat Tree and DCell
topology on Garnet network simulator [26] by modifying it
to emulate the working of an actual off chip network, as
closely as possible.

First, the router delay is increased to five cycles by
increasing the number of stages in the router pipeline. The
link latency was increased to 10 cycles to model higher link
propagation latency. We used table based routing, which
is already available in Garnet. We further modified the
algorithm to choose one of the redundant paths randomly.
For example, in Google Fat Tree topology, a packet has more
than one possible path while going up the tree. However,
once the packet reaches the core router, it has only one avail-
able path going down the tree. We choose a path randomly
while going up the tree to achieve higher link utilization. An
important difference is that off chip networks have a much
higher number of queues than on chip networks, and so we
simulate that by having number of virtual channels as equal
to 100. We also consider one flit per packet, to simplify
our assumptions. In this work, We attempt to implement
dropping of packets as is done commonly in data center
networks. Packets are randomly dropped and re transmitted
by the sender if an available outgoing queue is not available.
We plan to compare the results of this implementation with
having the packets wait for their turn, to see latency benefit
in each, as the future work of this project. We ran several
simulations on Google Fat Tree topology and Microsoft’s

9



DCell topology, the results of which have been discussed
below.

Google Fat Tree: Throughput across different traffic
patterns: . Figure 18 shows the values of packet reception
rate (total packets received/num-cpus/sim-cycles) at differ-
ent injection rates for four different traffic patterns - uniform
random, bit reverse, bit complement, and tornado. It can be
seen in this figure that, almost all traffic patterns except
tornado show similar reception rate. The reason for this is,
in the Google Fat Tree topology, if the destination host is
outside of the pod belonging to the source, it will take the
same number of hops, for all cases, except tornado. Hence,
all patterns present results similar to that of uniform random
pattern. However, in the case of tornado, we see a much
better reception rate for the reason being that due to nature
of tornado traffic, it is possible that some of the source and
destination pairs are within the same pod, which results in
a much higher reception rate.

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ●

● ● ● ● ● ●

0.0

0.2

0.4

0.6

0.0 0.3 0.6 0.9
Injection Rate (Packets/s)

T
hr

go
ut

pu
t (

P
ac

ke
ts

/C
yc

le
s)

Traffic_Pattern

● Bit Complement

Bit Reverse

Tornado

Uniform Random

Figure 18: Google Fat Tree: Throughput across different
traffic patterns

Google Fat Tree: Packet Reception Rate for different
number of virtual channels:. Figure 19 shows the packet
reception rate for Google Fat tree topology across three
different number of virtual channels - 20, 50 and 100. The
packet reception rate does not necessarily get better with
more number of virtual channels, the reason for this being,
there is no contention delay to begin with, due to having
multiple number of VCs.

DCell: Throughput across different traffic patterns:.
Figure 20 hows the throughput values obtained for DCell
topology over four different traffic patterns. Again, Tornado
shows much better throughput as compared to other traffic
patterns. The reason for this is that tornado traffic pattern
does a much better job of distributing the traffic among the
links in the network, whereas the other traffic patterns, tend
to strain few links more than other.

Throughput Comparison of Google Fat Tree and DCell.
Figure 21 shows the throughput values of Google topology
to be much higher than that of DCell. This is as expected
because the Google topology has a much higher ratio of

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

0.0

0.2

0.4

0.0 0.3 0.6 0.9
Injection Rate (Packets/s)

T
hr

ou
gh

pu
t (

pa
ck

et
s/

cy
cl

e)

Number_VCs

● 100

20

500

Figure 19: Google Fat Tree: Packet Reception Rate for
different number of virtual channels

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

● ● ●
●

0.0

0.2

0.4

0.6

0.0 0.3 0.6 0.9
Injection Rate (Packets/s)

T
hr

go
ut

pu
t (

P
ac

ke
ts

/C
yc

le
s)

Traffic_Pattern

● Bit Complement

Bit Reverse

Tornado

Uniform Random

Figure 20: DCell: Throughput across different traffic pat-
terns

number of links to number of hosts. DCell essentially has
one switch per module, no matter how many servers are
there per module, and so that causes a bottleneck in DCell
performance.

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
Injection Rate (Packets/s)

T
hr

go
ut

pu
t (

P
ac

ke
ts

/C
yc

le
s)

Topology

● DCell

Google Fat Tree

Figure 21: Throughput Comparison of Google Fat Tree and
DCell

Throughput Comparison of DCell for 20 hosts and 42
hosts. Figure 22 shows throughput values for two different
values of n. For n=4, the number of hosts are 20, and
for n=6, the number of hosts are 42. We simulate the
throughput for both topologies across two different traffic
patterns - uniform random, and bit complement traffic. The

10



saturation throughput reduces, as we increase number of
hosts, because, as discussed above, the number of servers per
module switch increases, essentially overloading the switch.
This results in a lower throughput as we increase number
of hosts. This result is consistent with the conclusion that
DCell is essentially a recursive topology, which scales by
increasing the number of levels in the topology, as opposed
to increasing the number of servers within one level. This
results serves to prove this fact.

●

●

●

●

●

●

●

●

●
● ● ●

● ● ● ● ●
●

●
●

●

0.0

0.1

0.2

0.3

0.0 0.3 0.6 0.9
Injection Rate (Packets/s)

T
hr

go
ut

pu
t (

P
ac

ke
ts

/C
yc

le
s)

Traffic_Pattern

● Bit Complement − 20 host

Bit Complement − 42 host

Uniform Random − 20 host

Uniform Random − 42 host

Figure 22: Throughput Comparison of DCell for 20 hosts
and 42 hosts

DCell: Latency comparison across various different traf-
fic patterns. Figure 23 shows the latency comparison be-
tween different traffic patterns of DCell. As discussed in the
throughput comparison, tornado better distributes the traffic
across the network, and hence, presents better latency than
the other traffic patters.

●

●

●

●

●

●

●

●

●
● ● ●

● ● ● ● ●
●

●
●

●

0.0

0.1

0.2

0.3

0.0 0.3 0.6 0.9
Injection Rate (Packets/s)

T
hr

go
ut

pu
t (

P
ac

ke
ts

/C
yc

le
s)

Traffic_Pattern

● Bit Complement − 20 host

Bit Complement − 42 host

Uniform Random − 20 host

Uniform Random − 42 host

Figure 23: DCell: Latency comparison accross various dif-
ferent traffic patterns

7. Conclusion & Future Work

By testing the Google Fat Tree and DCell topologies in
both gem5 and Mininet, we were able to produce similar
results. This helps to verify the results of testing multiple
topologies. Both testing in Mininet and gem5 showed that
the Google Fat Tree topology outperforms the DCell topol-
ogy in throughput.

While our research produced some interesting results in
regards to the topologies, there is certainly more work to

be done. For our Mininet simulations, we would like to
build a controller that is not only able to function with
network loops but also provides load balancing. Currently,
only the controllers used in production environments, such
as Google, are able to control networks with loops and
provide load balancing. Most other controllers that work
with loops simply use the Spanning Tree Protocol to shut
off links that may be redundant.

Implementing the off-chip topologies in gem5 simulator,
gave us a lot of insight into the working of the internconnec-
tion network in an off chip topology. We have successfully
implemented and simulated several of the parameters of
data center networks, on garnet. The next steps with regards
to implementation in garnet, could be the consideration of
scalability of DCN as well as the implementation of packet
dropping in garnet, which is a common phenomenon in data
center topologies.

During the scaling of hosts testing, Mininet provided
interesting results. The team has not previously seen Mininet
topologies with such large amount of hosts. Further investi-
gation is required to understand why latency in the network
increase drastically for up to 300 hosts and then decreases.
The results from the Amazon EC2 server were consistent
even when the tests were run several times. While Facebook
provided the best overall latency, there are several instances
where the other topologies outperform it in regards to the
same or approximately the same number of hosts.

There are other traffic patterns that other studies have
used to evaluate their designs. In one of the papers, the
authors used Stride traffic patterns to mimic their datacenter
traffic. This would be another good comparison for the
datacenter topologies. We used bit complement for most of
the tests in Mininet because it had the same hop count as it
would have with the unaltered datacenter.

We have presented a comprehensive survey and taxon-
omy of Data Center Network topologies that have been
proposed in the history of off chip networks. Even though
a significant number of topologies have been explored, only
a few such as Fat Tree, BCube have been implemented
in practice in order to achieve high bisection bandwidth.
Today, the principle bottleneck in large scale cluster is often
inter-node communication bandwidth. To keep up with this
demand, we need scalable network topologies that can fulfill
significantly high bandwidth requirements while keeping the
cost low.

We have also presented a comparison of a few data
center topologies using mininet and Gem5 simulator. We
plan to complete our analysis as part of (short term) as part
of our future work.

Acknowledgments

Many thanks to Prof Tushar Krishna for guiding us on
every step of the project, for providing us with computing
resources for our simulations and experiments, for giving
us periodic feedback and for the amazing course offered as
CS8803-ICN at Georgia Tech, where we acquired all the
background to allow us to write this paper. Also thanks to

11



the reviewers of our paper the provided us with several good
points on where to continue our testing and improve our
paper. Specifically, one reviewer asked for more information
on how to we were going to conduct our testing in Mininet.
Prof Krishna also asked for us to scale the number of cores
which we did in Mininet.

References

[1] (2015) Data center. https://en.wikipedia.org/wiki/Data center.

[2] (2009) Tech Titans Building Boom. http://spectrum.ieee.org/
green-tech/buildings/tech-titans-building-boom.

[3] (2016) Inside Project McQueen, Apples plan to build its own cloud.
http://venturebeat.com/2016/03/17/apple-cloud-project-mcqueen/.

[4] (2016) Scaling to exabytes and beyond. https://blogs.dropbox.com/
tech/2016/03/magic-pocket-infrastructure/.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM,
2003, pp. 29–43.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM Computer Com-
munication Review, vol. 38, no. 4, pp. 63–74, 2008.

[8] A. Andreyev. (2014, Nov.) Introducing data center fabric, the
next-generation facebook data center network. [Online]. Available:
https://code.facebook.com/posts/360346274145943/

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a
scalable and fault-tolerant network structure for data centers,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 75–
86, 2008.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al.,
“The gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, 2011.

[11] R. L. S. de Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. Ro-
drigues Prete, “Using mininet for emulation and prototyping software-
defined networks,” in Communications and Computing (COLCOM),
2014 IEEE Colombian Conference on. IEEE, 2014, pp. 1–6.

[12] C. Clos, “A study of non-blocking switching networks,” Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, 1953.

[13] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” Computers, IEEE Transactions on, vol. 100, no. 10,
pp. 892–901, 1985.

[14] P. T. Breznay and M. A. Lopez, “A class of static and dynamic
hierarchical interconnection networks,” in Parallel Processing, 1994.
Vol. 1. ICPP 1994. International Conference on, vol. 1. IEEE, 1994,
pp. 59–62.

[15] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: a high performance, server-centric network ar-
chitecture for modular data centers,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 63–74, 2009.

[17] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “Mdcube: a high
performance network structure for modular data center interconnec-
tion,” in Proceedings of the 5th international conference on Emerging
networking experiments and technologies. ACM, 2009, pp. 25–36.

[18] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network inspired
data center architecture,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 5, pp. 4–12, 2010.

[19] D. Guo, T. Chen, D. Li, Y. Liu, X. Liu, and G. Chen, “Bcn: expansible
network structures for data centers using hierarchical compound
graphs,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp.
61–65.

[20] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 12), 2012, pp. 225–238.

[21] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 13), 2013, pp. 399–412.

[22] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter
rising: A decade of clos topologies and centralized control in google’s
datacenter network,” in Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication. ACM, 2015, pp.
183–197.

[23] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The blackwidow high-
radix clos network,” in ACM SIGARCH Computer Architecture News,
vol. 34, no. 2. IEEE Computer Society, 2006, pp. 16–28.

[24] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The m5 simulator: Modeling networked systems,”
IEEE Micro, no. 4, pp. 52–60, 2006.

[25] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s general execution-driven multiprocessor simulator (gems)
toolset,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4,
pp. 92–99, 2005.

[26] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A
detailed on-chip network model inside a full-system simulator,” in
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on. IEEE, 2009, pp. 33–42.

12

https://en.wikipedia.org/wiki/Data_center
http://spectrum.ieee.org/green-tech/buildings/tech-titans-building-boom
http://spectrum.ieee.org/green-tech/buildings/tech-titans-building-boom
http://venturebeat.com/2016/03/17/apple-cloud-project-mcqueen/
https://blogs.dropbox.com/tech/2016/03/magic-pocket-infrastructure/
https://blogs.dropbox.com/tech/2016/03/magic-pocket-infrastructure/
https://code.facebook.com/posts/360346274145943/

	1 Introduction
	2 Background
	2.1 Ethernet
	2.2 TCP/IP
	2.3 Over-subscription

	3 Comparison with NoCs
	4 History of Data Center Networks
	4.1 Fat Tree Topology
	4.2 Google Fat Tree
	4.3 DCell
	4.4 BCube
	4.5 MDCube
	4.6 Scafida
	4.7 HCN & BCN
	4.8 Jellyfish
	4.9 F10 (Fault Tolerant Engineered Network)
	4.10 Facebook Fat Tree

	5 Taxonomy of DCN Topologies
	5.1 Build Approach
	5.2 Server-Centric v/s Switch-Centric
	5.3 Direct v/s Indirect
	5.4 Symmetric v/s Asymmetric
	5.5 Extensibility
	5.6 Deployment Methodology
	5.7 Over-subscription
	5.8 Number of Tiers (Levels)

	6 Evaluation
	6.1 Topologies Evaluated
	6.2 Traffic Patterns
	6.3 Mininet
	6.4 Evaluation Using gem5

	7 Conclusion & Future Work
	References

