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a b s t r a c t

With the significant advances in Information and Communications Technology (ICT) over the last half
century, there is an increasingly perceived vision that computing will one day be the 5th utility (after
water, electricity, gas, and telephony). This computing utility, like all other four existing utilities, will
provide the basic level of computing service that is considered essential to meet the everyday needs of
the general community. To deliver this vision, a number of computing paradigms have been proposed,
of which the latest one is known as Cloud computing. Hence, in this paper, we define Cloud computing
and provide the architecture for creating Clouds with market-oriented resource allocation by leveraging
technologies such as Virtual Machines (VMs). We also provide insights on market-based resource
management strategies that encompass both customer-driven service management and computational
risk management to sustain Service Level Agreement (SLA)-oriented resource allocation. In addition, we
reveal our early thoughts on interconnecting Clouds for dynamically creating global Cloud exchanges
and markets. Then, we present some representative Cloud platforms, especially those developed in
industries, along with our current work towards realizing market-oriented resource allocation of Clouds
as realized in Aneka enterprise Cloud technology. Furthermore, we highlight the difference between High
Performance Computing (HPC) workload and Internet-based services workload.We also describe ameta-
negotiation infrastructure to establish global Cloud exchanges and markets, and illustrate a case study of
harnessing ‘Storage Clouds’ for high performance content delivery. Finally, we conclude with the need for
convergence of competing IT paradigms to deliver our 21st century vision.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Computing is being transformed to a model consisting of
services that are commoditized and delivered in a manner similar
to traditional utilities such aswater, electricity, gas, and telephony.
In such a model, users access services based on their requirements
without regard to where the services are hosted or how they
are delivered. Several computing paradigms have promised to
deliver this utility computing vision and these include cluster
computing, Grid computing, and more recently Cloud computing.
The latter term denotes the infrastructure as a ‘‘Cloud’’ fromwhich
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businesses andusers are able to access applications fromanywhere
in the world on demand. Thus, the computing world is rapidly
transforming towards developing software formillions to consume
as a service, rather than to run on their individual computers.
At present, it is common to access content across the Internet

independently without reference to the underlying hosting
infrastructure. This infrastructure consists of data centers that
are monitored and maintained around the clock by content
providers. Cloud computing is an extension of this paradigm
wherein the capabilities of business applications are exposed as
sophisticated services that can be accessed over a network. Cloud
service providers are incentivized by the profits to be made by
charging consumers for accessing these services. Consumers, such
as enterprises, are attracted by the opportunity for reducing or
eliminating costs associated with ‘‘in-house’’ provision of these
services. However, since cloud applications may be crucial to the
core business operations of the consumers, it is essential that the
consumers have guarantees from providers on service delivery.
Typically, these are provided through Service Level Agreements
(SLAs) brokered between the providers and consumers.
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Providers such as Amazon, Google, Salesforce, IBM, Microsoft,
and Sun Microsystems have begun to establish new data centers
for hosting Cloud computing applications in various locations
around the world to provide redundancy and ensure reliability in
case of site failures. Since user requirements for cloud services
are varied, service providers have to ensure that they can
be flexible in their service delivery while keeping the users
isolated from the underlying infrastructure. Recent advances in
microprocessor technology and software have led to the increasing
ability of commodity hardware to run applications within Virtual
Machines (VMs) efficiently. VMs allow both the isolation of
applications from the underlying hardware and other VMs, and
the customization of the platform to suit the needs of the end-
user. Providers can expose applications running within VMs, or
provide access to VMs themselves as a service (e.g. Amazon Elastic
Compute Cloud) thereby allowing consumers to install their own
applications.While convenient, the use of VMs gives rise to further
challenges such as the intelligent allocation of physical resources
for managing competing resource demands of the users.
In addition, enterprise service consumers with global opera-

tions require faster response time, and thus save time by distribut-
ing workload requests to multiple Clouds in various locations at
the same time. This creates the need for establishing a comput-
ing atmosphere for dynamically interconnecting and provisioning
Clouds frommultiple domainswithin and across enterprises. There
aremany challenges involved in creating such Clouds and Cloud in-
terconnections.
Therefore, this paper discusses the current trends in the

space of Cloud computing and presents candidates for future
enhancements of this technology. This paper is primarily divided
into two parts. The first part examines current research issues and
developments by:

• presenting the 21st century vision of computing and describing
various computing paradigms that have promised or are
promising to deliver this grand vision (Section 2),
• differentiating Cloud computing from two other widely ex-
plored computing paradigms: Cluster computing andGrid com-
puting (Section 3),
• focusing on VM-centric Cloud services and presenting an
architecture for creating market-oriented Clouds using VMs
(Section 4),
• providing insights on market-based resource management
strategies that encompass both customer-driven service man-
agement and computational risk management to sustain SLA-
oriented resource allocation (Section 5),
• revealing our early thoughts on interconnecting Clouds for
dynamically creating global Cloud exchanges and markets
(Section 6), and
• comparing some representative Cloud platforms, especially
those developed in industries along with our Aneka enterprise
Cloud technology (Section 7).

The second part introduces our current work on Cloud
computing which include:

• realizing market-oriented resource allocation of Clouds as
realized in Aneka enterprise Cloud technology and highlighting
the difference between High Performance Computing (HPC)
workload and Internet-based services workload (Section 8),
• incorporating a meta-negotiation infrastructure for QoS man-
agement to establish global Cloud exchanges andmarkets (Sec-
tion 9), and
• creating 3rd party cloud services based on high performance
content delivery over commercial cloud storage services
(Section 10).
2. The 21st century vision of computing

With the advancement of modern society, basic essential
services (utilities) are commonly provided such that everyone can
easily obtain access to them. Today, utility services, such as water,
electricity, gas, and telephony are deemed necessary for fulfilling
daily life routines. These utility services are accessed so frequently
that they need to be available whenever the consumer requires
them at any time. Consumers are then able to pay service providers
based on their usage of these utility services.
In 1969, Leonard Kleinrock [1], one of the chief scientists of the

original Advanced Research Projects Agency Network (ARPANET)
project which seeded the Internet, said: ‘‘As of now, computer
networks are still in their infancy, but as they grow up and become
sophisticated, wewill probably see the spread of ‘computer utilities’
which, like present electric and telephone utilities, will service
individual homes and offices across the country’’. This vision of
the computing utility based on the service provisioning model
anticipates the massive transformation of the entire computing
industry in the 21st century whereby computing services will be
readily available on demand, like other utility services available
in today’s society. Similarly, computing service users (consumers)
need to pay providers only when they access computing services.
In addition, consumers no longer need to invest heavily or
encounter difficulties in building and maintaining complex IT
infrastructure. Hence, software practitioners are facing numerous
newchallenges toward creating software formillions of consumers
to use as a service, rather than to run on their individual computers.
The creation of the Internet has marked the foremost milestone

towards achieving this grand 21st century vision of ‘computer
utilities’ by forming a worldwide system of computer networks
that enables individual computers to communicate with any other
computers located elsewhere in theworld. This internetworking of
standalone computers reveals the promising potential of utilizing
seemingly endless amount of distributed computing resources
owned by various owners. As such, over the recent years, new
computing paradigms (shown in Fig. 1) have been proposed
and adopted to edge closer toward achieving this grand vision.
Applications making use of these utility-oriented computing
systems emerge simply as catalysts or market makers, which
brings buyers and sellers together. This creates several trillion
dollars worth of the utility/pervasive computing industry as noted
by Sun Microsystems co-founder Bill Joy [2]. He also indicated ‘‘It
would take time until these markets to mature to generate this
kind of value. Predicting now which companies will capture the
value is impossible. Many of themhave not even been created yet.’’
Grid computing [3] enables the sharing, selection, and aggre-

gation of a wide variety of geographically distributed resources
including supercomputers, storage systems, data sources, and spe-
cialized devices owned by different organizations for solving large-
scale resource-intensive problems in science, engineering, and
commerce. Inspired by the electrical power Grid’s pervasiveness,
ease of use, and reliability [4], the motivation of Grid comput-
ing was initially driven by large-scale, resource (computational
and data)-intensive scientific applications that required more re-
sources than a single computer (PC, workstation, supercomputer)
could have provided in a single administrative domain. Due to
its potential to make impact on the 21st century as much as the
electric power Grid did on the 20th century, Grid computing has
been hailed as the next revolution after the Internet and theWorld
Wide Web.
Peer-to-Peer (P2P) computing allows peer nodes (computers)

to share content directly with one another in a decentralized man-
ner. In pure P2P computing, there is no notion of clients or servers
since all peer nodes are equal and concurrently be both clients and
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Fig. 1. Various paradigms promising to deliver IT as services.
servers. The goals of P2P computing include cost sharing or re-
duction, resource aggregation and interoperability, improved scal-
ability and reliability, increased autonomy, anonymity or privacy,
dynamism, and ad-hoc communication and collaboration [5].
Services computing focuses on the linkage between business

processes and IT services so that business processes can be
seamlessly automated using IT services. Examples of services
computing technologies include Service-Oriented Architecture
(SOA) andWeb Services. The SOA facilitates interoperable services
between distributed systems to communicate and exchange data
with one another, thus providing a uniform means for service
users and providers to discover and offer services respectively. The
Web Services provides the capability for self-contained business
functions to operate over the Internet.
Market-oriented computing views computing resources in

economic terms such that resource users will need to pay resource
providers for utilizing the computing resources [6]. Therefore, it
is able to provide benefits, such as offering incentive for resource
providers to contribute their resources for others to use and
profit from it, regulating the supply and demand of computing
resources at market equilibrium, offering incentive for resource
users to back off when necessary, removing the need for a central
coordinator (during the negotiation between the user and provider
for establishing quality of service expectations and service pricing),
and enabling both users and providers to make independent
decisions to maximize their utility and profit respectively.
Today, the latest paradigm to emerge is that of Cloud

computing [7] which promises reliable services delivered through
next-generation data centers that are built on virtualized compute
and storage technologies. Consumers will be able to access
applications and data from a ‘‘Cloud’’ anywhere in the world on
demand. The consumers are assured that the Cloud infrastructure
is very robust and will always be available at any time. Computing
services need to be highly reliable, scalable, and autonomic to
support ubiquitous access, dynamic discovery and composability.
In particular, consumers indicate the required service level through
Quality of Service (QoS) parameters, which are noted in SLAs
established with providers. Of all these paradigms, the recently
emerged Cloud computing paradigm appears to be the most
promising one to leverage and build on the developments from
other paradigms.
3. Definitions, characteristics, and trends

In order to facilitate a clear understanding of what exactly
is Cloud computing, we compare Cloud computing with two
other recent, widely-adopted or explored computing paradigms:
Cluster Computing and Grid Computing. We first examine the
respective definitions of these three paradigms, then differentiate
their specific characteristics, and finally highlight their recent web
search trends.

3.1. Definitions

A number of computing researchers and practitioners have
attempted to define clusters, Grids, and Clouds [8] in various ways.
Here are some definitions that we think are generic enough to
stand the test of time.
The essence of Pfister’s [9] and Buyya’s [10] work defines

clusters as follows:

• ‘‘A cluster is a type of parallel and distributed system,
which consists of a collection of inter-connected stand-alone
computers working together as a single integrated computing
resource.’’

Buyya defined one of the popular definitions for Grids at the
2002 Grid Planet conference, San Jose, USA as follows:

• ‘‘A Grid is a type of parallel and distributed system that enables
the sharing, selection, and aggregation of geographically
distributed ‘autonomous’ resources dynamically at runtime
depending on their availability, capability, performance, cost,
and users’ quality-of-service requirements.’’

Based on our observation of the essence of what Clouds are
promising to be, we propose the following definition:

• ‘‘A Cloud is a type of parallel and distributed system consisting
of a collection of inter-connected and virtualized computers
that are dynamically provisioned and presented as one or
more unified computing resource(s) based on service-level
agreements established through negotiation between the
service provider and consumers.’’

At a cursory glance, Clouds appear to be a combination of
clusters and Grids. However, this is not the case. Clouds are clearly
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Fig. 2. Google search trends for the last 12 months.

next-generation data centers with nodes ‘‘virtualized’’ through
hypervisor technologies such as VMs, dynamically ‘‘provisioned’’
on demand as a personalized resource collection to meet a
specific service-level agreement, which is established through a
‘‘negotiation’’ and accessible as a composable service via Web
Service technologies such as SOAP and REST.

3.2. Characteristics

A set of characteristics that helps distinguish cluster, Grid
and Cloud computing systems is listed in Table 1. The resources
in clusters are located in a single administrative domain and
managed by a single entity whereas, in Grid systems, resources are
geographically distributed acrossmultiple administrative domains
with their own management policies and goals. Another key
difference between cluster and Grid systems arises from the way
application scheduling is performed. The schedulers in cluster
systems focus on enhancing the overall system performance and
utility as they are responsible for the whole system. On the
other hand, the schedulers in Grid systems called resource brokers,
focusing on enhancing the performance of a specific application in
such a way that its end-users’ QoS requirements are met.
Cloud computing platforms possess characteristics of both

clusters and Grids, with its own special attributes and capabilities
such strong support for virtualization, dynamically composable
services with Web Service interfaces, and strong support for
creating 3rd party, value added services by building on Cloud
compute, storage, and application services. Thus, Clouds are
promising to provide services to users without reference to the
infrastructure on which these are hosted.

3.3. Web search trends

The popularity of different paradigms varies with time. The
web search popularity, as measured by the Google search trends
during the last 12 months, for terms ‘‘cluster computing’’, ‘‘Grid
computing’’, and ‘‘Cloud computing’’ is shown in Fig. 2. From the
Google trends, it can be observed that cluster computing was
a popular term during 1990s, from early 2000 Grid computing
become popular, and recently Cloud computing started gaining
popularity.
Spot points in Fig. 2 indicate the release of news related to Cloud

computing as follows:
A IBM Introduces ‘Blue Cloud’ Computing, CIO Today — Nov 15
2007.

B IBM, EU Launch RESERVOIR Research Initiative for Cloud
Computing, IT News Online — Feb 7 2008.

C Google and Salesforce.com in Cloud computing deal, Siliconre-
public.com — Apr 14 2008.

D Demystifying Cloud Computing, Intelligent Enterprise — Jun 11
2008.

E Yahoo realigns to support Cloud computing, ‘core strategies’,
San Antonio Business Journal — Jun 27 2008.
F Merrill Lynch Estimates ‘‘Cloud Computing’’ To Be $100 Billion
Market, SYS-CON Media — Jul 8 2008.

Other more recent news includes the following:

• Yahoo, Intel and HP form Cloud computing labs, Reseller News
— Jul 29 2008.
• How Cloud Computing Is Changing The World, Pittsburgh
Channel.com — Aug 4 2008.
• SIMtone Corporation Takes Cloud Computing to the Next Level
with Launch of First Wireless, ‘‘Zero-Touch’’ Universal Cloud
Computing Terminal, TMCnet — Sep 8 2008.

4. Market-oriented Cloud architecture

As consumers rely on Cloud providers to supply more of
their computing needs, they will require specific QoS to be
maintained by their providers in order to meet their objectives
and sustain their operations. Cloud providers will need to consider
and meet different QoS parameters of each individual consumer
as negotiated in specific SLAs. To achieve this, Cloud providers can
no longer continue to deploy traditional system-centric resource
management architecture that do not provide incentives for them
to share their resources and still regard all service requests
to be of equal importance. Instead, market-oriented resource
management [11,12] is necessary to regulate the supply and
demand of Cloud resources to achieve market equilibrium (where
supply = demand), providing feedback in terms of economic
incentives for both Cloud consumers and providers, and promoting
QoS-based resource allocation mechanisms that differentiate
service requests based on their utility. In addition, clients can
benefit from the ‘‘potential’’ cost reduction of providers, which
could lead to a more competitive market and thus lower prices.
Fig. 3 shows the high-level architecture for supporting market-

oriented resource allocation in Data Centers and Clouds. There are
basically four main entities involved:

• Users/Brokers: Users or brokers acting on their behalf submit
service requests from anywhere in the world to the Data Center
and Cloud to be processed.
• SLA Resource Allocator: The SLA Resource Allocator acts as
the interface between the Data Center/Cloud service provider
and external users/brokers. It requires the interaction of
the following mechanisms to support SLA-oriented resource
management:
◦ Service Request Examiner and Admission Control: When
a service request is first submitted, the Service Request
Examiner and Admission Control mechanism interprets the
submitted request for QoS requirements before determining
whether to accept or reject the request. Thus, it ensures
that there is no overloading of resources whereby many
service requests cannot be fulfilled successfully due to
limited resources available. It also needs the latest status
information regarding resource availability (from the VM
Monitor mechanism) and workload processing (from the
Service Request Monitor mechanism) in order to make
resource allocation decisions effectively. Then, it assigns
requests to VMs and determines resource entitlements for
allocated VMs.
◦ Pricing: The Pricing mechanism decides how service re-
quests are charged. For instance, requests can be charged
based on submission time (peak/off-peak), pricing rates
(fixed/changing) or availability of resources (supply/demand).
Pricing serves as a basis formanaging the supply and demand
of computing resourceswithin the Data Center and facilitates
in prioritizing resource allocations effectively.
◦ Accounting: The Accountingmechanismmaintains the actual
usage of resources by requests so that the final cost can
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Table 1
Key characteristics of clusters, Grids, and Cloud systems.

Characteristics Systems
Clusters Grids Clouds

Population Commodity computers High-end computers (servers, clusters) Commodity computers and high-end servers
and network attached storage

Size/scalability 100s 1000s 100s to 1000s
Node Operating System (OS) One of the standard OSs (Linux,

Windows)
Any standard OS (dominated by Unix) A hypervisor (VM) on which multiple OSs run

Ownership Single Multiple Single
Interconnection
network|speed

Dedicated, high-end with low
latency and high bandwidth

Mostly Internet with high latency and low
bandwidth

Dedicated, high-end with low latency and high
bandwidth

Security/privacy Traditional login/password-based.
Medium level of privacy –
depends on user privileges.

Public/private key pair based authentication
and mapping a user to an account. Limited
support for privacy.

Each user/application is provided with a
virtual machine. High security/privacy is
guaranteed. Support for setting per-file access
control list (ACL).

Discovery Membership services Centralised indexing and decentralised info
services

Membership services

Service negotiation Limited Yes, SLA based Yes, SLA based
User management Centralised Decentralised and also virtual organization

(VO)-based
Centralised or can be delegated to third party

Resource management Centralized Distributed Centralized/Distributed
Allocation/scheduling Centralised Decentralised Both centralised/decentralised
Standards/inter-operability Virtual Interface Architecture

(VIA)-based
Some Open Grid Forum standards Web Services (SOAP and REST)

Single system image Yes No Yes, but optional
Capacity Stable and guaranteed Varies, but high Provisioned on demand
Failure management
(Self-healing)

Limited (often failed
tasks/applications are restarted).

Limited (often failed tasks/applications are
restarted).

Strong support for failover and content
replication. VMs can be easily migrated from
one node to other.

Pricing of services Limited, not open market Dominated by public good or privately
assigned

Utility pricing, discounted for larger customers

Internetworking Multi-clustering within an
Organization

Limited adoption, but being explored through
research efforts such as Gridbus InterGrid

High potential, third party solution providers
can loosely tie together services of different
Clouds

Application drivers Science, business, enterprise
computing, data centers

Collaborative scientific and high throughput
computing applications

Dynamically provisioned legacy and web
applications, Content delivery

Potential for building 3rd
party or value-added
solutions

Limited due to rigid architecture Limited due to strong orientation for scientific
computing

High potential — can create new services by
dynamically provisioning of compute, storage,
and application services and offer as their own
isolated or composite Cloud services to users
be computed and charged to the users. In addition, the
maintained historical usage information can be utilized
by the Service Request Examiner and Admission Control
mechanism to improve resource allocation decisions.
◦ VMMonitor: The VM Monitor mechanism keeps track of the
availability of VMs and their resource entitlements.
◦ Dispatcher: The Dispatcher mechanism starts the execution
of accepted service requests on allocated VMs.
◦ Service Request Monitor: The Service Request Monitor
mechanism keeps track of the execution progress of service
requests.

• VMs: Multiple VMs can be started and stopped on-demand on
a single physical machine to meet accepted service requests,
hence providing maximum flexibility to configure various
partitions of resources on the same physical machine to
different specific requirements of service requests. In addition,
multiple VMs can concurrently run applications based on
different operating system environments on a single physical
machine since every VM is completely isolated from one
another on the same physical machine.
• Physical Machines: The Data Center comprises multiple
computing servers that provide resources to meet service
demands.
In the case of a Cloud as a commercial offering to enable

crucial business operations of companies, there are critical QoS
parameters to consider in a service request, such as time, cost,
reliability and trust/security. In particular, QoS requirements
cannot be static and may change over time due to continuing
changes in business operations and operating environments. In
short, there should be greater importance on customers since they
pay for accessing services in Clouds. In addition, the state-of-the-
art in Cloud computing has no or limited support for dynamic
negotiation of SLAs between participants and mechanisms for
automatic allocation of resources to multiple competing requests.
Recently, we have developed negotiation mechanisms based on
alternate offers protocol for establishing SLAs [13]. These have high
potential for their adoption in Cloud computing systems built using
VMs.
Commercial offerings of market-oriented Clouds must be able

to:

• Support customer-driven service management based on cus-
tomer profiles and requested service requirements,
• Define computational risk management tactics to identify, as-
sess, andmanage risks involved in the execution of applications
with regards to service requirements and customer needs,
• Derive appropriatemarket-based resourcemanagement strate-
gies that encompass both customer-driven service manage-
ment and computational risk management to sustain SLA-
oriented resource allocation,
• Incorporate autonomic resource management models that ef-
fectively self-manage changes in service requirements to satisfy
both new service demands and existing service obligations, and
• Leverage VM technology to dynamically assign resource shares
according to service requirements.

5. Resourcemanagement strategies formarket-orientedClouds

Since customer satisfaction is the crucial success factor to
excel in the service industry [14], computing service providers
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Fig. 3. High-level market-oriented Cloud architecture.
have to be aware of user-centric objectives and meet them in
order to achieve customer satisfaction. But, many service quality
factors can influence customer satisfaction [14,15]. Hence, we
need to design SLA-oriented resource management strategies for
Data Centers and Clouds that provide personalized attention to
customers, such as enabling communication to keep customers
informed and obtain feedback from them, increasing access and
approachability to customers, and understanding specific needs
of customers. These strategies can also encourage trust and
confidence in customers by emphasizing on the security measures
undertaken against risks and doubts, the credibility of the provider,
and the courtesy towards customers.
Our initial work [16] has also presented examples of how

various elements of utility-based resource management can be
perceived as risks and hence identified risk analysis from the field
of economics as a probable solution to evaluate them. However,
the entire risk management process [17,18] comprises of many
steps and needs to be studied thoroughly so as to fully realize its
effectiveness in managing risks. Hence, we need to first establish
the context of risk management in Data Centers and Clouds, and
then identify the risks involved. Each of the identified risks will
be thoroughly assessed, before deriving appropriate strategies to
manage these risks.
In addition, service requirements of users can change over time

and thus may require amendments of original service requests.
As such, our proposed resource management strategies will be
able to self-manage the reservation process continuously by
monitoring current service requests, amending future service
requests, and adjusting schedules and prices for new and amended
service requests accordingly. Hence, we need to investigate self-
configuring components to satisfy new service requirements, so
that more autonomic and intelligent Data Centers and Clouds can
better manage the limited supply of resources with dynamically
changing service demand. For users, there can be brokering
systems acting on their behalf to select suitable providers
and negotiate with them to achieve ideal service contracts.
Thus, providers also require autonomic resource management to
selectively choose appropriate requests to accept and execute
depending on a number of operating factors, such as the expected
availability and demand of services (both current and future), and
existing service obligations.
Recently, virtualization [19] has enabled the abstraction of

computing resources such that a single physical machine is able
to function as a set of multiple logical VMs. A key benefit of
VMs is the ability to host multiple operating system environments
which are completely isolated from one another on the same
physical machine. Another benefit is the capability to configure
VMs to utilize different partitions of resources on the samephysical
machine. For example, on a physical machine, one VM can be
allocated 10% of the processing power, while another VM can be
allocated 20% of the processing power. Hence, we need to leverage
existing VM technologies so that VMs can be started and stopped
dynamically tomeet the changing demand of resources by users as
opposed to limited resources on a physical machine. In particular,
we need to investigate how VMs can be assigned various resource
management policies catering to different user needs anddemands
to better support the implementation of SLA-oriented resource
allocation for Data Centers and Clouds.

6. Global cloud exchanges and markets

Enterprises currently employCloud services in order to improve
the scalability of their services and to deal with bursts in resource
demands. However, at present, service providers have inflexible
pricing, generally limited to flat rates or tariffs based on usage
thresholds, and consumers are restricted to offerings from a
single provider at a time. Also, many providers have proprietary
interfaces to their services thus restricting the ability of consumers
to swap one provider for another.
For Cloud computing to mature, it is required that the services

follow standard interfaces. This would enable services to be
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Fig. 4. Global Cloud exchange and market infrastructure for trading services.
commoditized and thus, would pave the way for the creation
of a market infrastructure for trading in services. An example
of such a market system, modeled on real-world exchanges, is
shown in Fig. 4. The market directory allows participants to
locate providers or consumers with the right offers. Auctioneers
periodically clear bids and asks received frommarket participants.
The banking system ensures that financial transactions pertaining
to agreements between participants are carried out.
Brokers perform the same function in such a market as they

do in real-world markets: they mediate between consumers and
providers by buying capacity from the provider and sub-leasing
these to the consumers. A broker can accept requests from many
users who have a choice of submitting their requirements to
different brokers. Consumers, brokers and providers are bound to
their requirements and related compensations through SLAs. An
SLA specifies the details of the service to be provided in terms of
metrics agreed upon by all parties, and penalties for meeting and
violating the expectations, respectively.
Such markets can bridge disparate Clouds allowing consumers

to choose a provider that suits their requirements by either
executing SLAs in advance or by buying capacity on the spot.
Providers can use the markets in order to perform effective
capacity planning. A provider is equipped with a price-setting
mechanism which sets the current price for the resource based on
market conditions, user demand, and current level of utilization
of the resource. Pricing can be either fixed or variable depending
on the market conditions. An admission-control mechanism at
a provider’s end selects the auctions to participate in or the
brokers to negotiate with, based on an initial estimate of the
utility. The negotiation process proceeds until an SLA is formed or
the participants decide to break off. These mechanisms interface
with the resource management systems of the provider in order
to guarantee the allocation being offered or negotiated can be
reclaimed, so that SLA violations do not occur. The resource
management system also provides functionalities such as advance
reservations that enable guaranteed provisioning of resource
capacity.
Brokers gain their utility through the difference between the

price paid by the consumers for gaining resource shares and that
paid to the providers for leasing their resources. Therefore, a
broker has to choose those users whose applications can provide
it maximum utility. A broker interacts with resource providers
and other brokers to gain or to trade resource shares. A broker
is equipped with a negotiation module that is informed by the
current conditions of the resources and the current demand to
make its decisions.
Consumers have their own utility functions that cover factors

such as deadlines, fidelity of results, and turnaround time of
applications. They are also constrained by the amount of resources
that they can request at any time, usually by a limited budget.
Consumers also have their own limited IT infrastructure that is
generally not completely exposed to the Internet. Therefore, a
consumer participates in the utility market through a resource
management proxy that selects a set of brokers based on their
offerings. He then forms SLAs with the brokers that bind the latter
to provide the guaranteed resources. The enterprise consumer then
deploys his own environment on the leased resources or uses the
provider’s interfaces in order to scale his applications.
The idea of utility markets for computing resources has been

around for a long time. Recently, many research projects such
as SHARP [20], Tycoon [21], Bellagio [22], and Shirako [23] have
come upwithmarket structures for trading in resource allocations.
These have particularly focused on trading in VM-based resource
slices on networked infrastructures such as PlanetLab. The Gridbus
project has created a resource broker that is able to negotiate
with resource providers. Thus, the technology for enabling utility
markets is already present and ready to be deployed.
However, significant challenges persist in the universal appli-

cation of such markets. Enterprises currently employ conservative
IT strategies and are unwilling to shift from the traditional con-
trolled environments. Cloud computing uptake has only recently
begun and many systems are in the proof-of-concept stage. Regu-
latory pressures alsomean that enterprises have to be careful about
where their data gets processed, and therefore, are not able to em-
ploy Cloud services from an open market. This could be mitigated
through SLAs that specify strict constraints on the location of the
resources. However, another open issue is how the participants in
such amarket can obtain restitution in case an SLA is violated. This
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Table 2
Comparison of some representative Cloud platforms.

Property System
Amazon
Elastic compute cloud (EC2)

Google
App engine

Microsoft
Azure

Sun
Network.com (Sun Grid)

GRIDS Lab
Aneka

Focus Infrastructure Platform Platform Infrastructure Software platform for enterprise
Clouds

Service type Compute, storage (Amazon S3) Web application Web and non-web
application

Compute Compute

Virtualization OS level running on a Xen
hypervisor

Application
container

OS level through
fabric controller

Job management system
(Sun Grid Engine)

Resource manager and scheduler

Dynamic
negotiation of QoS
parameters

None None None None SLA-based resource reservation on
Aneka side.

User access
interface

Amazon EC2 command-line
tools

Web-based
administration
console

Microsoft
windows azure
portal

Job submission scripts,
Sun Grid web portal

Workbench, web-based portal

Web APIs Yes Yes Yes Yes Yes
Value-added
service providers

Yes No Yes Yes No

Programming
framework

Customizable linux-based
Amazon Machine Image (AMI)

Python Microsoft .NET Solaris OS, Java, C, C++,
FORTRAN

APIs supporting different
programming models in C# and
other .Net supported languages
motivates the need for a legal framework for agreements in such
markets, a research issue that is out of scope of themes pursued in
this paper.

7. Emerging Cloud platforms

Industry analysts have made bullish projections on how
Cloud computing will transform the entire computing industry.
According to a recent Merrill Lynch research note [24], Cloud
computing is expected to be a ‘‘$160-billion addressable market
opportunity, including $95-billion in business and productivity
applications, and another $65-billion in online advertising’’.
Another research study by Morgan Stanley [25] has also identified
Cloud computing as one of the prominent technology trends. As
the computing industry shifts toward providing Platform as a
Service (PaaS) and Software as a Service (SaaS) for consumers
and enterprises to access on demand regardless of time and
location, therewill be an increase in the number of Cloud platforms
available. Recently, several academic and industrial organizations
have started investigating and developing technologies and
infrastructure for Cloud Computing. Academic efforts include
Virtual Workspaces [26], OpenNebula [27], and Reservoir [28]. In
this section, we compare six representative Cloud platforms with
industrial linkages in Table 2.
Amazon Elastic Compute Cloud (EC2) [29] provides a virtual

computing environment that enables a user to run Linux-based
applications. The user can either create a new Amazon Machine
Image (AMI) containing the applications, libraries, data and
associated configuration settings, or select from a library of
globally available AMIs. The user then needs to upload the created
or selected AMIs to Amazon Simple Storage Service (S3), before
he can start, stop, and monitor instances of the uploaded AMIs.
Amazon EC2 charges the user for the time when the instance is
alive, while Amazon S3 [30] charges for any data transfer (both
upload and download).
Google App Engine [31] allows a user to run web applications

written using the Python programming language. Other than
supporting the Python standard library, Google App Engine
also supports Application Programming Interfaces (APIs) for the
datastore, Google Accounts, URL fetch, image manipulation, and
email services. Google App Engine also provides a web-based
Administration Console for the user to easily manage his running
web applications. Currently, Google App Engine is free to use with
up to 500MB of storage and about 5 million page views per month.
Microsoft Azure [32] aims to provide an integrated develop-
ment, hosting, and control Cloud computing environment so that
software developers can easily create, host, manage, and scale both
Web and non-web applications through Microsoft data centers.
To achieve this aim, Microsoft Azure supports a comprehensive
collection of proprietary development tools and protocols which
consists of Live Services, Microsoft .NET Services, Microsoft SQL
Services, Microsoft SharePoint Services, and Microsoft Dynamics
CRM Services. Microsoft Azure also supports Web APIs such as
SOAP and REST to allow software developers to interface between
Microsoft or non-Microsoft tools and technologies.
Sun network.com (Sun Grid) [33] enables the user to run Solaris

OS, Java, C, C++, and FORTRAN based applications. First, the user
has to build and debug his applications and runtime scripts in a
local development environment that is configured to be similar to
that on the Sun Grid. Then, he needs to create a bundled zip archive
(containing all the related scripts, libraries, executable binaries and
input data) and upload it to Sun Grid. Finally, he can execute and
monitor the application using the Sun Grid web portal or API. After
the completion of the application, the user will need to download
the execution results to his local development environment for
viewing.
Aneka [34], which is being commercialized throughManjrasoft,

is a .NET-based service-oriented resource management platform.
It is designed to support multiple application models, persistence
and security solutions, and communication protocols such that the
preferred selection can be changed at anytimewithout affecting an
existing Aneka ecosystem. To create an Aneka Cloud, the service
provider only needs to start an instance of the configurable Aneka
container hosting required services on each selected desktop
computer. The purpose of the Aneka container is to initialize
services and acts as a single point for interaction with the rest of
the Aneka Cloud. Aneka provides SLA support such that the user
can specify QoS requirements such as deadline (maximum time
periodwhich the application needs to be completed in) and budget
(maximum cost that the user is willing to pay for meeting the
deadline). The user can access the Aneka Cloud remotely through
the Gridbus broker. The Gridbus broker [35] also enables the user
to negotiate and agree upon the QoS requirements to be provided
by the service provider.

8. Aneka: From enterprise Grids to market-oriented Cloud
computing

We are working towards implementing a market-oriented
Cloud using a .NET-based service-oriented resource management
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Fig. 5. Interaction of servicess in Aneka Cloud environment.
platform called Aneka [34]. Aneka is initially developed as a
3rd generation enterprise Grid technology. Recently, various new
capabilities have been added to exhibit properties and potentials of
the Cloud computing paradigm. An enterprise Grid [36] harnesses
computing resources of desktop computers (connected over an
internal network or the Internet) within an enterprise without
affecting the productivity of their users. Hence, it increases the
amount of computing resources available within an enterprise
to accelerate application performance. This capability can be
combined with other dedicated resources in the enterprise to
enhance the overall system capability and reliability.
To support scalability, the Aneka container is designed to be

lightweight by providing the bare minimum functionality needed
for an Aneka Cloud node. It provides the base infrastructure that
consists of services for persistence, security (authorization, au-
thentication and auditing), and communication (message handling
and dispatching). The Aneka container can host any number of op-
tional services that can be added to augment the capabilities of
an Aneka Cloud node. Examples of optional services are indexing,
scheduling, execution, and storage services. This provides a single,
flexible and extensible framework for orchestrating various appli-
cation models. This section describes how pricing can be imple-
mented in an Aneka Cloud with advanced reservations.

8.1. Market-oriented resource pricing and allocation in Aneka Cloud

To create an Aneka Cloud, we implement a bi-hierarchical
advance reservation mechanism with a Reservation Service at a
master node that coordinates multiple execution nodes and an
Allocation Service at each execution node that keeps track of
the reservations at that node. This architecture was previously
introduced in [13]. To use the Aneka Cloud, the resource user (or
a broker acting on its behalf) first makes advanced reservations
during the reservation phase for resources required at a designated
time in the future. If the reservation phase is successful,
the user/broker can then submit applications later during the
execution phase when the designated time in the future arrives.
Fig. 5 shows that the process of allocating advanced reserva-

tions happens in two levels: the Allocation Service at each execu-
tion node and the Reservation Service at the master node. Both
services are designed to support pluggable policies so that the
provider has the flexibility to easily customize and replace existing
policies for different levels and/or nodes without interfering with
the overall resource management architecture.
During the reservation phase, the user/broker submits reserva-

tion requests through the Reservation Service at the master node.
The Reservation Service discovers available execution nodes in the
Aneka Cloud by interacting with the Allocation Service on them.
The Allocation Service at each execution node keeps track of all
reservations that have been confirmed for the node and can thus
check whether a new request can be satisfied or not.
The Allocation Service determines how to schedule a new

reservation at the execution node. For simplicity, we implement
the same time slot selection policy for the Allocation Service
at every execution node. The Allocation Service allocates the
requested time slot if the slot is available. Otherwise, it assigns the
next available time slot after the requested start time that canmeet
the required duration. By allocating reservations at each execution
node instead of at themaster node, computation overheads arising
from making allocation decisions are distributed across multiple
nodes and thusminimized, as compared to overhead accumulation
at a single master node.
The Reservation Service performs node selection by choosing

the required number of available time slots from execution nodes
and administers admission control by accepting or rejecting a
reservation request. It also calculates the price for a confirmed
reservation based on the implemented pricing policy. Available
time slots are selected taking into account the application
requirement of the user.
The application requirement considered here is the task

parallelism to execute an application. A sequential application
has a single task and thus needs a single processor to run, while
a parallel application needs a required number of processors to
concurrently run at the same time.
For a sequential application, the selected time slots need not

have the same start and end times. Hence, available time slots
with the lowest prices are selected first. If there are multiple
available time slots with the same price, then those with the
earliest start time available are selected first. This ensures that
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the cheapest requested time slot is allocated first if it is available.
Selecting available time slots with the lowest prices first is fair and
realistic. In reality, reservations that are confirmed earlier enjoy
the privilege of cheaper prices, as compared to reservation requests
that arrive later.
But, for a parallel application, all the selected time slots must

have the same start and end times. Again, the earliest time slots
(with the same start and end times) are allocated first to ensure the
requested time slot is allocated first if available. If there are more
available time slots (with the same start and end times) than the
required number of time slots, then those with the lowest prices
are selected first.
The admission control operates according to the service

requirement of the user. The service requirements examined are
the deadline and budget to complete an application. We assume
both deadline and budget are hard constraints. Hence, a confirmed
reservationmust not end after the deadline and costmore than the
budget. Therefore, a reservation request is not accepted if there is
insufficient number of available time slots on execution nodes that
endswithin the deadline and the total price of the reservation costs
more than the budget.
During the execution phase, the user/broker submits applica-

tions to be executed to the Scheduling Service at the master node.
The Scheduling Service first checks whether the submission satis-
fies the starting time, ending time, and duration of the reservation
that have been specified by the user/broker during the reserva-
tion phase. If the reservation is still valid, the Scheduling Service
then determines whether any of the reserved execution nodes are
available before dispatching applications to them for execution,
otherwise applications are queued to wait for the next available
execution nodes that are part of the reservation. The Execution Ser-
vice at each execution node starts executing an application after
receiving it from the Scheduling Service and updates the Schedul-
ing Service of changes in execution status. Hence, the Scheduling
Service can monitor executions for an application and notify the
user/broker upon completion.

8.2. Performance evaluation

High-end computing systems such as Clouds are used for host-
ing applications containing short-lived or long-lived processing
tasks. Applications providing Internet services often have short-
lived tasks and are designed to serve millions of users concur-
rently. Examples include search engines (e.g. Google), e-commerce
sites (e.g. Amazon.com online shopping store), and social network-
ing sites (e.g. Facebook). Many business and scientific applications
such as investment risk analysis, supply chain management, flight
simulation, and molecular docking often contain tasks that are
resource-intensive and long-lived. We will first present the per-
formance of HPC workload (with long-lived tasks) in our Aneka
enterprise Cloud environment. We will then discuss another per-
formance study on Internet-based services workload (with short-
lived tasks).

8.2.1. High Performance Computing (HPC) workload
Fig. 6 shows the Aneka enterprise Cloud environment setup

used for performance evaluation. The Aneka Cloud contains 33
personal computers (PCs) with 1 master node and 32 execution
nodes located across 3 student computer laboratories in the
Department of Computer Science and Software Engineering, The
University of Melbourne. This setup demonstrates that the Aneka
Cloud is able to present a unified resource to the users/brokers by
harnessing computing resources located physically apart in the 3
laboratories.
Synthetic workloads are created by utilizing trace data of HPC

applications. The experiments utilize 238 reservation requests
Table 3
Pricing mechanisms.

Name Configured pricing parameters

FixedMax $3/CPU/Hr
FixedMin $1/CPU/Hr
FixedTimeMax $1/CPU/Hr (12AM–12PM)

$3/CPU/Hr (12PM–12AM)
FixedTimeMin $1/CPU/Hr (12AM–12PM)

$2/CPU/Hr (12PM–12AM)
Libra+$Max $1/CPU/Hr (PBasej), α = 1, β = 3
Libra+$Min $1/CPU/Hr (PBasej), α = 1, β = 1
Libra+$Auto same as Libra+$Min

in the last 7 days of the SDSC SP2 trace (April 1998 to April
2000) version 2.2 from Feitelson’s ParallelWorkloads Archive [37].
The SDSC SP2 trace from the San Diego Supercomputer Center
(SDSC) in USA is chosen due to the highest resource utilization of
83.2% among available traces to ideally model a heavy workload
scenario. However, the trace only provides the inter-arrival times
of reservation requests, the number of processors to be reserved
(downscaled from a maximum of 128 nodes in the trace to a
maximum of 32 nodes), and the duration to be reserved. Hence,
we adopt amethodology similar to that adopted by Irwin et al. [38]
to synthetically assign service requirements (deadline and budget)
through two request classes: (i) low urgency and (ii) high urgency.
A reservation request i in the low urgency class has a

deadline of high deadlinei/durationi value and budget of low
budgeti/f (durationi) value. f (durationi) is a function representing
the minimum budget required based on durationi. Conversely,
each request i in the high urgency class has a deadline of low
deadlinei/durationi value and budget of high budgeti/f (durationi)
value. This is realistic since a user who submits a more urgent
request to be met within a shorter deadline offers a higher budget
for the short notice. Values are normally distributed within each of
the deadline and budget parameters.
For simplicity, the Aneka Cloud only charges users for utilizing

the computing resource type based on per processor (CPU) per
hour (h). Thus, users are not charged for using other resource types
such as memory, storage, and bandwidth. In addition, we assume
that every user/broker can definitely accept another reservation
time slot proposed by the Aneka Cloud if the requested one is not
possible, provided that the proposed time slot still satisfies both
application and service requirements of the user.
As listed in Table 3, we evaluate the performance of seven

pricing mechanisms representing three basic types: (i) Fixed,
(ii) FixedTime, and (iii) Libra+$. Each of these three pricing
mechanisms has a maximum and minimum configuration to
highlight their performance range. The Fixedmechanism charges a
fixed price at all times. The FixedTime mechanism charges a fixed
price for different time periods of resource usage where a lower
price is charged for off-peak (12AM–12PM) and a higher price for
peak (12PM–12AM).
Libra+$ [39] uses a more fine-grained pricing function that

satisfies four essential requirements for pricing of resources to
prevent workload overload: (i) flexible, (ii) fair, (iii) dynamic, and
(iv) adaptive. The price Pij for per unit of resource utilized by
reservation request i at compute node j is computed as: Pij =
(α ∗ PBasej) + (β ∗ PUtilij). The base price PBasej is a static
pricing component for utilizing a resource at node j which can
be used by the service provider to charge the minimum price so
as to recover the operational cost. The utilization price PUtilij is
a dynamic pricing component which is computed as a factor of
PBasej based on the utilization of the resource at node j for the
required deadline of request i : PUtilij = RESMaxj/RESFreeij∗PBasej.
RESMaxj and RESFreeij are the maximum units and remaining free
units of the resource at node j for the deadline duration of request
i respectively. Thus, RESFreeij has been deducted units of resource
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Fig. 6. Configuration of Aneka Cloud.
committed for other confirmed reservations and request i for its
deadline duration.
The factors α and β for the static and dynamic components

of Libra+$ respectively provides the flexibility for the service
provider to easily configure andmodify theweight of the static and
dynamic components on the overall price Pij. Libra+$ is fair since
requests are priced based on the amount of different resources
utilized. It is also dynamic because the overall price of a request
varies depending on the availability of resources for the required
deadline. Finally, it is adaptive as the overall price is adjusted
depending on the current supply anddemandof resources to either
encourage or discourage request submission.
However, these three mechanisms rely on static pricing

parameters that are difficult to be accurately derived by the
service provider to produce the best performancewhere necessary.
Hence, we propose Libra+$Auto [40], an autonomic Libra+$ that
automatically adjustsβ based on the availability of compute nodes.
Libra+$Auto thus considers the pricing of resources across nodes,
unlike Libra+$ which only considers pricing of resources at each
node j via Pij.
Fig. 7 shows the normalized pricing and revenue performance

of seven pricing mechanisms in the Aneka Cloud for high urgency
requests (with short deadline and high budget) from sequential
applications (requiring one processor to execute) over a 7-days
time period. In Fig. 7, the two performancemetrics are: (i) the price
for a confirmed reservation (in $/CPU/Hr) and (ii) the accumulated
revenue for confirmed reservations (in $). Both metrics have
been normalized to produce standardized values within the range
of 0 to 1 for easier comparison. The revenue of a confirmed
reservation is the total sum of revenue across all its reserved nodes
calculated using the assigned price (depending on the specific
pricing mechanism) and the reserved duration at each node. Then,
the price of a confirmed reservation is computed to reflect the
average price across all its reserved nodes.
In Fig. 7, out of the four fixed pricing mechanisms listed in Ta-
ble 3, FixedMax provides the highest revenue (maximum bound),
followed by FixedTimeMax, FixedTimeMin, and FixedMin with the
lowest revenue (minimumbound). Nevertheless, FixedTimemech-
anisms is easier to derive andmore reliable than Fixedmechanisms
since it supports a range of prices across various time periods of
resource usage. But, all four mechanisms do not consider service
requirements of users such as deadline and budget.
On the other hand, Libra+$ charges a lower price for a

request with longer deadline as an incentive to encourage users
to submit requests with longer deadlines that are more likely
to be accommodated than shorter deadlines. For a request with
short deadline, Libra+$Max and Libra+$Min charge a higher price
relative to their β in Table 3. Libra+$Max provides higher revenue
than Libra+$Min due to a higher value of β .
Both Libra+$Auto and Libra+$Max are able to provide a

significantly higher revenue than other pricing mechanisms
through higher prices for shorter deadlines. Fig. 7 shows that
Libra+$Auto continues increasing prices to higher than that of
Libra+$Max and other pricing mechanisms when demand is high
such as during the later half of day 1, 2, 3, and 5. But, when demand
is low such as during the early half of day 2, 3, 5, and 6, Libra+$Auto
keeps reducing prices to lower than that of Libra+$Max to accept
requests that are not willing to pay more. Hence, Libra+$Auto is
able to exploit budget limits to achieve the highest revenue by
automatically adjusting to a higher β to increase prices when the
availability of nodes is low and a lower β to reduce prices when
there are more unused nodes which will otherwise be wasted.

8.2.2. Internet-based services workload
MapReduce [41] is one of the most popular programming

models designed for data centers. It was originally proposed
by Google to handle large-scale web search applications and
has been proved to be an effective programming model for
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Fig. 7. Normalized price/revenue of high urgency requests.

developing data mining, machine learning and search applications
in data centers. In particular, MapReduce can enhance the
productivity for junior developers who lack the experience of
distributed/parallel development. This model is implemented in
other distributed computing systems such as Yahoo’s Hadoop [42]
and our Aneka [43]. Hadoop has been successfully used by many
companies [44] including AOL, Amazon, Facebook, and New York
Times for running their applications on clusters. For example, AOL
used it for running an application that analyzes the behavioral
pattern of their users so as to offer targeted services.
Although Hadoop is successful in homogeneous computing en-

vironments, a performance study conducted by Matei Zaharia
et al. [45] shows that MapReduce implemented in the standard
distribution of Hadoop is unable to performwell in heterogeneous
Cloud computing infrastructure such as Amazon EC2 [29]. Experi-
mental observations reveal that the homogeneity assumptions of
MapReduce can cause wrong and often unnecessary speculative
execution in heterogeneous environments, sometimes resulting
in even worse performance than with speculation disabled. This
evaluation and performance results of their enhanced scheduler
in Hadoop demonstrate that Cloud execution management sys-
tems need to be designed to handle heterogeneity that is present
in workloads, applications, and computing infrastructure.

9. Meta-negotiation infrastructure between Aneka Clouds and
Brokers

The Meta-Negotiation Middleware (MNM) represents the first
implementation prototype for the establishment of global Cloud
exchange andmarket infrastructure for trading services. TheMNM
bridges the gap between different proprietary service interfaces
and diverse negotiation strategies used by service providers and
consumers [46].
Before committing themselves to a SLA, the consumer and

providermay enter into negotiations that determine the definition
and measurement of user QoS parameters, and the rewards and
penalties for meeting and violating them respectively [47,48]. The
term negotiation strategy represents the logic used by a partner
to decide which provider or consumer satisfies his needs best. A
negotiation protocol represents the exchange of messages during
the negotiationprocess. Recently,many researchers have proposed
different protocols and strategies for SLA negotiation in Grids [13,
49]. However, these not only assume that the parties involved in
the negotiation understand a common protocol but also assume
that they share a common perception about the goods or services
under negotiation. But, in reality, a participant may prefer to
negotiate using certain protocols (forwhich it has developed better
strategies) over others.
As shown in Fig. 8, each meta-negotiation is defined by

the means of a meta-negotiation document which participating
parties may express: the pre-requisites to be satisfied for a
negotiation, such as a specific authentication method required
or terms they want to negotiate on (e.g. time, price, reliability)
(see lines 2–9); the negotiation protocols and document languages
for the specification of SLAs (e.g. Web Service Level Agreement
(WSLA) [50] or WS-Agreement [51]) that they support (see lines
11–15); and conditions for the establishment of an agreement,
such as a required third-party arbitrator (see lines 16–18).
Before entering a meta-negotiation, a service provider pub-

lishes descriptions and conditions of supported negotiation proto-
cols in the registry. Thereafter, service consumers perform lookup
on the registry database by submitting their own documents de-
scribing the negotiations that they are looking for. The registry
discovers service providers who support the negotiation processes
that a consumer is interested in and returns the documents pub-
lished by the service providers. Finally, after an appropriate service
provider and a negotiation protocol are selected by a consumer us-
ing his/her private selection strategy, negotiations between them
may start according to the conditions specified in the provider’s
document.
In our meta-negotiation architecture (as shown in Fig. 9),

the service provider role is carried out by Aneka which is
a .NET-based service-oriented resource management system.
The Gridbus Broker acts as a service consumer and maps
jobs to appropriate resources by considering various restrictions
specified by terms of functional and non-functional requirements.
Functional requirements include but are not limited to task and
data dependencies, such as a sequence of tasks required to
execute a specific application. Non-functional requirements include
QoS parameters, such as budget restrictions and deadlines for
execution. The broker can guarantee the end-user’s deadline
requirement only if it is able to reserve nodes on resources in
advance. Therefore, in this respect, the broker functions as a
consumer that requests reservations from the provider.
The registry is a searchable repository for meta-negotiation

documents that are created by the participants. Currently, this is
implemented as a PostgreSQL database with a web service front
end that provides the interface to access the registry. However, it
is possible to host the registry using a Cloud of databases hosted
on a service provider such as Amazon S3 [30] or Google App
Engine [31]. When a meta-negotiation document is published,
the registry assigns it a unique identifier (ID) that can then be
used for subsequent operations. The query call tries to find all the
documents in the repository that match closely to the document
supplied as the parameter. It returns an array of IDs of these
documents to the caller which can then fetch each one.
The MNM facilitates the publishing of the meta-negotiation

documents into the registry and the integration of the meta-
negotiation framework into the existing client and/or service in-
frastructure, such as negotiation or security clients. Besides being
a client for publishing and querying meta-negotiation documents
(Steps 1 and 2 in Fig. 9), the MNM delivers necessary information
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Fig. 8. Meta-negotiation document.
Fig. 9. Architecture for meta-negotiations between Aneka Clouds and clients (e.g. Gridbus Broker).
Table 4
Feature and pricing comparison of Storage Clouds.

Feature Provider
Nirvanix US/EU Nirvanix SDN Amazon S3 US Amazon S3 EU Mosso CloudFS

Incoming data ($/GB/month) 0.18 0.18 0.10 0.10 Unknown
Outgoing data ($/GB/month) 0.18 0.18 0.17 0.17 Unknown
Storage ($/GB/month) 0.18 0.25 0.15 0.18 0.15
Requests ($/1000 PUT) 0.00 0.00 0.01 0.012 Unknown
Requests ($/10,000 GET) 0.00 0.00 0.01 0.012 Unknown
SLA 99.9 99.9 99-99.9 99-99.9 Unknown
Max. file size (GB) 256 256 5 5 5
US PoP Yes Yes Yes N/A Yes
EU PoP Yes Yes N/A Yes No
Asia PoP No Yes No No No
Australasia PoP No No No No No
Automatic replication Yes No Yes No No
Developer API Yes Yes Yes Yes Yes
for existing negotiation clients, i.e. information for the establish-
ment of the negotiation sessions (Step 4) and necessary informa-
tion to start a negotiation (Step 5). As shown in Fig. 9, each service
consumer may negotiate with multiple service providers concur-
rently. The reverse may also happen when a consumer advertises
a job. In such cases, the providers would negotiate with multiple
consumers.
After querying the registry and applying a client-based strategy

for the selection of the appropriate service, the information from
the service’s meta-negotiation document is parsed. Thereafter, the
meta-negotiation information is incorporated into the existing
client software using a dependency injection framework such as
Spring [52]. This dependency injection follows an Inversion of
Control approach wherein the software is configured at runtime
to invoke services that are discovered dynamically, rather than
known and referenced beforehand. This is suitable in the context
of meta-negotiation wherein a participant discovers others at
runtime through the registry and has to dynamically adapt based
on the interfaces provided by his counterpart (usually through a
WSDL document).
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10. Creating 3rd party Cloud services: Content delivery over
Cloud storage services

Content Delivery Network (CDN) providers such as Akamai [53,
54] and Mirror Image [55] place web server clusters across the
globe in order to improve the responsiveness and locality of
the replicated content it hosts for end-users. However, their
services are priced out of reach for all but the largest enterprise
customers, and typically requiring lengthy contracts and large
usage commitments [56]. We have developed an alternative
approach to content delivery that leverages existing infrastructure
provided by ‘Storage Cloud’ providers at a fraction of the cost of
traditional CDN providers such as Akamai and Mirror Image, with
no ongoing contract or usage commitments.
MetaCDN is a system that harnesses global ‘Storage Cloud’

resources, creating an integrated overlay network that offers a low
cost, high performance CDN for content creators. MetaCDN hides
the complexity of interacting with multiple storage providers, by
intelligentlymatching and placing users’ content onto one ormany
storage providers based on their quality of service, coverage and
budget preferences. A single namespace is provided by MetaCDN
that spans all supported storage providers, making it trivial for
content creators to integrate into their origin websites, and allows
end-users to consume content in a transparent and fast manner.
The utility of this new approach to content delivery has been
demonstrated by showing that the MetaCDN system (and the
participating ‘Storage Clouds’ used) provides high performance,
in terms of throughput and response time, and reliable content
delivery for content consumers [57,58].
Web applications (such as content delivery and video stream-

ing) are particularly well suited to the ‘‘Cloud’’ paradigm. The load
on these applications are typically bursty, with periods of low
load contrasting with occasional flash crowds caused by an impor-
tant event (i.e. a large sporting competition of great interest [59,
60]) or an unexpected phenomena (such as 9/11 [61] or the 2004
Tsunami) that draws large volumes of traffic to specific websites
for the latest information, potentially crippling them in theprocess.
These applications are a perfect fit to be deployed on Cloud Com-
puting infrastructure, whichmultiplexmany users’ applications on
top of their vast resources, and allow them to expand and con-
tract their resource requirements in a dynamic fashion to address
sudden increases in demand or quieter periods of operation. Many
websites have successfully utilised individual Storage Clouds to de-
liver some or all of their content [62], most notably the New York
Times [63] and SmugMug [64]. However, there is no general pur-
pose, reusable framework to interact with multiple Storage Cloud
providers and leverage their services as a CDN. This gap in function-
ality has thus motivated the development of the MetaCDN system.

10.1. ‘Storage Clouds’ used by MetaCDN

In recent years, many ‘Storage Cloud’ providers (or ‘Storage
as a Service’) that provide Internet-enabled content storage
and delivery capabilities in several continents, have emerged
offering SLA-backed performance and uptime promises for their
services. These services follow a utility computing [65] model,
where customers are charged only for their utilization of storage
and transfer of content, with pricing in the order of cents per
gigabyte (GB), as depicted in Table 4. This is in stark contrast
to typical hosting arrangements that were commonplace in the
past, where customers were locked into contracts (with set
monthly/yearly fees and excess data charges) on shared hosting
services like DreamHost [66]. High–end CDNs like Akamai and
Mirror Image, who operate extensive networks of ‘edge’ servers
that deliver content across the globe, were typically utilized by
larger enterprise customers who had the means to afford them.
As such, the notion of leveraging Storage Clouds as a low cost
CDN is very appealing for smaller organizations. These storage
providers offer the ability to rapidly and cheaply scale-out to
meet both flash crowds and anticipated or cyclical increases in
demand. Themost prominent Storage Cloud providers are Amazon
Simple Storage Service (S3) [30], and Nirvanix Storage Delivery
Network (SDN) [67]. Amazon currently offers storage nodes in the
United States and Europe (specifically, Ireland), whilst Nirvanix
has storage nodes in the United States (over two separate sites in
California), Germany and Singapore. Another major Storage Cloud
provider of note is Mosso CloudFS [68], located in Dallas, Texas,
USA, which is expected to launch in the fourth quarter of 2008, and
as suchhas not yet released the full details of their service offerings.
Amazon S3 was launched in the United States in March

2006, and in Europe in November 2007, making available the
large infrastructure that they utilize to operate Amazon.com,
their highly successful e-commerce company. Amazon provides
programmatic access to their storage resources via REST and SOAP
interfaces, allowing users the ability to read, write or delete an
unlimited amount of objects. S3 users can access storage objects
with sizes ranging from 1 byte to 5 GB each. As noted in Table 4,
Amazon S3 has a storage cost of $0.15 per GB/month in their
USA data center, or $0.18 per GB/month in their EU data center,
reflecting the cost of storage and transit in these respective regions.
Incoming traffic (i.e uploads) are charged at $0.10 per GB/month,
and outgoing traffic (i.e. downloads) are charged at $0.17 per
GB/month, from the USA or EU site. For larger customers, Amazon
S3 has a sliding scale pricing scheme for its larger customers,
with discounts for outgoing data occurring after 10 TB, 50 TB, and
150 TB of data a month has been transferred. Amazon imposes
an additional cost per 1000 PUT/POST/LIST or 10,000 GET HTTP
requests, which can add up depending on the type of content a
user places on Amazon S3. Indeed, if you are primarily storing and
serving a large number of smaller files, you could see significant
extra costs on your bill, however these costs are negligible if
you are utilizing Amazon S3 to predominantly distribute very
large files.
The Nirvanix Storage Delivery Network (SDN) was launched

in September 2007, offering an alternative Storage Cloud to the
Amazon S3 service. The Nirvanix service distinguished itself by
offering a SLA backed uptime guarantee at a timewhen Amazon S3
was simply operated on a best-effort service basis. Once Nirvanix
launched its SDN, Amazon subsequently added their own SLA-
backed uptime guarantees. Nirvanix differentiates itself in several
ways (depicted in Table 4), notably by having coverage in more
locations (four at the time of writing), offering automatic file
replication over two or more sites in the SDN for performance
and redundancy, and supporting individual file sizes up to 256
GB. Nirvanix is priced slightly higher than Amazon’s service,
and they do not publish their pricing rates for larger customers
(>2 TB/month). Developers can utilize SOAP or REST interfaces to
the Nirvanix SDN, or utilize the available Software Development
Kits (SDKs) in Java, PHP Zend, Python, and C#.

10.2. The MetaCDN system

The MetaCDN service (depicted in Fig. 10) is presented to end-
users in two ways — via an easy to use web portal, or as a
RESTful Web Service. The web portal was developed using Java
Enterprise and JavaServer Faces (JSF) technologies,with a clustered
MySQL back-end to store user accounts and deployments, and
the capabilities, pricing and historical performance of service
providers. Using the web portal, users can create an account on the
MetaCDN system, and enter credentials for any Cloud Storage or
ancillary providers they have an account with. Once completing
the initial setup phase, they can utilize the MetaCDN system
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Fig. 10. The MetaCDN system.
to intelligently deploy content onto storage providers according
to their performance requirements, coverage needs and budget
limitations. The web portal is most suited for small or ad-hoc
deployments, and is especially useful for less technically inclined
content creators.
The alternative method of accessing the MetaCDN service is via

RESTful Web Services, which expose all the critical functionality
of the MetaCDN system. This access method is most suited for
customers with more complex and frequently changing content
delivery needs, allowing them to integrate the MetaCDN service
in their own origin web sites and content creation workflows, and
manage their deployment in a dynamic fashion.
The MetaCDN system works by integrating with each storage

provider via connectors (depicted in Fig. 10) that provides an ab-
straction to hide the complexity arising from the unique interfaces
each provider utilizes for accessing their systems. An abstract class,
DefaultConnector, encapsulates the basic functionality that each
provider could be expected to support, as well as more advanced
facilities that may only be supported by some providers. This class
must be implemented by all existing and future connectors, im-
posing a common interface. The basic operations include creation,
deletion, and renaming of replicated files and folders. If an op-
eration (i.e. an advanced storage or delivery feature) is not sup-
ported on a particular service, then the connector for that service
throws a FeatureNotSupportedException. This is crucial, as whilst
the providers themselves have very similar functionality, there are
some key differences, such as the largest allowable file size, their
coverage footprint or a particular delivery mechanism. This excep-
tion also assists theMetaCDN system tomatch a user’s deployment
to a particular provider that canmeet their specific feature require-
ments.

10.3. Critical functionality of the MetaCDN platform

TheMetaCDN service depends on a number of core components
(depicted in Fig. 10) that encapsulate the logic and management
layers required to harness the capabilities of different upstream
storage providers, and present a consistent, unified view of the
aggregated services available to end-users. These components in-
clude the MetaCDN Allocator, which selects the optimal providers
to deploy content to, and performs the actual physical deployment;
the MetaCDN QoS Monitor, which tracks the current and histori-
cal performance of participating storage providers; the MetaCDN
Manager, which tracks each user’s current deployment and per-
forms various housekeeping tasks; the MetaCDN Database, which
stores important information needed by theMetaCDN system; and
the MetaCDN Load Redirector, which directs MetaCDN end-users
to the best file replica, ensuring fast and reliable service at all times.
The MetaCDN Allocator allows users to deploy files either

directly (uploading a file from their local file system) or from an
already publicly accessible origin website (sideloading the file,
where the backend storage provider pulls the file). Given that
not all providers support sideloading, the MetaCDN system can
perform this feature on behalf of the user and subsequently upload
the file manually. When accessing the service via the web portal
or Web Services, MetaCDN users are given a number of different
deployment options depending on their needs, including:

• Maximize coverage and performance, where MetaCDN deploys
as many replicas as possible to all available providers and
locations,
• Deploy content in specific locations, where a user nominates
regions and MetaCDN matches the requested regions with
providers that service those areas,
• Cost optimized deployment, where MetaCDN deploys as many
replicas in the locations requested by the user as their transfer
and storage budget will allow, or
• Quality of Service (QoS) optimizeddeployment,whereMetaCDN
deploys to providers that match specific QoS targets that a user
specifies, such as average throughput or response time from a
particular location, which is tracked by persistent probing from
the MetaCDN QoS Monitor.
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Once a user deploys using the options above, all information
regarding their deployment is stored in theMetaCDNdatabase, and
they are returned a set of publicly accessible URLs pointing to the
replicas deployed byMetaCDN, and a singleMetaCDNURL that can
transparently redirect end-users to the best replica for their access
location.
The MetaCDN QoS Monitor is responsible for tracking the

performance of participating providers at all times, monitoring
and recording throughput, response time and availability from a
variety of locations, which is used for QoS optimized deployment
matching. This component also ensures that upstream providers
are meeting their SLAs, and provides a logging audit trail to allow
end-users to claim credit in the event the SLA is violated. This
information is necessary in order to make a claim in the event of
an outage. This persistent monitoring keeps the providers ‘honest’,
and also provides signals to the MetaCDN system, which can
redeploy content with minimal effort to alternative providers that
can satisfy a user’s QoS constraints, if available.
The MetaCDN Manager ensures that all current deployments

are meeting their QoS targets for users that have made QoS
optimized deployments. It also ensures that replicas are removed
when no longer required (i.e. the ‘deploy until’ date set by the
user has expired), guaranteeing that storage costs are minimized
at all times. Finally, for users that have made cost optimized
deployments, it ensures a user’s transfer budget has not been
exceeded, by tracking usage (i.e. downloads) from auditing
information provided by upstream providers, and removing
replicas when their budget has been exhausted.
The MetaCDN database ensures persistent and reliable day-

to-day operation of the MetaCDN system, by storing important
information like MetaCDN user accounts, their credentials for
Storage Cloud and other alternative providers, information on
users’ deployments and their utilization. This database also stores
logistical details regarding the storage providers used, such as their
pricing structures, SLAs, coverage locations and their historical
performance.
The MetaCDN Load Redirector is the only component that

end-users (i.e. consumers) of the MetaCDN system interact with.
The Load Redirector is responsible for directing end-users (via a
combination of DNS and HTTP Redirection) to the ‘‘best’’ replica.
Which replica is the ‘‘best’’ depends on the preference of the
MetaCDN user whomade the deployment — it could be the closest
geographical replica, the cheapest replica, or simply a random
replica. All of these load redirection capabilities are supported by
the MetaCDN Load Redirector.

11. Conclusion and future thoughts

Cloud computing is a newandpromising paradigmdelivering IT
services as computing utilities. As Clouds are designed to provide
services to external users, providers need to be compensated
for sharing their resources and capabilities. In this paper, we
have proposed architecture for market-oriented allocation of
resources within Clouds. We have also presented a vision for the
creation of global Cloud exchange for trading services. Moreover,
we have discussed some representative platforms for Cloud
computing covering the state-of-the-art. In particular, we have
presented various Cloud efforts in practice from the market-
oriented perspective to reveal its emerging potential for the
creation of third-party services to enable the successful adoption
of Cloud computing, such as meta-negotiation infrastructure for
global Cloud exchanges and provide high performance content
delivery via ‘Storage Clouds’.
The state-of-the-art Cloud technologies have limited support

for market-oriented resource management and they need to be
extended to support: negotiation of QoS between users and
providers to establish SLAs; mechanisms and algorithms for
allocation of VM resources to meet SLAs; and manage risks
associated with the violation of SLAs. Furthermore, interaction
protocols needs to be extended to support interoperability
between different Cloud service providers. In addition, we need
programming environments and tools that allow rapid creation of
Cloud applications.
Data Centers are known to be expensive to operate and they

consume huge amounts of electric power. For example, the Google
data center consumes power as much as a city such as San
Francisco. As Clouds are emerging as next-generation data centers
and aim to support ubiquitous service-oriented applications, it is
important that they are designed to be energy efficient to reduce
both their power bill and carbon footprint on the environment. To
achieve this at software systems level, we need to investigate new
techniques for allocation of resources to applications depending
on quality of service expectations of users and service contracts
established between consumers and providers [69].
As Cloud platforms become ubiquitous, we expect the need for

internetworking them to create market-oriented global Cloud ex-
changes for trading services. Several challenges need to be ad-
dressed to realize this vision. They include: market-maker for
bringing service providers and consumers; market registry for
publishing and discovering Cloud service providers and their ser-
vices; clearing houses and brokers for mapping service requests
to providers who can meet QoS expectations; and payment man-
agement and accounting infrastructure for trading services. Fi-
nally, we need to address regulatory and legal issues, which go
beyond technical issues. Some of these issues are explored in re-
lated paradigms such as Grids and service-oriented computing sys-
tems.Hence, rather than competing, these past developments need
to be leveraged for advancing Cloud computing. Also, Cloud com-
puting and other related paradigms need to converge so as to pro-
duce unified and interoperable platforms for delivering IT services
as the 5th utility to individuals, organizations, and corporations.
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