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Abstract

In this tutorial, we give an introduction to optical burst switching (OBS) and compare it with other existing optical
switching paradigms. Basic burst assembly algorithms and their effect on assembled burst traffic characteristics are
described first. Then a brief review of the early work on burst transmission is provided followed by the description
of a prevailing protocol for OBS networks called Just-Enough-Time (JET). Algorithms used at an OBS core node for
burst scheduling as well as contention resolution strategies are presented next. Tradeoffs between their performance
and implementation complexities are discussed. Recent work on QoS support, IP/WDM multicast, TCP performance
in OBS networks and Labelled OBS is also described, and several open issues are mentioned.

1 Introduction

With recent advances in wavelength division multiplexing (WDM) technology, the amount of raw bandwidth available
in fiber links has increased by many orders of magnitude. Meanwhile, the rapid growth of Internet traffic requires high
transmission rates beyond a conventional electronic router’s capability. Harnessing the huge bandwidth in optical fiber
cost-effectively is essential for the development of the next generation optical Internet.

Several approaches have been proposed to take advantage of optical communications and in particular optical switch-
ing. One such approach is optical circuit switching based on wavelength (λ) routing whereby a lightpath needs to be
established using a dedicated wavelength on each link from source to destination. Once the connection is set up, data
remains in the optical domain throughout the lightpath. An alternative to optical circuit switching is optical packet
switching. In optical packet switching, while the packet header is being processed either all-optically or electronically
after an Optical/Electronic (O/E) conversion at each intermediate node, the data payload must wait in the fiber delay
lines and be forwarded later to the next node [1, 2].

In order to provide optical switching for next generation Internet traffic in a flexible yet feasible way, a new switch-
ing paradigm called optical burst switching (OBS) was proposed in [3–5]. Various OBS approaches with different
tradeoffs have since been described (see papers listed in http://www.cse.buffalo.edu/∼yangchen/OBS Pub year.html,
http://www.utdallas.edu/∼vinod/obs.html and http://www.ikr.uni-stuttgart.de/ ∼gauger/BurstSwitching/). There are two
common characteristics among these variants:

• Client data (e.g., IP packets) goes through burst assembly/disassembly (only) at the edge of an OBS network,
nevertheless, statistical multiplexing at the burst level can still be achieved in the core of the OBS network.

• Data and control signals are transmitted separately on different channels or wavelengths (λ’s)1, thus, costly O/E/O
conversions are only required on a few control channels instead of a large number of data channels.

In this tutorial, we first introduce the basic idea of OBS, compare it with other switching paradigms and point out
why OBS is a viable technology for the next generation optical Internet. Techniques for generating a burst at the edge

1Hereafter, we will use the terms channel and wavelength (or λ) interchangeably.
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of an OBS network are studied next, followed by discussions on various burst reservation protocols. Characteristics of
the burst traffic assembled using different assembly algorithms are also analyzed. The subsequent section focuses on
issues at a core OBS node: namely burst scheduling and contention resolution. Recent efforts on supporting service
differentiation, IP/WDM multicast, the performance of TCP and other issues related to traffic engineering in OBS
networks are described at the end.

2 OBS Fundamentals
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Figure 1: Burst Assembly/Disassembly at the Edge of an OBS Network

In an OBS network, various types of client data are aggregated at the ingress (an edge node) and transmitted
as data bursts (Figure 1(a)) which later will be disassembled at the egress node (Figure 1(b)). During burst assem-
bly/disassembly, the client data is buffered at the edge where electronic RAM is cheap and abundant.
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Figure 2: Separated Transmission of Data and Control Signals

Figure 2 depicts the separation of data and control signals within the core of an OBS network. For each data burst, a
control packet containing the usual ”header” information of a packet including the burst length information is transmitted
on a dedicated control channel. Since a control packet is significantly smaller than a burst, one control channel is
sufficient to carry control packets associated with multiple (e.g., hundreds of) data channels. A control packet goes
through O/E/O conversion at each intermediate OBS node and is processed electronically to configure the underlying
switching fabric. There is an offset time between a control packet and the corresponding data burst to compensate for
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the processing/configuration delay. If the offset time is large enough, the data burst will be switched all-optically and in
a “cut-through” manner, i.e., without being delayed at any intermediate node(core). In this way, no optical RAM or fiber
delay lines (FDLs) is necessary at any intermediate node. Nevertheless, the burst-level granularity leads to a statistical
multiplexing gain which is absent in optical circuit switching. Furthermore, it allows a lower control overhead per bit
than that in optical packet switching as to be discussed next in more detail.

3 Qualitative Comparison
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Figure 3: Comparison of Different Switching Node Architectures

Basic switching node architectures used by various switching paradigms are illustrated and compared in Figure
3. At an optical circuit switching (OCS) node shown in Figure 3(a), once a lightpath is setup, all data carried by
one input λ will go to a specific output λ. Since no O/E/O conversion of data at any intermediate node is needed,
multi-hop transparency (in terms of the bit rate, protocol and coding format used) can be achieved. On average, the
connection duration should be on the order of minutes or longer as setting up or releasing a connection takes at least a
few hundreds of milliseconds. Shorter duration connections needed to accommodate sporadic data transmissions will
result in a prohibitively high control overhead. A major difference between OCS and the other three approaches depicted
in Figure 3 is that in OCS, no statistical multiplexing of the client data can be achieved at any intermediate node. More
specifically, in the core, bandwidth is allocated by one λ at a time, which is a coarse granularity. In practice, however,
most of today’s applications only need the sub-λ connectivity. In addition, high-bit rate computer communications often
involve “bursts” that last only a few seconds or less.

To overcome the above deficiency of the OCS approach, O/E/O conversion can be introduced above an OCS network
in the IP and SONET layers for example. The electronic switching node used in such an O/E/O approach is depicted
in Figure 3(b). Here, statistical multiplexing of the client data at the sub-λ granularity is possible with electronic
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processing and buffering (not shown in Figure 3(b)). Since every data unit needs to go through O/E and E/O conversion,
this approach is not scalable enough to support hundreds of wavelengths, each working at 40Gbps or beyond (the need
for which is anticipated in the near future). In addition, electronic switches are known to suffer from problems such
as limited capacity and huge power/space consumption and heat dissipation in addition to requiring expensive O/E/O
conversions. Note that, although not shown, either an optical cross connect or optical add-drop multiplexor may also
be used in conjunction with an electronic switch for wavelength granularity traffic that does not need to go through
the electronic switch. A hybrid, multi-layer network consisting of such nodes, each consisting of both an electronic
switch/router and an optical cross connect, is one way to combine the strength of the optics and electronics, but certainly
not the only way to do so, and in fact may not be the ultimate long-term solution.

Since all-optical header processing will not be economically viable in the near future due to the immaturity of
high-speed optical logic, the optical packet switching (OPS) approach will likely require each header to go through
O/E conversion for processing and E/O conversion for transmission (Figure 3(c)). An important difference from the
previous O/E/O approach is that here, the header can potentially be sent at a much slower rate than the data using for
instance sub-carrier multiplexing, thereby easing the speed requirement on the O/E/O conversion devices while still
maintaining a high data throughput. Nevertheless, OPS is difficult to implement because of its need for a large number
of O/E/O conversion devices (one set for each wavelength), header extraction/insertion mechanisms (though not shown
in the figure) as well as FDLs and packet synchronizers. Note that, an optical cross-connect or add-drop multiplexor
mentioned above can also be used in conjunction with the OPS nodes or OBS nodes to be discussed below if/when it is
more economic to do so.

In the OBS paradigm, only a few control channels (e.g., one per fiber) go through O/E/O conversion (see Figure
3(d)). Given that the data is switched all-optically at burst level, data transparency and statistical multiplexing can be
achieved concurrently. Since OBS takes advantage of both the huge capacity in fibers for switching/transmission and
the sophisticated processing capability of electronics, it is able to achieve cost reduction and leverage the technological
advances in both optical and electronic worlds, which makes it a viable technology for the next generation optical
Internet.

At an OBS node, no synchronization/alignment of bursts is necessary unless the switching fabric operates in a slotted
manner. In addition, FDLs and wavelength converters which are optional can help in reducing burst loss [6]. Currently,
it is a challenge to implement an OBS switching fabric with hundreds of ports operating at a switching speed which is
on the order of nanoseconds. Nevertheless, on-going research work has shown promise [7–9].

4 Burst Assembly

      Burst Assembly Unit

Traffic from
edge routers

 Burst Scheduler

Assembled
    bursts

Switching Unit

Class 1

Class n

Packets to
the same
egress node

Figure 4: Architecture of an OBS Ingress Node

Burst assembly is the procedure of aggregating packets from various sources, such as an IP router, into bursts at

4



the edge of an OBS network. The architecture of a typical OBS ingress node is shown in Figure 4. The switching unit
forwards incoming packets to burst assembly units. The packets to the same OBS egress node are processed in one burst
assembly unit. Usually, there is one designated assembly queue for each traffic class (or priority). The burst scheduler is
in charge of creating bursts and their corresponding control packets, adjusting the offset time for each burst, scheduling
bursts on each output link and forwarding the bursts and their control packets to the OBS core network [7].

Recent studies on burst assembly have shown that different assembly schemes affect the assembled burst traffic’s
characteristics [10,11]. In the following subsections, we will describe several assembly algorithms and discuss statistical
characteristics of the assembled burst traffic.

4.1 Assembly algorithms

Usually, assembly algorithms can be classified as timer-based, burstlength-based and mixed timer/burstlength-based
ones [11, 12].

In the timer-based scheme, a timer starts at the beginning of each new assembly cycle. After a fixed time T , all the
packets that arrived in this period are assembled into a burst. In the burstlength-based scheme, there is a threshold on
the (minimum) burst length. A burst is assembled when a new packet arrives making the total length of current buffered
packets exceed the threshold.

The time out value for timer-based schemes should be set carefully. If the value is too large, the packet delay at the
edge might be intolerable. If the value is too small, too many small bursts will be generated resulting in a higher control
overhead. While timer-based schemes might result in undesirable burst lengths, burstlength-based assembly algorithms
do not provide any guarantee on the assembly delay that packets will experience. To address the deficiency associated
with each type of the assembly algorithms mentioned above, mixed timer/threshold-based assembly algorithms were
proposed in [7, 11]. For example, in [11], a burst can be sent out when either the burst length exceeds the desirable
threshold or the timer expires.

Adaptive assembly algorithms were also proposed to optimize the performance of OBS networks in which either the
time threshold or the burst length threshold or both are adjusted dynamically according to real time traffic measurements.
They provide better performance especially with strongly correlated input packet traffic but have a higher operational
complexity.

After a burst is generated using the algorithms mentioned above, the burst is buffered in the queue for an offset time
before being transmitted to give its corresponding control packet enough time to make reservations at the downstream
nodes as shown in Figure 2. During this offset period, packets may continue to arrive. Including those packets in the
same burst is usually unacceptable because the reservation at the downstreams nodes may have already been made based
on the original burst length record in the control packet. Leaving those packets for the next burst on the other hand, will
increase the average delay especially when the traffic load is heavy. One way to minimize this extra delay is to perform
burst length prediction: let the control packet carry a burst length of l + f(t) instead of l, where l is the exact burst
length when the control packet is sent out, and f(t) is the predicted extra burst length as a result of additional packet
arrivals during the offset time t. Assume that the total length of packets actually arriving during the offset time is l(t). If
l(t) < f(t), part of bandwidth reserved will be wasted. Otherwise (i.e., if l(t) > f(t)), only a few extra packets (whose
total length is about l(t) − f(t)) are delayed to be transmitted in the next burst.

4.2 Assembled burst traffic characteristics

Recently, the sensitivity of OBS network performance to the assembled burst traffic characteristics such as inter-arrival
time and burst length distribution has been studied. these studies have focused on the statistical characteristics of burst
traffic, which can be divided into two categories: short range (small time scales) and long range (large to infinite time
scales). In most of these studies, the packet arrivals into an assembly queue from many independent traffic sources were
assumed to be Poisson. For a timer-based assembly algorithm, the size of a burst is equal to the sum of the size of all the
packets arriving in a fixed time period, and was shown in [11] to be a Gaussian distributed random variable according
to the central limit theorem. Conversely, for a burstlength-based assembly algorithm, the burst inter-arrival times have a
Gaussian distribution. Similar observations were reported via simulation in [7,10,13]. The general conclusion is that the
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short range burstiness in the input packet traffic is alleviated due to burst assembly and the smoothed assembled burst
traffic can enhance the network’s performance.

An important characteristic of today’s Internet traffic is its long range dependency, which increases data loss and
delay and decreases network resource utilization in electronic packet switched networks. Although it was claimed
in [12] that burst assembly algorithms could reduce the long range dependency in the input IP packet traffic, [7, 11]
pointed out that long range dependency in the traffic will not change after burst assembly. On the other hand, the results
in [14] showed that the influence of the long range dependency on the performance of an OBS node (i.e., in terms of
burst loss rate) is negligible because of its bufferless nature.

If a timer-based assembly scheme is used, the bursts’ inter-arrival time will be a constant. Furthermore, if a
burstlength-based assembly algorithm is used, the variance of the inter-arrival time of the bursts coming from different
edge nodes may become small when the traffic load is heavy. In such cases, undesirable persistent collisions of bursts
from different sources might happen if these sources are adversely synchronized. Adding a randomized extra offset time
at each edge node may prevent such synchronization among the sources.

5 Burst Reservation Protocols

Although the concept of burst switching was introduced for centralized TDMA systems [15] and ATM networks [16] in
early 1990, protocols suitable for high speed WDM optical networks were not developed until 1997 [3]. In this section,
we will first give an overview of early burst transmission protocols followed by an introduction to protocols for OBS
networks.

In [16], the author evaluated two burst level admission control mechanisms for ATM networks: tell-and-wait and
tell-and-go. In the former, when a source has a burst to transmit, it first tries to reserve the bandwidth/wavelength from
the source to its destination by sending a short ‘request’ message. Every intermediate node receiving this message will
make a reservation on a specific output link. If the requested bandwidth is successfully reserved on all the links along
the path, an ACK will be sent back to inform the source to send out the burst immediately; Otherwise, a NAK will be
returned to release the previously reserved bandwidth, and initiate the retransmission of the ‘request’ message after a
backoff time. In tell-and-go, on the other hand, the source transmits bursts without making any bandwidth reservation
in advance. At an intermediate node, the burst needs to be delayed before the switch control unit makes an appropriate
reservation on an outgoing link. If the reservation fails at any intermediate node, a NAK will be sent back to the source
to initiate the retransmission of the burst after a backoff time.

Various performance comparisons (in terms of e.g., throughput and delay) between these two conceptual approaches
were given in [16]. It has been found that tell-and-wait outperforms tell-and-go when the propagation delay is negligible
with respect to the burst length. The opposite becomes true when the propagation delay is significant compared with the
burst length.

The concept of tell-and-go forms the basis of Terabit Burst Switching [5]. With this approach, in order to compensate
for the control packet processing time and prevent a burst from entering the switching fabric before its configuration is
finished, a fixed delay is inserted into the data path using a FDL at each input port. On the other hand, Just-In-Time (JIT),
which was first proposed in [15], can be considered as a variant of tell-and-wait as it requires each burst transmission
request to be sent to a central scheduler. The scheduler then informs each requesting node the exact time to transmit the
data burst. Here, the term Just-In-Time means that by the time a burst arrives an intermediate node, the switching fabric
has already been configured. This concept was later applied and extended to a Wavelength Routed OBS network [13].
Since centralized protocols are neither scalable nor robust, [17] provided a distributed version of JIT protocol called
Reservation with just-In-Time, which requires a copy of the request to be sent to all switches (each has a scheduler)
concurrently. These schedulers are not only synchronized in time, but also share the same global link status information,
which makes the implementation difficult. The authors of [18] proposed another distributed version of the JIT protocol
based on hop-by-hop reservation which adopts some features of the Just Enough Time (JET) protocol [3, 4].

JET is the most prevailing distributed protocol for OBS networks today which does not require any kind of optical
buffering or delay at each intermediate node [3, 4]. It accomplishes this by letting each control packet carry the offset
time information and make the so called delayed reservation for the corresponding burst, i.e., the reservation starts at the
expected arrival time of the burst. In the example shown in Figure 5, the bandwidth is reserved for the first burst starting
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Figure 5: JET Protocol

from the burst arrival time instead of the arrival time of control packet. At each intermediate node, the offset time is
updated (reduced) to compensate for the actual control packet processing/switch configuration time (see Figure 2). Note
that the delay experienced by a control packet might vary for different reasons. In addition, when we consider deflection
routing in an OBS network, the minimal offset time for the primary path might not be enough if the burst takes a longer
alternate path. In such a case, an extra offset time can be added [4].

Another important feature of JET is that the burst length information is also carried by the control packet, which
enables it to make a closed-ended reservation (i.e., only for the burst duration with automatic release) instead of an open-
ended reservation (i.e., which would not be terminated until a release signal is detected). This closed-ended reservation
helps the intermediate node make intelligent decisions as to whether it is possible to make a reservation for a new burst
and thus the effective bandwidth utilization can be increased. An example is shown in Figure 5 where the reservation
for the 2nd burst arrival in Cases 1 and 2 can succeed if and only if at the time when the 2nd control packet arrives, the
intermediate node makes closed-ended reservations for both the first and second bursts.

6 Burst Switching

In a conventional electronic router/switch, contention between packets can be resolved by buffering. However, in OBS
networks, no or limited buffering is available and thus burst scheduling and contention resolution must be done in a
different manner.

6.1 Scheduling Algorithms

When wavelength conversion capability is assumed, an incoming burst may be scheduled onto multiple wavelengths at
the desired output port. A burst scheduler will choose a proper wavelength for this burst taking into consideration the
existing reservations made on each wavelength, and make a new reservation on this selected channel. Below, we will
describe several scheduling algorithms.

The scheduling horizon is defined as the latest time at which the wavelength is currently scheduled to be in use.
In Figure 6, for example, time t′′

1
is the scheduling horizon for channel C1. A simple scheduling algorithm: Horizon

[5], which is also called the LAUC (latest available unscheduled channel) algorithm in [7] works as follows, for each
wavelength, a single scheduling horizon is maintained. Only the channels whose scheduling horizons precede the new
burst’s arrival time are considered “available” and the one with the latest scheduling horizon is chosen. The horizon is
then updated after making the reservation for the next burst. The basic idea for this algorithm is to minimize bandwidth
gaps/voids created as a result of making a new reservation. In Figure 6, channel C3 will be reserved if Horizon is
applied.

Simplicity in both operation and implementation is the main advantage of the Horizon-based algorithms. However,
they waste the gaps/voids between two existing reservations, e.g., t′

1
− t1 on channel C1 in Figure 6. When a FDL set is

available or the offset-time based QoS [19] scheme to be mentioned in the following section is applied, many such voids
will be generated. Therefore, algorithms capable of void filling, i.e., making new reservations within existing gaps are
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desirable. For example, using LAUC-VF (LAUC with void filling) proposed in [7], channel C1 will be chosen.

Several variants of the LAUC-VF algorithm including Min-SV (Starting Void), Min-EV(Ending Void) and Best Fit
were proposed in [20]. Min-SV is functionally the same as LAUC-VF but a much faster implementation is achieved
using a technique from computational geometry. On the other hand, Min-EV tries to minimize the new void generated
between the end of new reservation and an existing reservation while Best Fit tries to minimize the total length of starting
and ending voids generated after the reservation. Figure 6 illustrates the outcomes of these three scheduling algorithms.

Algorithms Time complexity State information Bandwidth Utilization

LAUC O(W ) Horizoni Low
LAUC-VF O(WlogM) Si,j , Ei,j High

Min-SV/EV O(logM) Si,j , Ei,j High
Best-Fit O(log2M) Si,j , Ei,j High

Table 1: Comparison of Different scheduling Algorithms

The performance of various scheduling algorithms was compared in [20], which shows that LAUC-VF, Min-SV,
Min-EV and Best Fit have a comparable bandwidth utilization (or loss rate) which is much higher (or lower) than
Horizon based algorithms. The running time complexity of different scheduling algorithms was also analyzed. Table 1
summarizes the above discussion using the following notations:

• W : Number of wavelengths at each output port

• M : Maximum number of data bursts (or reservations) on all channels

• Horizoni: Horizon of the ith data channel

• Si,j and Ei,j : Starting and ending time of jth reservation on channel i

From Table 1, the Min-SV/EV algorithms are the most desirable among all void-filling algorithms. In fact, one can
minimize the void newly generated by first searching for a proper void using Min-EV first, and then if (and only if) such
a proper void cannot be found, search for a horizon using Min-SV.
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6.2 Contention Resolution

Using one way reservation protocols such as JET, the ingress node sends out bursts without having reservation acknowl-
edgements or global coordination. This however, requires an intermediate OBS node to resolve possible contention
among bursts. In a bufferless OBS network, contention among the bursts can be resolved in three ways: deflection,
dropping and preemption.

Through deflection, a burst is sent to a different output channel instead of the preferred one. Since contention can
only happen when bursts compete for the same wavelength on the same output port simultaneously, deflection can be
applied in wavelength, space and/or time domains.

• Wavelength domain: a contending burst can be sent on another wavelength through wavelength conversion.

• Space domain: a contending burst can be sent to a different output port and then follow an alternate route to the
destination [4].

• Time domain: by passing through an FDL, a contending burst can be delayed for a fixed time [4, 19].

If a contending burst cannot be deflected due to the unavailability of any wavelength, output port or FDL, data loss
becomes inevitable. More specifically, a common approach is to drop the incoming burst (which is a non-preemptive
approach). In addition, it is possible for the incoming burst to preempt an existing burst based on priority or traffic
profile. It is also possible to break the incoming burst or the existing burst into multiple segments, and each segment can
then be deflected, dropped or preempted. This approach was called burst segmentation in [21, 22] and OCBS in [23].

Contention resolution Advantages Disadvantages

Wavelength Conversion Much lower burst loss Immature and expensive technology
FDL buffer Conceptually simple; Mature technology Bulky FDLs; Extra delay; More voids
Deflection routing No extra hardware requirement Out of order arrivals; Possible instability
Burst Segmentation Finer contention resolution Complicated control

Table 2: Comparison of Different Contention Resolution Schemes

Table 2 gives a brief summary of these contention resolution schemes. Note that some of these contention resolution
schemes can be applied jointly. For example, instead of simply forwarding a burst onto an alternate route (using deflec-
tion routing) when contention happens, one can deflect a burst along a pre-determined path that returns the burst to the
node where the deflection occurred and then forwards it along the original route. With this approach, the network acts
like a buffer (or FDL).

Unlike all the contention resolution schemes mentioned above which work in a passive manner, i.e., taking certain
actions after a contention occurs, one may collect the burst loss performance statistics on different wavelengths and rank
them with priorities accordingly. Bursts are then assigned to higher priority wavelengths which have lower burst loss
rates whenever possible [24]. However, this approach can only be taken by edge nodes in a network without wavelength
converters. We observe that one can also pro-actively reduce burst contention (and loss) by using either the electronic
buffer at an edge node or FDLs at an upstream node to sequentialize the bursts on as few wavelengths as possible so as
to reduce the number of bursts which might cause overlapped reservations on an output channel at a downstream node.

7 Towards an Optical Internet

Over the past few years, running IP applications directly above the optical layer has received a considerable amount of
attention. In this section, we give an overview of several initial steps toward building an optical Internet based on the
OBS paradigm.

9



7.1 Service differentiation

Much research work has been devoted to QoS provisioning in the Internet. However, various Internet service disciplines
and packet scheduling algorithms developed in the literature are based on electronic packet switching and mandate the
use of buffers. In the optical domain, a FDL can provide a limited and deterministic delay but it is incapable of providing
most of the buffer management functions as an electronic RAM does. To address the discrepancy between a bufferless
OBS network and an electronic packet switched network, three different approaches have been proposed to provide
service differentiation in OBS networks.
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(low priority)
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Figure 7: Offset Time’s Effect on Burst Loss

The first approach manages QoS on a class by class basis using different extra offset times for different classes of
bursts [19]. The basic idea is by giving a larger extra offset time to a higher priority class, reservation for a higher
priority burst can be made in much advance than lower priority bursts and thus has a better chance to succeed. Figure 7
shows that a long offset time enables a high priority class burst to succeed in making a reservation. Studies have shown
that the probability that a low priority burst will block a high priority burst can be negligible when the difference of
offset time between these classes is a few times of the average burst length of the low priority class [19].

Although the offset time based differentiation is easy to implement and provides efficient isolation between service
classes when a sufficiently large extra offset time is assigned to higher priority bursts, the extra offset time introduces
an additional delay at the edge and in addition, the performance of the differentiation depends on the burst length and
inter-arrival time distributions. Active dropping was thus proposed to avoid the shortcomings mentioned above [25,26].
In this alternative to the offset time based differentiation, selective dropping of bursts is initiated according to either loss
rate measurement or traffic profile to guarantee that the high priority class will have a better chance to make successful
reservations.

While the above two approaches can provide differentiation at the burst level, differentiation at the packet level can
be achieved with burst segmentation. In such an approach, packets from different service classes are assembled into
different bursts. When contention occurs, low priority bursts will be segmented and experience a higher packet loss
probability. Alternatively, instead of assembling a burst with packets from a single service class only, packets from
low priority service classes can be assembled to form the tail or head of each burst, whereas packets from high priority
service classes are assembled in the middle of each burst. If segments at the tail or head of a burst are dropped when
contentions happen, differentiation on packet loss can be achieved [22].

7.2 IP/WDM Multicast and TCP over OBS

Many of today’s and emerging Internet applications can be more efficiently supported using multicast. A straightfor-
ward way to do multicasting in an OBS network is Separate Multicast in which multicast traffic and unicast traffic are
assembled separately into different bursts. To reduce the overhead due to guard bands and control packet associated with
each burst, a scheme called Tree-Shared Multicasting was proposed [27], whereby multicast traffic belonging to differ-
ent multicast sessions can be assembled together in a burst, which is then delivered via a shared multicast tree. Various
criteria for determining whether two multicast sessions should share a tree and various algorithms for constructing the
shared multicast trees were presented in [27]. Since it is possible that some data in a burst is delivered to non-intended
destinations via a shared multicast tree, the benefit of multicast sharing strategy depends on the degree of overlapping
among the multicast sessions that share the multicast tree.

OBS networks also have unique characteristics that affect TCP throughput performance. Since TCP is the most
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widely used protocol for data transmissions, understanding TCP performance in an OBS network, which may become a
future Internet backbone and support a large amount of TCP traffic, is thus of much interest. Several recent studies have
investigated the interactions between OBS and TCP congestion control mechanisms. For example, the study in [28]
found that the burst assembly process introduces a delay penalty in TCP throughput because it increases the round trip
time, which in turn decreases TCP throughput. On the other hand, the enlarged transmission unit from a packet to a burst
can increase the amount of data sent between two losses, resulting in the so-called “correlation gain”. More specifically,
a TCP source with a relative low access bandwidth in the local IP access network and a small burst assembly time at the
edge can have only one TCP segment in each burst, and thus there is no correlation gain. But since the delay penalty is
also insignificant in this case, the throughput is similar to that without burst assembly. For a TCP source with a relatively
high access bandwidth and a large burst assembly time, all TCP segments from one sending window can be assembled
into one burst, and hence, the correlation gain is maximized but the delay penalty is also large. In our recent studies,
we have found that for a TCP source which has a medium access bandwidth (between low and high relative to the burst
assembly time), using an adaptive assembly algorithm yields the best throughput because it can adjust the assembly time
to match the TCP congestion control mechanisms.

7.3 LOBS

The generality of the evolving G-MPLS framework makes it a versatile framework for various underlying switching
paradigms. For example, when G-MPLS is applied to OCS in the forms of MPλS, a wavelength is treated as the label.
But such a λ- Labelled Switch Path(LSP), which corresponds to a lightpath, cannot be aggregated at the intermediate
node due to the lack of wavelength merging technology. In order to groom or aggregate traffic carried on different
lightpaths, each lightpath needs to go through O/E/O conversion.

As a natural extension of the G-MPLS in OBS networks, Labelled OBS(LOBS) was proposed in [29]. LOBS is
built upon OBS by letting each control packet carry additional label information. One of the major benefits of LOBS
is to facilitate the seamless integration of IP and WDM by using IP-based protocols for control while switching data
all-optically. And unlike MPλS, the association between a label and a wavelength in LOBS is not on the time scale of
a connection but that of each burst, thus making sub-wavelength granularity and statistical multiplexing possible. Even
without wavelength conversion capability, bursts belonging to the same LSP (called LOBS path) can be sent on different
output wavelengths at the ingress node (with a tunable transmitter). More important, the bursts belonging to different
LSPs can interleave on the same wavelength, that is, bursts arriving on different LSPs (on the same wavelength) can
now be merged into an aggregated LSP.

8 Concluding Remarks

In this tutorial, we have first given an introduction to optical burst switching (OBS). Comparison between this new
switching paradigm with other existing optical switching paradigms has been made, and it has been shown that OBS
is not only a cost-effective but also a viable solution for the next generation optical Internet. We have provided a brief
historical review of the early work on burst switching as well as the state of the art including the prevailing reservation
protocol for OBS networks, called Just-Enough-Time (JET) and described its major features and benefits.

This tutorial has also attempted to provide a comprehensive coverage of research issues related to OBS. Among
the issues covered are various burst assembly algorithms used at the edge of an OBS network as well as their effect on
traffic characteristics of the assembled burst traffic and in turn the TCP performance. We have also presented various
scheduling algorithms as well as burst contention resolution strategies used in the OBS core. It has been pointed out
that bandwidth-efficient scheduling algorithms like Min-SV can have a fast implementation, and that burst loss can be
reduced using pro-active burst contention resolution algorithms running at the edge (in addition to the core). Finally,
recent work on QoS support, IP/WDM multicast and G-MPLS extension have been discussed.

In addition to the challenges in implementing fast and scalable switching fabrics, and related devices such as FDLs
and all-optical wavelength converters, there are many open issues in OBS architecture research. Chief among them
are LOBS path provisioning, protection/restoration schemes as well as differentiation schemes to combat burst losses
due to the inevitable burst contention in a bufferless OBS network. Others include efficient support of a mixed set
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of periodical connections (to emulate SONET) and non-periodical burst transmissions, accurate single-node as well as
end-to-end performance analysis in OBS networks, quantitative cost and performance comparison between OBS and
other switching paradigms, and the design and evaluation of various TCP implementations over OBS.

OBS has received a lot of attention during the past few years and is fast becoming an important area of research.
This tutorial will hopefully become a useful resource for researchers working on OBS or those new to this topic.
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