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AbstrAct
To reap its full benefits, 5G must evolve into 

a scalable decentralized architecture by exploit-
ing intelligence ubiquitously and securely across 
different technologies, network layers, and seg-
ments. In this article, we propose end-to-end and 
ubiquitous secure machine learning (ML)-powered 
intent-based networking (IBN). The IBN framework 
is aware of its state and context to autonomously 
take proactive actions for service assurance. It is 
integrated in a zero-touch control and orchestra-
tion framework featuring an ML function orches-
trator to manage ML pipelines. The objective is 
to create an elastic and dynamic infrastructure 
supporting per-domain and end-to-end network 
and services operation. The solution is supported 
by a radio access network and forwarding plane, 
and a cloud/edge virtualization infrastructure with 
ML acceleration. The resulting framework supports 
application-level resilience and intelligence through 
replication and elasticity. An illustrative intelligent 
application use case is presented.

IntroductIon
The new generation of real-time (RT) mission-criti-
cal applications require high-resilience and low-la-
tency coordinated actions. To that end, 5G and 
beyond (B5G) infrastructures must make extra 
decisions at the network edge [1], faster and more 
reliably. In that regard, the proliferation of autono-
mous devices sensing, communicating, and acting 
within their environments is posing unprecedented 
challenges in terms of the generated data at the 
network edge. This massive amount of data cannot 
be conveyed to the cloud without incurring large 
delay and high capacity. To solve this scalability 
challenge while addressing privacy, latency, reliabil-
ity, and bandwidth efficiency, intelligence needs to 
be pushed to the network edge, while exhibiting 
tight coordination among radio access network 
(RAN), transport, and computation resources.

However, the relation between applications 
and the infrastructure is currently limited and 
mainly focused on provisioning aspects, which 
is managed independently at every network seg-
ment. Current efforts are focused on defining a 
control and orchestration architecture for the 
RAN (Open RAN Alliance, O-RAN [2]). The archi-

tecture consists of a hierarchy of systems, where 
RAN intelligent controllers (RICs) are close to the 
network and provide near-RT operation (i.e., times 
from 10 ms to 1 s) and abstraction to the service 
management and orchestration, which involves 
non-RT operation (i.e., times above 1 s) [2]. In 
parallel, other initiatives have proposed orchestra-
tion solutions considering end-to-end (E2E) service 
creation and operations for the RAN, transport, 
and computing from edge to cloud [3].

Smart orchestration requires collecting and 
analyzing large amounts of data, not only relat-
ed to RAN, transport, and computation key per-
formance indicators (KPI) [4], but also from the 
applications to deal with the committed quality 
of experience (QoE). A recent study anticipates 
that application and infrastructure monitoring 
tools will be augmented with machine learning 
(ML) capabilities over the next five years [5]. Such 
capabilities facilitate the adoption of the intent-
based networking (IBN) concept to data center 
(DC) operation to simplify operation and reduce 
overprovisioning for service assurance [6]. Hence, 
IBN is receiving great attention for its application 
in the operators’ networks context [7].

In addition, relying on ML for network and 
service operation requires security measures to 
mitigate weaknesses. Note that ML models can 
be subject to attacks, such as injecting malicious 
data to produce ML model bias when used for 
training,  tampering telemetry data to alter ML 
model inference, or embedding backdoors in the 
ML models [8].

In this article, we propose a secure smart 
E2E platform targeting network and computing 
self-optimization to provide committed QoE to 
intelligent applications.

E2E solutIon
For illustrative purposes, Fig. 1a shows a control 
and E2E service orchestration solution based on [3], 
allowing the deployment of E2E services. At every 
domain (i.e., RAN, transport, and computing from 
the edge to the metro/core), a technology-depen-
dent orchestrator provides an abstracted view of the 
domain resources and coordinates a set of underly-
ing software defined networking (SDN) controllers 
and virtual infrastructure managers (VIMs) in charge 
of data plane programmability.
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The proposed solution augments such architec-
ture with an E2E intent-based service orchestration 
layer to deploy E2E services with tighter coordi-
nation among domains, as well as for E2E service 
assurance and automation (Fig. 1b). The solution is 
data-driven, that is, measurements are continuously 
collected from the data plane by the domain con-
trollers, processed and analyzed, and an abstracted 
representation is exported to the E2E orchestrator. 
The received data are then correlated with context, 
analyzed, abstracted, and made available for the 
upper-layer applications [9]. The logical functions 
that implement collection, data processing and 
analysis, and so on are part of the intents and are 
connected to create an ML pipeline to provide poli-
cy-based network/service automation. All this is part 
of the IBN and closed loop automation solution.

The adopted technologies support near-RT 
resource allocation to adapt services to chang-
ing network conditions from both the per-domain 
and E2E perspectives. ML algorithms are in charge 
of, among other factors, predicting changes in 
traffi  c patterns and cell loads, anticipating service 
degradation, and detecting anomalies at early 
stages. With such information, optimization algo-
rithms, forming part of the defi ned ML pipelines, 
can make proactive decisions finding the best 
resource confi guration to deal with the future net-
work conditions focused on service assurance. 
Note that changes in future conditions impact-
ing KPIs (e.g., increasing latency) detected in one 
domain (e.g., in the RAN) might require reconfi g-
uration of resources in a different domain (e.g., 
more capacity in the transport) or network-wide 
(e.g., E2E recovery).

An important aspect is the programmable data 
plane, tailored to meet multiple objectives like mea-
surability and observability, elastic networking and 
reliability, and embedded security. Quality of service 
(QoS) telemetry needs to be E2E, from terminals to 
the cloud, with high accuracy and sub-millisecond 
granularity. In this context, telemetry data feeds ML 

algorithms for training, inference, and rapid detec-
tion of anomalies and performance degradations, 
which makes the data plane highly predictable and 
reliable, and includes embedded security to create 
a distributed barrier to mitigate distributed attacks. 
In the computing and virtualization platform, soft-
ware and hardware ML accelerators and high-ca-
pacity inter-data-center interconnects create a 
cloud-to-edge continuum to support the ML sand-
box domains and the applications.

Intelligent applications can benefit from the 
devised platform, as it enables dynamic resource 
adaptation, including the placement of virtual 
functions and connectivity services for perceived 
zero latency and application-level resilience to 
achieve superior QoE.

The next sections tackle the key components 
of the proposed solution.

smArt control And orchEstrAtIon
sEcurE IntEnt And closEd looP AutomAtIon

IBN complements orchestration functions by 
abstracting operational processes and focusing on 
behavior. The proposed solution starts from the 
design tool in the orchestrator; service definition 
uses templates specifying the intent in terms of pol-
icy rules that guide the service behavior, analytics, 
and closed loop events needed for elastic service 
management. The solution includes the translation 
and validation of the intent into a network confi gu-
ration. The ML pipeline associated with the service 
is also created [10]; it consists of a set of ML logi-
cal functions that are combined to form an analyt-
ics function, which is managed by an ML function 
orchestrator (MLFO) and hosted in a variety of net-
work functions. The optimal network confi guration 
for the services and the related ML pipeline are 
computed before the deployment.

During the service life cycle, the service assur-
ance system enforces that the network continues 
to deliver that intent based on the specifi ed design, 

FIGURE 1. a) End-to-end orchestration; b) end-to-end IBN framework.

VELASCO_LAYOUT.indd   107VELASCO_LAYOUT.indd   107 11/3/21   12:40 PM11/3/21   12:40 PMAuthorized licensed use limited to: BME OMIKK. Downloaded on February 10,2022 at 13:59:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • October 2021108

analytics, and policies, and with the help of ML 
algorithms; training can be carried in an ML sand-
box domain based on data from the network and 
simulation [11]. The target is to deal with situations 
ranging from those that require elastic resource 
scaling or reallocation to fulfill eventual demand 
variations, to those that require healing and recov-
ery. Actionable insights and rich context together 
with policy-driven closed loops can take automat-
ed actions whenever the network deviates from 
the intent. The next scenarios are subject to special 
attention and addressed from an E2E perspective: 
the automated provisioning phase; service assur-
ance, anomaly and degradation detection, and 
resource reconfiguration; and resources assign-
ment under competition for resources.

The solution implements IBN at both levels: 
E2E orchestration and per-domain. Intents are 
propagated from the service orchestrator to the 
domains, and thus, coordination of the different 
domain intents is needed. The functionalities for 
multi-domain ML pipelines are part of those of 
the interface between the E2E service orchestra-
tor and the domains. The solution goes beyond 
standalone ML algorithms by considering both 
vertical (customer and infrastructure) and hori-
zontal relations among intents and leveraging on 
transfer knowledge techniques [12].

Data, ML models, and inference require con-
fidentiality and integrity. For this reason, a cen-
tralized ML security enforcer, running in a trusted 
execution environment, generates and delivers 
execution tokens. Tokens are generated accord-
ing to trust received from various sources with 
trust metrics and attack alerts to enforce diff erent 
security policies, and considers the interaction 
between the distributed ML nodes. Tokens are 
delivered to ML nodes and used on the inference 
process or on specifi c kernel modules.

E2E sErVIcE orchEstrAtIon
The orchestration framework is designed to 
enable automatic and zero-touch network confi g-
uration. Containers can be used to deploy appli-
cations and allow for self-healing and horizontal 
scaling leveraging lightweight virtualization and 
orchestration. In addition, a new level of fl exibility 

is provided through the serverless computing par-
adigm, where resources are allocated on demand 
only while the function is running. Both comput-
ing models can be used together, and this fl exibil-
ity in virtualization enables the dynamic resource 
allocation based on application requirements.

Different layers/spaces coexist (Fig. 2). The 
layer including B5G managed systems includes 
orchestrators and functions for heterogeneous 
computing and networking resources from edge 
to cloud; and systems supporting context-depen-
dent non-network activities that might help in the 
decision making process.

Simple events generated by the managed sys-
tems are published as topics to the information 
bus service (IBS). The Event Correlation engine is 
devoted to analyzing and discovering correlation 
between events, highlighting possible common 
patterns that might be indicators of a network/ser-
vice degradation, guaranteeing fast anomaly detec-
tion. The output is an additional set of complex 
events that are consumed by the MLFO and the 
Persistency and Correlation engine. The Orches-
tration engine receives network reconfiguration 
requests from the MLFO, translates them into spe-
cifi c confi gurations for the network and the virtual-
ization systems, and then executes the proper set 
of actions for the requested confi gurations.

The Data Lake system represents the logical-
ly centralized repository where data are stored, 
aggregated, and transformed; it includes struc-
tured data from relational databases, semi-struc-
tured data, unstructured data, and binary data. 
Finally, the MLFO manages and monitors all the 
elements building an ML pipeline. The MLFO 
makes its orchestration decisions based on the 
data/events retrieved by the IBS and the Data 
Lake and on the current performance status 
of the ML Modules trained in the ML Sandbox 
domain. When needed, the MLFO will send com-
plex re-configuration requests to the Orchestra-
tion Service for service assurance.

AdAPtIVE nEtwork oPErAtIons
To deal with the complex B5G manageability, the 
industry is increasingly adopting an open, soft-
ware-defined, virtualized, and disaggregated RAN 

FIGURE 2. End-to-end service orchestration framework architecture.
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(vRAN) and is pushing for automated ML control 
plane functionality [2]. The latter includes require-
ments for dynamic reconfiguration of the B5G vRAN, 
like service creation time in the sub-second timescale. 
In addition, the O-RAN architecture enables the appli-
cation of ML techniques for RT (below 10 ms), as 
well as near-RT and non-RT control.

The proposed solution is O-RAN-aligned, 
with an ML-extensible Open vRAN control plane 
based on a containerized cloud-native architec-
ture, supporting zero-touch operation and recon-
figuration. Telemetry and control plane data from 
location/positioning subsystems are ingested into 
the near-RT RIC, which provides the extensible 
framework for advanced B5G network operation 
at the edge. vRAN network function placement is 
also service-aware to fulfill service performance 
via intents, for example, for low-delay ultra-reliable 
low-latency communications (URLLC) services. 
As in the O-RAN architecture, the non-RT RIC 
enables non-RT control and optimization of RAN 
elements and resources, ML pipeline, and poli-
cy-based guidance in the near-RT RIC via O1/
A1 interfaces [2]. Non-RT and near-RT RICs fine-
tune RAN behavior to assure specific KPIs dynam-
ically; the non-RT RIC monitors long-term trends 
and patterns and train models to be deployed at 
the near-RT RICs, and it exposes an intent-based 
application programming interface (API) provid-
ing high-level abstraction as a northbound inter-
face to the E2E service orchestrator [13].

Regarding the transport network, it encom-
passes both metro and core network segments 
supporting heterogenous technologies (e.g., pack-
et and optical) to provide the required transport 
capacity and connectivity from edge to core. 
Such network services (NSs) are requested by 
the E2E service orchestrator and processed by the 
network orchestrator. As for the RAN, an intent-
based API providing high-level abstraction is used. 
Several SDN controllers handle the actual pro-
grammability of a set of network devices within 
a defined area. The definition of the areas can 
follow different criteria such as geographical, aim-
ing to reduce control latency, technology/ven-
dor, and so on. Thereby, the network orchestrator 
coordinates operations with the involved SDN 
controllers when a network service is deployed or 
reconfigured.

The considered network control and orches-
tration architecture is devised to provide fast and 
effective network automation to permanently 
ensure and preserve the performance require-
ments of the network services. To this end, closed 
loop automation at different levels is adopted 
within a single area or E2E. Depending on each 
level and the complexity, the goal is to complete 
the provisioning and re-configuration processes in 
a sub-second timescale. Closed-loop automation 
entails gathering performance monitoring data 
from different sources, including in-band network 
gelemetry (INT) [14], active and passive probes, 
and so on, via a gelemetry API.

ProgrAmmAblE dAtA PlAnE
The proposed solution includes a programmable 
RAN and transport a forwarding plane based on 
P4 [14] for more granular control of the forward-
ing plane, as well as a computing platform with 
ML acceleration that extends from edge to cloud.

rAdIo AccEss nEtwork
To make RAN topology configuration more flex-
ible, the RAN must be highly programmable. ML 
techniques can be adopted to implement radio 
resource scheduling and multihop path selection 
and RAN configuration in tight coordination with 
the control and orchestration architecture. The 
O-RAN architecture [2] is built to offer an open 
functional architecture that can integrate and 
implement these functionalities (Fig. 1b).

On a per-service basis, customized RT con-
trol and protocol support can be the market dif-
ferentiator enabling novel application-network 
interactions. Moreover, there is a need for flexible 
cross-service resource sharing, depending on the 
level of isolation and RT performance require-
ments. Scheduling schemes and new protocols 
are instantiated on demand at the RAN: i) on a 
per-service manner to control the behavior of the 
service traffic, or ii) across services to, for example, 
ensure fairness and performance requirements. 
Toward that end, appropriate low-level hardware 
scheduling primitives need to be defined and 
used by the disaggregated cell site, programmed 
in high-level languages such as P4.

Scheduling performed together with RT con-
trol loops still needs policies received from the 
near-RT RIC. The near-RT needs to be updated 
periodically based on the state of the network, 
as well as on contextual data, which is also pro-
vided by the non-RT RIC and, ultimately, the E2E 
service orchestrator. The scenario is even more 
complex in ultra-dense deployments with overlap-
ping coverage areas and multihop self-backhauled 
networks with dynamic cell-less-based topology 
reconfiguration.

ForwArdIng PlAnE
Extending the current forwarding plane solutions 
with programmable traffic management and 
cross-layer interactions provides significant bene-
fits for meeting the diverse requirements of differ-
ent services. The application of customizable and 
programmable traffic management is supported 
E2E, focusing on bottlenecks along the traffic for-
warding paths. In addition, a highly programma-
ble network forwarding plane provides:
• Measurability. Telemetry streams are activat-

ed among network nodes and controllers to 
provide continuous and accurate monitor-
ing of node performance with sub-second 
granularity. INT is also extensively exploited 
to retrieve accurate statistics of selected ser-
vices on a per-packet basis and enforced at 
the terminal side, enabling the collection of 
precise geo-localization data, while providing 
accurate E2E connectivity monitoring.

• Elastic networking. Novel elastic network 
technologies are being designed to support 
changing network topologies at runtime. 
Stateful extensions to P4 programmability 
are exploited to provide finite state machines 
directly in the data plane. This way, elastic 
E2E adaptations predicted at the orchestrator 
can be pre-enforced at the node, enabling 
the dynamic evaluation of complex condi-
tions implemented at wire speed.

• Reliability. Selected application-aware pack-
et replication can be performed at the 
ingress/egress sections. In addition, applica-

To make RAN topology con-
figuration more flexible, the 

RAN must be highly program-
mable. ML techniques can be 
adopted to implement radio 

resource scheduling and 
multihop path selection and 

RAN configuration in tight 
coordination with the control 
and orchestration architec-
ture. The O-RAN architecture 

is built to offer an open 
functional architecture that 

can integrate and implement 
these functionalities.
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tion-aware failure/congestion detection can 
be implemented.

• In-network operations. By leveraging on 
P4-based stateful features, pre-planned and 
dynamic countable hardware resources 
can be dynamically allocated to implement 
aggregation functionalities.

• Embedded security. Stateful and inspection 
functionalities are exploited to perform 
cyber-security fi rewalling at wire-speed (e.g., 
against distributed attacks). ML feature 
extraction and telemetry-enabled correlation 
of network events among different nodes 
can be exploited to build a distributed barri-
er for smart anomaly detection.

EdgE-to-cloud PlAtForm wIth ml AccElErAtIon
As applications become more intelligent, more 
decisions are made at the edge. To support fore-
seen B5G application scenarios, the computing 
platform (Fig. 3) needs to be deployed as a one-
stop white box at the edge; this is flexibly and 
fully interconnected to the cloud for conducting 
extensive workloads (e.g., those related to ML) 
by distributing the various processing, learning, 
and inference functions in a seamless and effi  cient 
way. The edge white box is based on a high-per-
formance adapter card with internal processors, 
GPU units, and reprogrammable units for ad hoc 
processing. This platform allows the creation of 
a cloud-to-edge continuum, enabling workloads 
to be processed locally, as well as E2E network 
acceleration to interconnect with cloud services 
through high-capacity transport links when large 
resources need to be accessed.

Unfortunately, hardware specialization intro-
duces signifi cant barriers for algorithm portability, 
while ML software platforms are heterogeneous 
and in continuous evolution. Given such hetero-
geneity, there is a need to face the challenge of 
supporting ML applications with seamless porta-
bility. Such portability can be supported by the 
introduction of a novel compiler technology that 
translates an ML algorithm into a device-specifi c 
runnable binary, which is ready to be deployed 
and optimized for the given device. This would 
enable scalable function placement over the com-
puting platform from edge to cloud, independent 
of the specifi c hardware resources.

Finally, the platform relies on containers 
orchestration to provide a portable, extensible, 
open platform for managing containerized work-

loads and services to facilitate declarative confi gu-
ration and automation.

IntEllIgEncE At thE EdgE
IntEllIgEnt APPlIcAtIons

The possibility to move intelligence to the edge 
has sparked a groundswell of interest in distribut-
ed on-device ML, in which training data is stored 
across many geographically dispersed nodes [1]. 
Training is done locally, and aggregated updates 
are shared with other nodes directly or through 
a federating server. However, a learning model 
may have many parameters, and hence a model 
update can be bandwidth consuming. Moreover, 
since devices have limited resources, on-device 
ML must minimize the size of the model running 
on the device and power usage, while also con-
sidering prediction accuracy and privacy con-
straints. Note that the applications of federated 
ML enabled by URLLC are instrumental in verti-
cals such as vehicle communications among oth-
ers.

The proposed orchestration, network, and 
computing technologies enable intelligent appli-
cations with distributed ML by providing com-
putation and connectivity resources that provide 
enough QoS to support the required QoE. 
Furthermore, the provided infrastructure-lev-
el resiliency can dynamically and coordinatedly 
self-reconfi gure to adapt the resources to anoma-
lies and degradation before they impact the QoE 
of many applications. However, some services, 
such as those relying on URLLC and/or massive 
mobility, might still be impacted by a failure. In 
that regard, geo-replication can be used to pro-
vide geographical redundancy, which results in 
increased reliability and availability of applica-
tions against failures. Indeed, geo-replication is 
one of the enablers for perceived zero latency. 
The proposed solution provides the applications 
with resilience capabilities that go beyond the 
infrastructure level. Such functionalities include 
E2E QoS performance monitoring and context 
metadata; scaling in/out resources and extending 
topologies from edge to cloud to meet applica-
tion requirements; and container and serverless 
function placement with topology adaptation 
that enables seamless replication and redundan-
cy. Applications’ autonomous operations are per-
formed based on the defi ned customer intent and 
are closely followed at the infrastructure level. 

FIGURE 3. Cloud-to-edge continuum with ML acceleration.
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Infrastructure intents not only collect performance 
monitoring data, but also receive data from 
customer intents and use them to reconfigure 
resources in advance.

IllustrAtIVE usE cAsE
To illustrate the benefi ts of the proposed solution, 
Figs. 4a and 4b present a VR/AR application that 
takes advantage of application-level resilience 
based on federated learning. Three drones (labeled 
D1–D3) and one car (C1) are capturing images, 
and each one learns an ML model before sending 
it to the edge, where the model is combined with 
others coming from multiple sources and sent back 
to the terminals for better accuracy. An ML pipe-
line with a connected set of containers/serverless 
functions is deployed [15]. Nodes in the ML pipe-
line collect individual ML models from and distrib-
ute combined ML models to the devices (labeled 
with the devices’ names), combine ML models 
(process), store data (DB), and provide user inter-
face (UI). Model combination requires strict delay 
from the local ML model computation until the 
reception of the combined ML model. To meet 
the desired performance, collection and processing 
containers should be placed at the edge in nodes 
with ML acceleration, whereas other functions can 
be deployed at the metro/core.

The E2E latency is constantly monitored by the 
terminals (M) and is combined with other data 
sources, like the received RF signal and geolo-
calization-based estimated trajectory, to predict 
near-future QoE degradations that would impact 
the accuracy of the model predictions at the ter-
minals. The ML pipeline is reconfigured accord-
ingly.

EXPErImEntAl ImPlEmEntAtIon And rEsults
We have prototyped a service orchestrator and 
an MLFO to demonstrate the use case described 
in the previous subsection. Both modules have 
been developed in Python 3.8; Kubernetes (K8s) 
was used as the Multi-VIM orchestrator and 
Docker as the container technology. The service 

orchestrator uses the Kubernetes API through a 
Python client library, and it communicates with 
the MLFO through a RESTFul-based interface. A 
private image repository was hosted in Docker 
Hub. OpenDayLight (ODL) was used as the SDN 
controller.

Figure 4c shows the messages exchanged 
during the deployment of the NS in Fig. 4a and the 
related ML pipeline. An NS descriptor is received 
from the application with a template for the ML 
pipeline and some constraints (message 1). The 
service orchestrator then computes the place-
ment and connectivity for the NS and requests the 
MLFO to compute the ML pipeline, which com-
putes the ML pipeline to be deployed based on 
the NS and the received constraints (2). Next, the 
service orchestrator coordinates with Kubernetes 
(3) and ODL (4) for the deployment of the NS 
and the ML pipeline. Containers’ deployment is 
carried out through Kubernetes (5), and informa-
tion includes the DC identifi er, virtual LAN and IP 
address, the image, and other confi gurations. The 
total deployment time was below 30 s.

Figure 4d shows the exchanged messages 
during ML pipeline reconfi guration (as in Fig. 4b). 
The workfl ow is triggered when one or more ter-
minals report E2E latency exceeding some thresh-
old. This entails solving an optimization problem 
considering the current state. It is worth men-
tioning that the workflow uses replication and a 
make-before-break approach for seamless tran-
sitions; new connectivity is created (2) and con-
tainers are deployed (3), before removing those 
unused (4–5). Total reconfi guration time was 8.5 
s, and we verifi ed that no data were lost.

summArY
A framework based on IBN with ubiquitous and 
secure ML has been presented. Specifically, the 
operation of customer and infrastructure services 
are automated, where ML plays an important role 
in making predictions of future network and ser-
vice conditions, detecting anomalies and degra-
dations, and supporting coordinated decisions 

FIGURE 4. a) NS and ML pipeline deployment; b) reconfiguration; c-d) messages exchanged.
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for service assurance. A specific feature is the 
coordination between customer and infrastruc-
ture ML-based intents, aiming to simultaneously 
meet the requirements of all the services. All this 
requires RT decision making, flexible placement 
of functions in the computing platform, RT recon-
figuration, and so on from the E2E perspective. 
Table 1 summarizes the key components of the 
proposed solution.
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TABLE 1. Summary of the proposed solution.

Plane Key component Description

Control and 
orchestration

ML-based IBN solution Intents are based on accurate ML models and can exchange knowledge among them to provide network 
services with tight coordination and assurance automation.

Secure ML
Different heterogenous solutions to enforce data and ML model integrity and confidentiality are federated 
into one fail-safe overarching centralized ML security enforcer delivering tokens, itself protected by 
trusted execution.

Zero-touch control and 
orchestration

Hierarchical architecture with an E2E service orchestrator coordinating RAN, transport network, 
computing specific orchestrators. Each orchestrator coordinates underlying near-RT controllers. The 
MLFO manages ML pipelines. Model training performed in sandbox domains with data from a Data Lake.

Adaptive network operations 
and service assurance

Per-domain and E2E network and services proactive adaptation and reconfiguration based on ML and 
near-optimal E2E resource allocation for service assurance. Decisions are made autonomously or include 
the operator in the loop.

Data/
forwarding

Programmable RAN Highly programmable ML-backed RAN that extends from scheduling to multi-hop path selection and RAN 
topology configuration. The E2 interface is key to cover the required functionalities [2].

Programmable forwarding 
plane

Network programmability can be exploited to provide measurability, elastic networking, reliability, in-
network operations, and embedded security.

End-to-end platform from 
edge to cloud

Based on a one-stop white box operating in the edge with full interconnection to cloud solutions and local 
capability to conduct extensive workloads (e.g., ML training).

ML acceleration A compiler technology translates ML into a device-specific runnable binary. This enables scalable function 
placement from edge to cloud.

VELASCO_LAYOUT.indd   112VELASCO_LAYOUT.indd   112 11/3/21   12:40 PM11/3/21   12:40 PMAuthorized licensed use limited to: BME OMIKK. Downloaded on February 10,2022 at 13:59:19 UTC from IEEE Xplore.  Restrictions apply. 


