

IEEE Communications Magazine • October 2005 690163-6804/05/$20.00 © 2005 IEEE

NETWORK AND SERVICE MANAGEMENT

INTRODUCTION

The need for a more autonomous management
of networks and distributed systems has driven
research and industry to look for management
frameworks that go beyond the direct manipula-
tion of network devices and systems. One
approach toward this aim is to build policy-based
management systems [1]. In general, policies
represent externalized logic that can determine
the behavior of managed systems. The promise
of policy-based management is that the opera-
tion of computing resources can be guided to
follow certain rules, and dynamically configured
so that they can achieve certain goals and react
more nimbly to their environment. Over the
years, multiple approaches have evolved to sup-
port policy-based management of complex infor-
mation technology (IT) systems. Some of these
approaches are tightly coupled to a specific
application domain and operation environment,
while others are designed to be generic and
more broadly applicable.

Policy Management for Autonomic Comput-
ing (PMAC) is a generic policy middleware plat-
form that can be used to manage multiple
aspects of a large-scale distributed system such
as quality of service (QoS), configuration, and
auditing. Another equally important goal of the
PMAC platform is to provide software compo-
nents that can be embedded in software applica-
tions to reduce the cost of writing applications
capable of taking input from a policy-based man-
agement system.

This article provides an overview of the
PMAC platform and shows with an example how
it can be used in practice to manage networked

IT systems and applications. In particular, we
present:
• The information and system models of

PMAC for policy representation, and the
interaction between policy components and
managed resources.

• The main components of PMAC for policy
creation, policy storage, policy evaluation,
and enforcement at managed resources.

• A policy ratification module that certifies a
policy by taking into account its relation-
ship with other policies in the systems. For
example, a system administrator may want
to know if a new policy can conflict with
existing policies.

Finally, we present a case study of PMAC appli-
cation in storage area network management to
illustrate how policy-based management can be
used in real-life scenarios.

BACKGROUND ON
POLICY TECHNOLOGY

POLICY INFORMATION MODEL
To precisely specify the semantics of policy oper-
ations, a policy management system must be
built on a concrete information model. The poli-
cy information model used in PMAC is inspired
by the Common Information Model (CIM) poli-
cy model [2]. The CIM policy model is defined
by the Distributed Management Task Force
(DMTF) Policy Working Group to facilitate a
unified and consistent representation of polices
across a wide spectrum of technical domains,
including policies related to configuration and
usage of devices and applications.

In PMAC, each policy is a rule containing
four components: conditions, actions, priority,
and role. The conditions associated with a policy
rule specify whether the policy is applicable. We
say a policy is applicable when the conditions
associated with the rule evaluate to true. If a
policy is applicable, the set of actions associated
with the policy gets executed. The priority is a
nonnegative integer that indicates the relative
importance of the associated policy. The priority
value determines which policy must be applied
when there are multiple applicable policies with
potentially conflicting actions (e.g., one policy
may allow access to data, while another blocks

Dakshi Agrawal, Kang-Won Lee, and Jorge Lobo, IBM T. J. Watson Research Center

ABSTRACT

This article provides an overview of the Poli-
cy Management for Autonomic Computing
(PMAC) platform, and shows how it can be used
for the management of networked systems. We
present the policy information model adopted by
PMAC and the system model for interaction
between the policy manager and the managed
resource. We also present the main components
of PMAC for policy creation, storage, evalua-
tion, and enforcement, and present practical
applications of PMAC in networks management.

Policy-Based Management of
Networked Computing Systems

LEE LAYOUT 9/22/05 11:10 AM Page 69

IEEE Communications Magazine • October 200570

it). Finally, the role defines the context in which
the policy will be relevant. For example, a policy
defined for mail servers may have the role “mail-
server.” For a detailed description of these com-
ponents, we refer the reader to the PMAC
documentation [3].

THE SYSTEM MODEL OF PMAC
The PMAC platform supports the system model
adopted by the IBM Autonomic Computing
(AC) architecture, which defines a framework
for self-managing IT systems [4]. The AC archi-
tecture presents two key abstractions:
• An autonomic manager (AM), which moni-

tors computing resources, analyzes the sta-
tus of the resources, plans action for the
resources, and executes the planned actions

• A managed resource (MR), which is a com-
puting system controlled and managed by
the AM1

The relation between AM and MR is 1-to-n:
a single AM typically controls one or more MRs,
and each MR is controlled by exactly one AM.
The communication between an AM and an MR
is done through the MR’s management inter-
faces, which exposes two types of hooks, sensors
and effectors. The sensors are used by the AM to
read the internal state of the MR, and the effec-
tors are used by the AM to invoke actions on
the MR.

In PMAC, the AM is a policy-based manager,
which monitors, analyzes, and plans according to
the policies that have been defined for the
resources managed by the AM. In this respect,
the role of the AM is similar to that of the policy
decision point (PDP) as defined in RFC 3198
(for an overview and references to different poli-
cy models see [5, 6]). In fact, an AM includes
the functionality of a PDP and supports addi-
tional features, such as state monitoring, event
correlation, and notification, that many tradi-
tional PDPs do not provide. Likewise, there is a
similarity between the managed resources and
the traditional policy enforcement point (PEP)
component.

We note that even though PMAC borrows
the AC vocabulary, it substantially extends the
bindings model of AC, which primarily relies on
Web services. More precisely, the AM in PMAC
exposes a set of Java application programming
interfaces (APIs) that are useful when the AM
and MR are running in the same Java virtual
machine (i.e., the policy module is embedded as
a library in applications). Alternatively, the AM
can be run inside an application server and be
offered as a stateless session Enterprise Java
Bean (EJB) or as a Web service to remotely
located managed resources. Thus, a managed
resource can request policy guidance to the AM
through RMI (in the EJB case) or SOAP (in the
Web service case) protocols.

PMAC POLICY MIDDLEWARE

AN OVERVIEW OF PMAC
The primary goal of PMAC is to reduce the cost
of enabling software applications and IT systems
to obtain guidance from policy-based manage-
ment systems. More specifically, the design goals
of PMAC are as follows:

• PMAC should be generic, independent of
platform, software applications, and IT
domains.

• PMAC should support open formats and be
compliant with existing and emerging stan-
dards for service object-oriented architec-
tures.

• PMAC should leverage existing technolo-
gies for parsing, validation, distribution, and
execution of policies.

• PMAC policy should be flexible and exten-
sible so that application-specific functions
can be added.
As a result, PMAC is a generic policy middle-

ware based on open format (XML) and standard
technologies (e.g., Web Services Resource Prop-
erty and J2EE), and supports a flexible and
extensible policy language.

At the highest level, PMAC provides four
main components: policy definition tool (PDT)
for policy authoring, policy editor storage
(PES) for policy deployment and persistence,
autonomic manager (AM) for policy evalua-
tion, and managed resource-side component
(MR libraries) for policy enforcement. Figure
1 presents a simple illustration of the overall
architecture of the PMAC platform for two
PDTs, two AMs, and five MRs in three com-
puter systems.

A policy definition tool (PDT) is a user
interface by which policy authors create and
modify policies. PMAC supports the concur-
rent use of policy definition tools to create and
modify policies by multiple authors. Therefore,
the consistency of distributed policies must be
checked at the policy editor storage (PES). In
PMAC policies are written and stored in the
Autonomic Computing Policy Language
(ACPL). ACPL is an XML-based policy lan-
guage whose syntax closely mirrors the policy
information model of PMAC. Even though
PMAC includes a PDT, it is expected that most
applications would provide their own definition
tool integrated in the overall application user
interface. In that case, the application develop-
er can use the policy object builder component
to process policies.

The PES component stores policies and poli-
cy-related metadata such as policy templates (for
repeated use of similar policies). This compo-
nent acts as a central repository where multiple
policy definition tools store all of their policies.
In turn, policy updates are pushed from a PES
to autonomic managers according to their scope.
Depending on the configuration and application
requirement, the PES component can store poli-
cies either on a file system or in a relational
database. Currently PMAC supports major
database systems including DB2, Microsoft SQL,
Oracle, and Cloudscape.

The autonomic manager component is the
main component of PMAC. It obtains its poli-
cies from the policy editor storage and registers
managed resources that are interested in receiv-
ing a policy guidance from it. In order to provide
policy guidance to an MR, the AM reads the
state of the MR using the sensor interface of the
MR. The AM then evaluates relevant policies by
using the state of the MR, and plans actions.
The policy evaluation may occur either due to

1 The AC architecture is
related to International
Telecommunication
Union — Telecommuni-
cation Standardization
Sector (ITU-T) Recom-
mendation X.700, “Man-
agement Framework for
Open Systems Intercon-
nection,” which defines
the relationship between a
manager and managed
elements.

At the highest level,

PMAC provides four

main components:

a policy definition

tool for policy

authoring; policy

editor storage for

policy deployment

and persistence;

autonomic manager

for policy evaluation;

and a managed

resource-side

component (MR

libraries) for policy

enforcement.

LEE LAYOUT 9/22/05 11:10 AM Page 70

IEEE Communications Magazine • October 2005 71

an explicit request from the managed resource
for policy guidance or on a schedule determined
by the AM configuration. Note that in the for-
mer case, the MR can send its state along with
the request to avoid the AM coming back to
read it. Based on the type of the result of policy
evaluation, the AM may invoke an action on the
MR via the effector interface of the MR, or sim-
ply return the result to the MR. When the MR
receives directives from the AM, the MR can
change its behavior in order to comply with the
policy guidance.

PMAC comes with the policy object builder
component as a user library. This component is
capable of parsing policies written in ACPL and
creating a Java Policy Object from it. The policy
object builder also provides a capability to vali-
date policies written in ACPL against the ACPL
grammar using schema validation. PMAC also
includes a design patterns library that imple-
ments a set of operations commonly required by
certain types of applications. For example, the
storage area network (SAN) management appli-
cation presented later is based on the auditor
pattern.

AUTONOMIC COMPUTING
EXPRESSION LANGUAGE

At the core of ACPL is a rich expression lan-
guage, the Autonomic Computing Expression
Language (ACEL), that facilitates writing poli-
cy rules [7]. ACEL has been carefully designed
so that it can express most common policy
conditions while closely following standard
XML conventions. The result is a strongly
typed language that can be parsed and type

checked almost entirely by XML parsers,
thereby making it attractive to applications
that can consume XML format (e.g. Web ser-
vices policies). Moreover, extending the lan-
guage with new operations can easily be done
by modifying the schema and plugging in the
extension operators.

ACEL defines nine primitive types: Boolean,
Short, Integer, Long, Float, Double, String, Cal-
endar, and URI, which are directly lifted from
the XML standards; and two composite types:
CompositeData and Collection. CompositeData
is equivalent to the XML complex type. A Col-
lection object represents an unordered collection
of ACEL expressions. ACEL also allows the def-
inition of macro expressions.

ACEL provides various types of operators:
type cast functions (e.g., ToInt , ToFloat ,
ToBoolean), standard arithmetic functions
(e.g., Plus, Max, Log), Boolean functions (e.g.,
And, Not, Equal), string functions (e.g., ToUp-
per, LeftSubString), calendar operations
(e.g., GetDayOfWeek), and operations to tra-
verse an XML document using Xpath expres-
sions (e.g., XPathIntExpression). Variables
of different types can be part of an expression,
but the values associated with these variables
must be assigned before the evaluation of the
expression.

A condition in a PMAC policy can be any
ACEL expression of type Boolean with variables
corresponding to sensor names. The value of the
variable is the same for all occurrences of the
variable in the AM policies. Variables in ACEL
are represented by an XML element type called
PropertySensor with an attribute Property-
Name identifying the name of the variable. For

nnnn Figure 1. PMAC architecture overview.

Policy evaluation
and decision

E

Computer system 1 Computer system 2 Computer system 3

MR1

S E

MR2

S E

MR4

S E

MR5

SE

MR3

S

Policy management domain

Managed system domain

Definition
and persistence PDT1

AM1 AM2

PES PDT2

At the core of ACPL

is a rich expression

language — the

Autonomic

Computing

Expression Language

(ACEL) — that

facilitates writing

policy rules. ACEL

has been carefully

designed so that it

can express most

common policy

conditions while

closely following

standard XML

conventions.

LEE LAYOUT 9/22/05 11:10 AM Page 71

IEEE Communications Magazine • October 200572

example, an expression that multiplies a Float
constant 3.14159 times the PropertySensor
diameter would be written as:

<Product>
<FloatConstant>
<Value>3.14159</Value>

</FloatConstant>
<PropertySensor propertyName=
”diameter” />

</Product>

We note that the XML representation of
ACPL is mainly for internal processing, policy
persistence, and deployment. In such cases, it is
expected that policies will be created and updat-
ed using a PDT. However, for cases when a PDT
is not used, PMAC also supports a simple policy
language called SPL. SPL is more human friend-
ly, and policies in SPL can easily be written
using a text editor. For example, consider the
following Boolean expression:

<And>
<Not>
<Equal>
<PropertySensor propertyName=
”NumberOfPorts” />
<IntConstant>
<Value>16</Value>

</IntConstant>
</Equal>
</Not>
<Equal>

<PropertySensor propertyName=
”VendorId” />

<IntConstant>
<Value>5</Value>

</IntConstant>
</exp:Equal>
<Equal>

<PropertySensor propertyName=
”Type” />
<StringConstant>
<Value>Core Switch</Value>

</StringConstant>
</Equal>

</And>

Using SPL, we can write the same expression
as follows:

(Sensor(NumberOfPorts) != 16) and
(Sensor(VendorId) = 5) and
(Sensor(Type) = “Core Switch”)

All policies written in SPL are internally
translated into ACPL, and both versions, the
SPL and translated ACPL, are stored in the
PES. Parsing and evaluation is then done in the
same manner as for policies originally written in
ACPL. The simplicity and convenience of SPL,
however, comes at a cost. Theoretically, it is pos-
sible to define and implement SPL so that it
provides functionality equivalent to that of
ACPL. However, such an implementation will be
a large undertaking since it cannot rely on stan-
dardized tools and libraries similar to those
available for XML. Therefore, the PMAC imple-
mentation of SPL provides a subset of ACPL
functionality.

POLICY RATIFICATION

Policies can interact with each other, often with
undesirable effects; therefore, a policy adminis-
trator needs to be aware of such relations among
policies. Understanding and controlling the over-
all effect of policies is particularly important in a
distributed system, where a policy author may
only have a partial view of the entire system, and
multiple authors may write policies for the same
set of resources without coordination.

Policy ratification is the process of certifying a
policy by taking into account its relationships
with other policies in the system before the poli-
cy is activated or ratified. In general, there are
different ways to specify policies. In some cases
policies are specified in a key-value pair (e.g.,
the configuration policy of the Microsoft
Exchange server). In other cases the rules are of
the form event-condition-action (when event e
occurs if condition c is true then perform action
a). In certain policy languages, policies are speci-
fied in a subject-action-target model (subject s
must [or can or must not or cannot] perform
action s to target t). The PMAC policy is an
example of an event-condition-action policy. In
this section we present a set of general opera-
tions that are used for policy ratification: domi-
nance check, conflict check, and coverage check.
We note that although these operations have
been designed for PMAC, the fundamental ideas
can be applied to other types of policy.

Dominance Check — A policy is dominated by
a group of policies S when the addition of the
new policy does not affect the behavior of the
system governed by S. For example, a policy
“passwords must be longer than 4 characters” is
dominated by another policy “passwords must be
longer than 6 characters” because the former
policy is subsumed by the later. In another exam-
ple, a policy “Joe has access to file server from 1
p.m. to 5 p.m.” is dominated by another policy
“Joe has access to file server from 8 a.m. to 7
p.m.” From these examples, we observe that
dominance checking demands capability to
determine whether a Boolean expression implies
another Boolean expression: in the first example,
we need to determine that whenever (password
length > 6) is true, (password length > 4) is also
true, while for the second example, we need to
determine the whenever (13:00 < t < 17:00) is
true, (08:00 < t < 19:00) is also true.

Conflict Check — We say that two policies are
in conflict if there are situations in which they
may issue directives that cannot be achieved
simultaneously. For configuration policies, two
policies will conflict when they specify different
configuration values: “mailbox-quota=2 GB”
and “mailbox-quota=1 GB.” In the event-condi-
tion-action model, a conflict between two poli-
cies may arise when the conditions of the two
policies can simultaneously be true, but specify
incompatible actions. For example, the policy “if
a telnet connection comes after 5 p.m. then
serve the connection with QoS level LOW” will
potentially conflict with the policy “if a telnet
connection comes from the headquarters then
serve the connection with QoS level HIGH.”

All policies written in

SPL are internally

translated into ACPL,

and both versions,

the SPL and

translated ACPL,

are stored in the

PES. Parsing and

evaluation is then

done in the same

manner as for

policies originally

written in ACPL.

LEE LAYOUT 9/22/05 11:10 AM Page 72

IEEE Communications Magazine • October 2005 73

Therefore, the key ratification operation here is
to determine whether two Boolean expressions
can be made simultaneously true (i.e., they are
satisfiable).

Coverage Check — In many application
domains, the administrator may want to know if
policies have been explicitly defined for a certain
range of input parameters. For example, when a
firewall policy has been specified in the event-
condition-action model, the administrator may
want to make sure that at least one policy has a
true condition for the entire IP address space. In
another example, when policies controlling print-
er queue have been specified, an administrator
may want to know if the policies cover all priori-
ty classes for all days of the week and all hours
of the day. The key operation in this case is to
find out if a set of Boolean expressions implies
another Boolean expression, where the second
expression represents the value space we want to
cover.

From the above observations, we can con-
clude that the primitive operations to support
policy ratification are solving the implication and
satisfiability problems of Boolean expressions.
Finding general solutions for these problems is
known to be computationally hard. Thus, we
have taken a practical approach to identify the
types of Boolean expressions that occur fre-
quently in policy rules, and provide efficient
solutions for such cases. In particular, we sup-
port:
• Boolean expressions describing equality and

inequality constraints of a single variable
per equality or inequality

• Boolean expressions with constraints over
time intervals

• Regular expression constraints over strings
• A set of linear constraints over the real

numbers
The interested reader can find details of our rat-
ification algorithms in [8].

Conflict Resolution: The Latter Step of Rat-
ification — When the conflict check process
suggests a new policy can potentially conflict
with existent policies in the system, we must
resolve the conflict. A common practice to
resolve conflicts is to provide the author with a
mechanism to specify different priorities to con-
flicting policies: a policy with a higher priority
has precedence over those with lower priority. In
PMAC, priorities are positive integers where a
greater number represents a higher priority.
After a policy author is presented with a set of
policies that can conflict with the new policy
being ratified, the author needs to resolve the
conflict by either disabling some policies or
assigning a priority to the new policy. The assign-
ment of priority values, however, may be tricky
when many policies are involved in conflict. In
particular, inappropriate priority assignment may
require adjustment of the priority of many
already installed policies. To illustrate the prob-
lem, in Fig. 2 we show policies represented by
circles with numbers indicating their priorities
and the arcs between them indicates conflicts.
For illustration, we denote the priority relation
by directed arcs where the arc is directed from a

higher priority to a lower one. The node with
the question mark represents a new policy about
to be installed.

In this example, if we assign 14 as the priority
to the new node, four policies need to change
their priorities to maintain relative priority. On
the other hand, if we assign 15 to the new policy,
only one policy needs to change its priority.
When we have a large number of policies, deter-
mining the right priority value can be nontrivial.
The conflict resolution module of PMAC helps
the user by automatically assigning the priority
values to new policies and adjusting the values
of the related policies when given only the rela-
tive priority of a new policy. For this, PMAC has
adapted algorithms to maintain ordered lists
under insertion and deletion operations where
we can guarantee that, on average, the amor-
tized reassignment of priorities is done in con-
stant time.

There are other methods to detect and
resolve conflicts at runtime using monitors and
meta-policies [5]. For example, consider a case
when a set of security policies and a set of ser-
vice differentiation policies have been defined
for a storage system. In this case, the user may
simply indicate that the security policies have
priorities over the service differentiation policies
using meta-policies. In other cases, more recent
policies may take precedence over older policies.
These approaches provide more flexible means
to handle policy conflicts rather than by just sim-
ply assigning priorities. Although these methods
can be computationally more expensive, they are
useful in certain application domains.

CASE STUDY: NETWORK
CONFIGURATION CHECKING

In this section we present the configuration
checking problem of storage area networks as
one of the applications of policy-based system
management in real life. To give a brief intro-
duction, storage area networks (SANs) are dedi-
cated switched networks between servers and
storage so that the storage system can be shared
among multiple computers. Currently, SANs are

nnnn Figure 2. Priority assignment problem.

25

14

15

13

14

16

9

16

12

13

?

LEE LAYOUT 9/22/05 11:10 AM Page 73

IEEE Communications Magazine • October 200574

predominantly based on the Fibre Channel pro-
tocol, which supports 1–10 Gb/s raw bandwidth.
One of the main challenges in SAN management
is the complexity encountered during the system
setup and reconfiguration at a later time. Typi-
cally, a SAN consists of a large number of com-
ponents from multiple manufacturers, and many
of them have interoperability constraints with
each other. For example, a storage device from a
certain vendor can only work with certain types
of Fibre Channel switches with certain firmware
levels. In addition, over time, SAN administra-
tors have developed best practices to avoid any
problems that may arise from misconfigurations.
We list a few sample best practices from field
practitioners as follows:
• All zones should be configured so that the

same host bus adapter (HBA)2 cannot talk
to both tape and disk devices.

• Both Windows and Linux servers should not
be members in the same zone.

• Every active and connected port should be a
member of at least one active zone.
For correct operation, these conditions must

always be satisfied. Thus, it is important to verify
that the SAN configuration is valid after adding
or removing devices, upgrading firmware, and/or
making changes to network configuration. It is
possible to address these problems by using stor-
age management software, which may query the
underlying devices to discover their current sta-
tus and detect potential configuration errors.
The state-of-the-art SAN management software
typically hard-codes the logic to detect configu-
ration problems. We can enhance the SAN man-
agement system and make it more flexible and
extensible by externalizing SAN configuration
rules as policy [9].

Figure 3 presents an overview of a SAN con-
figuration management system extended with
PMAC. The original SAN manager system con-
sists of the SAN configuration manager module,
SAN configuration database, database scanner,
user interface, and scheduler. In the target SAN
environment, monitoring agents are deployed
over the storage network to keep track of the
status of SAN devices and configuration changes.
When a configuration change happens in the
SAN, it is detected and stored in the SAN con-
figuration database. Based on a predefined
schedule or a trigger from the user, the SAN
configuration manager invokes a database scan-
ner, which queries the database, identifies the

configuration changes, and reads them into the
SAN management system. In the original system,
the configuration manager module verifies the
validity of the new configuration using the inter-
nal hard-coded interoperability constraints. In
the policy-enabled version, the raw configuration
data is transformed into a format that can be
understood by the data analyzer module (AM).
The configuration manager then makes a request
to the AM for policy evaluation. In effect, the
configuration manager module works as a man-
aged resource in the AC architecture. Upon this
request, the AM checks whether the configura-
tion change violates the interoperability con-
straints by looking up the local policy database.
If a policy violation is detected, the violation is
notified to the SAN administrator via various
channels (e.g., log file, SAN manager console,
and email to the administrator). In addition, it
can trigger an action to invoke a workflow to
automatically reconfigure the SAN to correct the
error.

As explained earlier, PMAC can be either
incorporated as a standalone service component
(EJB or Web service in an application server) or
embedded as a library. In this example we have
shown the latter case, where the PMAC compo-
nent and data analyzer have been integrated into
the SAN manager system.

SUMMARY
Policy-based network management promises to
reduce the burden on the human administrator
by providing systematic means to create, modi-
fy, distribute, and enforce policies for managed
computing resources. PMAC is a policy middle-
ware platform that has been developed based
on the CIM policy model. PMAC features an
open format extensible policy language, a stan-
dard-based flexible binding and invocation
model for the managed system, both database-
and file-based policy persistence mechanisms,
and user support capabilities such as policy rati-
fication. This article provides an overview of
the PMAC architecture highlighting each com-
ponent, and presents an example of PMAC
application in storage network management to
show how policy management is used in a real-
life scenario.

ACKNOWLEDGMENT
The development of PMAC has been a huge
collaborative effort among teams from IBM T.
J. Watson Research Center, IBM India
Research Laboratory, IBM Tokyo Software
Laboratory, Tivoli Software, and IBM Auto-
nomic Computing Initiative. We are grateful to
everyone involved in the process that led to the
release of PMAC on IBM alphaWorks [3]. We
are also grateful to our colleagues at IBM
Almaden Research Laboratory for their help
and collaboration throughout the design and
implementation of the SAN configuration
checking system.

REFERENCES
[1] M. Sloman, “Policy Driven Management for Distributed

Systems,” J. Net. and Sys. Mgmt., vol. 2, no, 4, 1994,
pp. 333–60.

nnnn Figure 3. Extended SAN configuration manager.

Scheduler

DB
scanner

Data
analyzer

PMAC
AM

SAN config manager (policy invoker)

User interface

Config
DB

Policy
DB

SAN

2 A host bus adapter is a
Fibre Channel network
interface card on the serv-
er side machine.

LEE LAYOUT 9/22/05 11:10 AM Page 74

IEEE Communications Magazine • October 2005 75

[2] Distributed Management Task Force, “CIM Policy Model, v.
2.8,” http://www.dmtf.org/standards/cim/cim_schema_
v281/CIM_Policy28-Final.pdf, Jan. 25, 2004.

[3] IBM, “Policy Management for Autonomic Computing,”
http://www.alphaworks.ibm.com/tech/pmac, Mar. 4,
2005.

[4] IBM, “Autonomic Computing: Creating Self-Managing
Computing Systems,” http://www.ibm.com/autonomic/
2004.

[5] I. Aib et al., Analysis of Policy Management Models and
Specification Languages,” Network Control and Engi-
neering for QoS, Security and Mobility II, D. Gaïti et al.,
Eds., Norwell, MA: Kluwer, 2003.

[6] G. N. Stone, B. Lundy, and G. G. Xie, “Network Policy
Languages: A Survey and a New Approach,” IEEE Net-
work, vol. 15, no. 1, 2001, pp. 10–20.

[7] D. Agrawal et al., “Autonomic Computing Expression
Language,” IBM DeveloperWorks Tutorial, Mar. 2005.

[9] D. Agrawal et al., “Policy-Based Validation of SAN Con-
figuration,” Proc. IEEE Int’l. Wksp. Policies for Distrib.
Sys. and Net., June 2004.

[8] D. Agrawal et al., “Policy Ratification,” Proc IEEE Int’l. Wksp.
Policies for Distrib, Sys. and Net., 223-232, June 2005.

ADDITIONAL READING
[1] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict Resolution

using Logic Programming,” IEEE Trans. Data on Knowl-
edge, vol. 15, no. 1, 2003, pp. 244–49.

BIOGRAPHIES
DAKSHI AGRAWAL (agrawal@us.ibm.com) received a B.Tech.
in 1993 from the Indian Institute of Technology-Kanpur
(IITK), an M.S. in 1995 from Washington University, St.
Louis, Missouri, and a Ph.D. in 1999 from the University of
Illinois-Urbana-Champaign (UIUC), all in electrical engineer-
ing. He worked as a visiting assistant professor at UIUC
during 1999–2000. After that, he joined T. J. Watson
Research Center, IBM Corporation, Hawthorne, New York,
as a research staff member. He was awarded a certificate
of merit for securing second rank in the Indian National
Mathematical Olympiads in 1988. He received the Robert T.
Chen Memorial Award for 1999 for excellence in doctoral
research in the Department of Electrical and Computer
Engineering at UIUC. He also received the Ross J. Martin
Memorial Award in 2000 for outstanding research achieve-
ment by a graduate student in the College of Engineering
at UIUC. Most recently, he was awarded the IBM Research

Division Award for contributing to the architecture of IBM
Autonomic Computing Policy Infrastructure and Products.

KANG-WON LEE (kangwon@us.ibm.com) received a B.S. in
1992 and an M.S. in 1994 from Seoul National University in
computer engineering, and a Ph.D. in 2000 from UIUC in
computer science. He served the Republic of Korea Air Force
during 1994–1995, and worked as a research assistant for
TIMELY research group at the Center for Reliable High Per-
formance Computing, Urbana, Illinois, during 1996–2000.
In 2000 he joined IBM T. J. Watson Research Center as a
research staff member. He was awarded a Magna Cum
Laude from Seoul National University in 1992, Korean Gov-
ernment Overseas Scholarship from the Ministry of Educa-
tion in 1996, KFSA Scholarship from the Korea Foundation
for Advanced Studies in 1997, the C. W. Gear Outstanding
Graduate Student Award from the Computer Science
Department at UIUC in 1999, and the Best Student Paper
Award from Packet Video Workshop in 2000. Recently, he
received the IBM Research Division Award for contributing
to the architecture of IBM Autonomic Computing Policy
Infrastructure and Products. Currently he is secretary of IEEE
Technical Community on Computer Communications.

JORGE LOBO (jlobo@us.ibm.com) joined IBM T. J. Watson
Research Center in 2004. Previous to IBM he was principal
architect at Teltier Technologies, a startup company in the
wireless telecommunication space acquired by Dynamicsoft
and now part of Cisco System. Before Teltier he was a
tenured associate professor of computer science at the
University of Illinois at Chicago and a member of the Net-
work Computing Research Department at Bell Laboratories.
At Teltier he developed a policy server for the availability
management of presence servers. The servers were success-
fully tested inside two GSM networks in Europe. He also
designed and co-developed PDL, one of the first generic
policy languages for network management. A policy server
based on PDL was deployed for the management and
monitoring of Lucent first-generation softswitch networks.
He has more than 50 publications in international journals
and conferences in the areas of networks, databases, and
AI. He is co-author of an MIT book on logic programming
and is co-founder and member of the steering committee
for the IEEE International Workshop on Policies for Dis-
tributed Systems and Networks. He has a Ph.D. in comput-
er science from the University of Maryland at College Park,
and M.S. and B.E. degrees from Simon Bolivar University,
Venezuela.

Policy-based network

management

promises to reduce

the burden on the

human administrator

by providing

systematic means

to create, modify,

distribute, and

enforce policies for

managed computing

resources.

LEE LAYOUT 9/22/05 11:10 AM Page 75

