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Towards Autonomic Network Management: an
Analysis of Current and Future Research Directions

Nancy Samaan and Ahmed Karmouch

Abstract—Autonomic network management is an innovative
vision promising new horizons of efficient networking systems
free from human control. This promise has, thus far, ushered in
enormous yet dispersed research contributions in both industry
and academia. The work presented in this article aims at putting
these efforts into perspective deriving a more holistic view of the
literature in this area. We analyze the requirements and the
main contributions for the building blocks of any autonomic
network management system (ANMS). We then describe a
coherent classification methodology to compare existing ANMS
architectures. Based on this analysis, we suggest a reference
framework and highlight some open challenges and describe new
research opportunities.

Index Terms—Autonomic computing, network management,
self-monitoring, self-adaptation.

I. INTRODUCTION

OVER the past decades, network technologies have
tremendously evolved with respect to their conception,

coverage, capabilities and capacities. The traditional data-
only networks are now replaced with sophisticated systems
comprised of multi-vendor equipments, supporting multi-
technologies and capable of providing a wide range of real-
time media applications at extremely high speeds. Unfortu-
nately, this evolution in networking technologies was accom-
panied by much slower advancements in network management
solutions.

Early network management systems (NMSs) were limited
to simple command line interfaces (CLI) provided to network
administrators who were responsible for querying and manu-
ally configuring every network component. Next, came more
advanced approaches that relied on different technologies such
as software agents [1], active networks [2] and policy-based
systems [3] aiming at partially automating the management
tasks in order to achieve higher response times and lower
management costs. Nonetheless, NMSs kept struggling to cope
with newly emerging issues due to the ever-increasing size
and complexity of the underlying network components and
services.

Even with partial automation, a main limiting property
of such NMSs is their embedded static nature in taking
management decisions that lack the ability for situation and
context adaptability. While these systems configurations may
be optimal for particular settings, they may not be suitable for
continuously increasing requirements and dynamics of users
and applications particularly in wireless environments. The
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result is that the management of current and emerging network
technologies is becoming the main bottleneck to any further
advancements.

Autonomic computing paradigms, and, in particular, auto-
nomic network management, represent an emerging solution
for the aforementioned problem. Autonomic network man-
agement systems (ANMSs) hold the promise of anticipating,
diagnosing and circumventing any impairment in the func-
tionalities of the underlying network in an independent and
autonomic manner, driven by a set of higher-level business-
oriented goals, with minute human intervention or supervision.
Unfortunately, although, in theory, autonomy seems to provide
the ultimate solution for the complex network management
problem, in general, research efforts towards ANMSs are still
in their infancy and are still faced with many challenges before
being realized as a successful solution.

One of the major challenges is the dispersion of research
in this area and the lack of a clear formulation for the
requirements of the main building blocks of ANMSs. This
article seeks to clarify the autonomic network management
concepts and to map the scientific efforts made thus far into
a more holistic view. We show that ANMSs do not constitute
an explicitly new alternative for communication management
but is rather a concept which presents a unification of recent
advancements and trends in various areas of research.

The remainder of this article proceeds as follows. In Section
II, an overview of the network management problem and a dis-
cussion of approaches for traditional and automated network
management are presented. Section III introduces the concepts
of autonomic computing and autonomic network management.
Sections IV through VII discuss requirements and contri-
butions to the various functionalities within an ANMS. We
then propose a coherent classification methodology to measure
the degree of autonomicity in any ANMS and apply it to
compare major research projects in the literature. A discussion
of current challenges and future research trends is presented
in Section IX. Finally, Section X presents some concluding
remarks.

II. NETWORK MANAGEMENT IN A NUTSHELL

The management of any communication network is broadly
concerned with the control and orchestration of the function-
alities and behavior of various network components in order
to reach a desired system state, given a set of pre-specified
high-level business objectives and goals (e.g., maximizing
resource utilization and minimizing service response time).
In the following, a brief historical view of the development of
management approaches is provided.
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A. Traditional management approaches

From a historical perspective, management functionalities
were defined as five main tasks, collectively referred to as
FCAPS, which included: network fault-diagnosis, configu-
ration, accounting, performance management, and security
management. Earlier research efforts focused on developing
different protocols such as the the simple network manage-
ment (SNMP) protocol and data models (e.g., management
information base (MIB) [4]), in order to automate the tasks
of collecting monitoring information and reporting back to
human administrators who were still responsible for manually
interpreting and analyzing the collected data and then per-
forming various service and component configuration using a
set of interfaces. Web-based network management [5] and the
common object request broker architecture (CORBA) [6] rep-
resent other milestones that contributed in further facilitating
some of the management operations.

The main limitation of these approaches was that even
simple operations, such as the introduction of a new network
variable, required the overhead of taking the system down
and manually introducing changes such as defining a new
MIB entry in different tables and reconfiguring its relation to
other variables and monitoring programs. Consequently, the
performance of the managed networks using these paradigms
was strongly constrained by the expertise of human operators.

B. Automated management approaches

The increased complexity and sizes of networking systems
necessitated the development of efficient tools to alleviate the
task of network management from human operators. The most
notable of these tools are: software agents, active networks and
policy languages.

The introduction of the agent technology [1], and in par-
ticular mobile agents, to NMSs brought along new oper-
ational capabilities and achieved asynchronous control and
management decentralization. The use of agents offered the
means to migrate the management code from the manager
to the managed network elements. This, in turn, provided an
on-demand and customized distribution of configuration and
management programs.

The active networks technology is used to dynamically
control network components through the injection of active
programs at runtime [2]. A major limitation with this technol-
ogy was that more programmability into routers necessitated
the redesign of existing legacy systems. It also implied adding
more complexity to the routers’ management functionalities,
and, consequently, introducing processing overheads and de-
lays. It is worth noting here that both the mobile agents and
active networks technologies are based on executing code on
remote devices. Hence, they were not adopted in commercial
solutions because of their security vulnerability.

In order to simplify the administration of large distributed
systems, policies [3] have been introduced to formalize the
description of the (un)authorized and (non)obligatory opera-
tions of various network elements in response to changes in
the environment. Policies prescribe a set of rules, defined by
network administrators, that guide the behavior of network
components. A typical advantage of policy-based NMSs is

their ability to reconfigure and adapt the behavior of the
system by modifying the applied policies at runtime without
stopping the system operation.

While technologies such as mobile agents, active networks
and policy languages may automate the deployment of dif-
ferent management strategies for performing the necessary
management operations, human operators using them were
still faced with the burden of having to precisely describe and
program their desired behavior, develop necessary policies (or
code) and, even more, to continuously modify this behavior
in response to changes in the environment. Another main
limitation of these automated-management approaches was
their reactive nature where human operators mostly rely on
indications of service failure or performance degradation as
signs to readjust the management and configuration strategies.
One additional problem of these approaches was the inability
to evolve and to adapt with changes in either supplied business
objectives or users’ requirements. As will be discussed in
the next section, the introduction of autonomic computing
paradigms provided a promising solution to the aforemen-
tioned problems.

III. AUTONOMIC NETWORK MANAGEMENT

A. An overview of Autonomic Computing

The term autonomic computing (AC), introduced by IBM
in 2001 [7], refers to computing entities that are capable
of performing operations on themselves in order to meet a
set of predefined high-level objectives that are mandated by
their creators or administrators. By adverting to the human
autonomic nervous system which governs vital functionalities
without conscious intervention, the vision of AC aims at
seeking inspiration from the mechanisms by which biolog-
ical systems are self-governed. An entity with autonomic
computing capabilities is envisaged as one that continuously
monitors its own state and adjusts its operations in response
to internal or external stimuli. Ultimately, an autonomic entity
would be capable of making independent choices to modify
its operations in order to meet certain goals.

AC frequently refers to four characteristics distinguish-
ing any AC system, namely, self -configuration, -healing, -
optimization and -protection; these properties are collectively
referred to as the self-CHOP properties. IBM’s vision also de-
fines a general framework in which the system is comprised of
an autonomic manager that manages one or more managed el-
ements. The manager is tasked with four main functionalities:
monitoring the managed entities, analyzing their performance,
plan and execute a set of appropriate management actions.
These functionalities are collectively referred to as the MAPE
loop. Central to this loop is a knowledge-base that maintains
the necessary information about the managed entities and their
management operations.

B. ANMS Definition

The concept of autonomy is a generic concept that can be
applied to different fields (e.g., autonomic space exploration
missions or autonomic software applications). When applied
to network management the result is an autonomic network
management system (ANMS). More precisely, an NMS is
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considered to be autonomic if it performed management
operations in a manner that satisfied the self-CHOP character-
istics, i.e., self-configurability, self-healing, self-optimization
and self-protection according to the following definitions.

An NMS is said to be Self-configurable if it can detect
changes in any of the network components or the surrounding
environment that might have or will result in a violation of the
management objectives and trigger appropriate configuration
or, more precisely, adaptation mechanisms, without disturbing
the network performance. For example, detecting management
overloads in certain network areas might necessitate the redis-
tribution of management operations among several managers.

An NMS is said to be Self-healing if it can restore its
operations when any type of failures occurs (e.g., a failing
monitoring component or a malfunctioning software manage-
ment entity).

An NMS is Self-optimizing if it is capable of performing
any management task and executing any service in the most
efficient manner, such that, given the available resources and
environment settings, any change in the current management
operations may not result in a better network performance.
Self-protection of a management system relates to its ability

to take the necessary measures to protect its operations from
any unplanned external influence or threat. For example, the
configuration of admission control operations at edge routers
can prevent unauthorized traffic from accessing the network.

In general, research efforts towards the realization of AN-
MSs can be categorized as those that address various function-
alities of the ANMS and those that target the development of
architectural solutions. In sections IV though VII, we analyze
the main requirements and main research approaches to realize
the individual ANMS building blocks with reference to the
MAPE operations, namely building a network knowledge
base, an autonomic monitoring module, an analysis module,
a planning module and an execution modules.

IV. BUILDING A NETWORK KNOWLEDGE BASE

A key factor in achieving autonomic management is the
ability to describe an accurate model of the managed system
[7], [8]. This process is achieved though building a knowledge
base system (KBS) which can range in complexity from a
simple database to more advanced expert systems with built-
in reasoning mechanisms [9]. The first step in building any
KBS involves the specification of the knowledge that must
be supplied by the system. A suitable model is then selected
for each type of the domain knowledge. Once a model is
elicited, the third step aims at building methods for knowledge
discovery, acquisition and processing.

While the importance of building knowledge-bases in
ANMS is widely acknowledged [8], [10], to the best of the
authors’ knowledge, this issue has seldom been addressed in
the literature and, rather, existing work addresses only isolated
related issues. In the following, we provide an analysis of the
requirements of a KBS for autonomic network management
and summarize related research work in the literature.

A. Knowledge typology in ANMS

A KBS may represent two different forms of knowledge
about the managed system [9], typically referred to as the

domain knowledge and the control knowledge. The former
provides a view or conceptualization of the managed domain
while the latter knowledge type represents the ways to manage
and control the modeled system, for example, as a set of
domain related problems and their corresponding applied
solutions. The domain knowledge can be further categorized
into a structure knowledge and a behavior knowledge. The
structure knowledge refers to information about the sorts of
objects of the modeled domain, their properties, the relations
among them, in addition to the different factual knowledge
about the domain. Behavior knowledge describes patterns
of behavior of different components or the overall modeled
domain.

From an ANMS perspective, self-awareness is achieved
by modeling the different components within the managed
network in a network-knowledge-base system (NKBS). This
includes defining a set of models describing the users of
the network, applications running on top of the underlying
infrastructure, the business goals of running the network,
the environment encompassing the network, and the network
itself. As stated earlier, each of these models may include
structure- behavior- and control- knowledge or a combination
of these types. For example, the structure knowledge about
the network may include the current network topology and
a description of the various components capacities and con-
straints. Behavior knowledge can, for instance, represent a
queue operation in case of an overflow (e.g., random drop
vs. tail drop) and control knowledge may specify the different
actions that can be applied to the network components (e.g.,
increasing a buffer size or blocking an input port).

A sample of the different types of knowledge within an
NKBS is presented in Table I.

B. Approaches to network and system modeling

Developing a model to efficiently reflect the networking
environment is not a straightforward task. Current networking
systems are highly distributed, complex and heterogeneous;
hence, finding a single common representation requires also
defining techniques for mapping this model to and from
other ones. The developed model must also be robust in
capturing the highly dynamic nature of the environment (e.g.,
traffic loads, active sessions). Current approaches for building
an NKBS are mainly limited to representing the network
structure knowledge [4], [11] which are commonly referred to
as management information models (MIMs) [12] with some
efforts to build simple models for control knowledge [13].

The modeled network structure knowledge often includes
status information for different network components such as
routers, switches and interfaces. Such information typically
describes the current network load, latency and different
queues and buffers parameters. The management information
base (MIB) [4] and the common information model (CIM)
[11] developed by the IETF and DMTF standardization or-
ganizations, respectively, are the two widely accepted and
used structure models. They are used to describe different
network components and their performance metrics. For a
detailed description and analysis of these models the reader
is referred to [12]. The authors in [12] propose a universal
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TABLE I
A SAMPLE OF DIFFERENT KNOWLEDGE CLASSES IN ANMS.

Knowledge
type

Structure Behavior Control

Network Topology, routers constraints, CPU and
memory sizes

Queues operations (e.g., FIFO, tail
drop), expected packets treatments by

routers

Management actions (e.g., increasing
bandwidth assignment, changing packet
treatment in a router)

System servers status/ current configuration Behavior of services (e.g., web service
functionality)

Adding/removing services, adjusting
service configuration

Application Memory requirements, bandwidth
usage

Adaptation strategies in response to
bandwidth variation

Selection of appropriate adaptation
strategies for different bandwidth vari-
ation causes

User Personal and billing information Mobility and service access patterns Authority and privacy control

information model that provides a higher abstraction view
that can incorporate both the CIM and MIB models. The
only standardized model for network control-knowledge is the
IETF policy control information model (PCIM) [13]. PCIM
provides a formalism for defining and storing policies to
control the configurations of individual network components.
Nonetheless, PCIM is mainly an information model with no
means to support analysis, refinement or reasoning with the
defined policies as a first step towards elements autonomy.

Object-oriented models that aim at capturing both the struc-
tural and behavior knowledge of networks have been adopted
in different projects. Examples include the NESTOR project
[14] and the directory enabled networks (DEN) initiative [15].
The model in NESTOR also includes a constraint definition
language for asserting relationships and constraints among dif-
ferent network objects. The Directory Enabled Networks-next
generation (DEN-ng) [16] is another object-oriented model
that describes behavior knowledge using finite state machines
(FSM) and patterns. The model takes one step ahead of other
approaches that are limited to describing the current state of a
managed element where different FSMs of individual elements
are populated and combined to produce a FSM that describes
the behavior of an overall management solution. However, this
approach still relies on the ability to fully formalize the set of
all possible states for the modeled elements.

Recently, ontologies have been introduced to represent the
semantics of the managed networks [17], [18]. Ontologies are
one of the main approaches used in the scope of KBS and
artificial intelligence to solve questions related to the seman-
tics of the modeled domain. They describe an abstract model
of a domain by defining a set of concepts, their taxonomy,
their interrelation and the rules that govern these concepts in a
way that can be interpreted by machines. The main difference
between ontologies and other information models common to
network management, particularly the CIM and MIB models,
is that the latter models do not include axioms, semantic
relations or constraints on them which facilitate reasoning with
them. A network ontology defined using OWL and a reasoning
engine based on first-order logic (FOL) calculus is described
in [18]. The presented work also investigates the utilization of
semantic concepts such as equivalency and containment in or-
der to achieve interpretability between models and commands
defined by different vendors.

The aforementioned models are explicit where the utiliza-
tion of the model is independent from its representation. Other

implicit modeling approaches have also been successful in
representing a subset of the network model. For example,
reinforcement learning (RL), a machine learning approach, has
been applied to build look-up tables containing state-to-state
transition and corresponding actions pairs in [19]. In [20],
concepts of forecasting functions were utilized to gradually
construct a dynamic model of the effects of various con-
figuration actions on network components parameters. While
implicit learning models are highly suitable for continuously
evolving systems, where they replace the periodic manual
redesign of the NKBS, one limitation of gradual learning
models is their poor performance during the initial phase of
learning the model.

Recently, some efforts (e.g., [21]) have been dedicated to
model system control using utility functions. These functions
are used, for example, to model service-levels as functions of
system control parameters, allocated resources and expected
service demands. Transfer functions, used within a control
loop, are also utilized [22] to represent a server behavior model
in response to varying configuration parameters and to model
environment noise (e.g., delays and effects of the accuracy of
network monitoring measurements).

Figure 1 depicts some of the network modeling approaches
classified according to their types.

C. Approaches to user and application modeling

Other than models for networks, knowledge about users and
running applications can be modeled within the NKBS. For
example, a user’s structure model in an NKBS may maintain
personal and billing information while a behavior model may
contain mobile users’ movement patterns and service access
frequencies. One way to model user-related information is
through the content capabilities/profile preferences (CC/PP)
framework [23] or through the use of ontologies (e.g., [24]).

An application structure model describes a set of the
expected input and output variables such as the bandwidth
utilization rate, acceptable loss range in data rates and toler-
able data loss patterns (e.g., distributed or bursty), whereas
a behavior model for the application can contain feasible
adaptation strategies in the face of variations of bandwidth
availability. While there have been extensive research efforts
in developing application models (e.g., [25]), they have been
seldom used as part of automating network management tasks.

Usage of user and application models to facilitate mobility
related network management tasks has been presented in [26].
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Fig. 1. Classification of network modeling approaches

In [27], Yan et al. developed a model for customers’ behavior
in telecommunication networks and utilized the model to re-
duce customer dissatisfaction and, in turn, the churn rate. The
effects of the maximum number of users on the performance of
a set of resources is modeled using auto-regressive functions
in [22]. A biologically inspired approach for representing
the structure and behavior models of network applications is
described in [28] where a network application is implemented
as a group of distributed, autonomic objects called cyber-
entities (CEs) that are analogous in their functionalities to a
bee colony consisting of multiple bees.

D. Other generic Approaches

General purpose models for autonomic systems can also
be applied to networks. A general purpose knowledge engine
is built in [29] which describes an autonomic entity as a
set of behavioral rules and programmed behaviors. Rules are
used, for example, to control the functioning of the entity
and the interactions with other autonomic entities. The pre-
programmed behaviors include algorithms to describe patterns
of system actions in response to internal and external events.

An ontology-based reference model consisting of three
layers representing resources, events and rules is described in
[17]. The resource layer can be regarded as a domain knowl-
edge layer which maintains information about the managed
system components and resources. The event layer maintains
the system behavior knowledge where a system learns that a
certain change in a resource status is considered a significant
event that must be reported to the control layer and can further
apply correlation rules to further represent more complex
forms of knowledge through the correlation of elementary
events. Finally, action rules at the third layer defines the
control knowledge where rules are used to control the behavior
of the managed resources.

E. Data acquisition

Once a model has been elicited, the next step in building an
NKBS is to identify various information sources and to collect
the needed data. Two main approaches can be applied to
realize this step, pre-embedding knowledge about the sources
or discovering their existence. Discovery can be as simple as
that of sending ping messages to IP addresses in a certain
domain in order to build a map of the living network nodes
from a pre-existing map of all connected nodes. In current
implementations of NMSs no explicit knowledge base is built;
rather, a manager entity queries the network devices, or agents,
to periodically assess the status of the network components
using a predefined communication protocol such as SNMP.

An interesting approach for communicating network related
events through the utilization of content based networking
(CBN) principles has been recently investigated by Keeney et
al. [30]. The authors add semantics to the matching, filtering
and distribution processes in a publish-subscribe system that
routes network related events triggered by SNMP agents
using a CBN. While the approach significantly enhances the
performance of the management system, it is still limited
to communicating the current status of network components
using MIB/CIM models.

V. AUTONOMIC MONITORING

Network monitoring is concerned with the collection of the
necessary measurements to determine the underlying network
health, the achieved service quality as well as the possibility
of network faults or attacks. In general, traditional monitoring
tools rely mainly on the systematic collection of measurements
of predetermined parameters collected by network devices
(e.g., using counters, logs or SNMP MIBs). In contrast,
autonomic monitoring approaches strive to continuously adjust
their operations in order to maintain an equilibrium between
the needed accurate view of the network status and the
processing overhead. In this sense, autonomy implies the
ability to decide, at runtime, which network components to be
monitored, where to install monitors, how to adjust monitoring
parameters, when to execute monitoring functionalities and
for how long. In the following, we provide a classification
methodology for autonomic monitoring methods and apply it
to analyze various approaches in the literature.

A. Classification of autonomic monitoring approaches

1) Active versus passive monitoring: In both traditional and
autonomic approaches, monitoring can be achieved in either a
passive or an active manner. Passive monitoring is limited to
receiving measurement data from a set of sensors residing in
the network. On the other hand, in active monitoring, network
measurements are obtained by sending additional testing mes-
sages. Active monitoring introduces additional traffic overhead
to the network while passive monitoring is limited to periods
of time when there is traffic on the network between the hosts
of interest. Hybrid schemes can combine both monitoring
methods to achieve a more accurate view of the network while
maintaining lower overheads.
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2) Distributed versus centralized monitoring: Autonomic
monitoring functionalities may be initiated and controlled by
centralized autonomic mangers that collect and consolidate
data obtained from different locations. Another approach to
autonomic monitoring is to distribute this functionality over a
set of individual autonomic nodes in the system which interact
together directly to achieve the task of monitoring the entire
network. These nodes can, for example, probe neighboring
nodes to learn and track network behavior on their own.

3) Monitoring granularity: Monitoring granularity can be
measured with respect to several aspects. The measurement
unit granularity determines the level of detail in capturing the
status of the managed network. For example, measurements
can be performed at the byte, packet, flow or aggregated-
traffic levels. Rate granularity defines the sampling rate which
can range from few seconds to several hours. Finally, spatial
granularity refers to the scope of the measured parameter
which can reflect end-to-end properties (e.g., round tripe time)
or a link property (e.g., link delay).

4) Monitoring timing: Most monitoring entities preform
their functionalities on fixed time intervals. On the contrary,
event-based and on demand monitoring [31] trigger moni-
toring functionalities only when necessary. Obviously, these
approaches provide a better management of the consumed
network resources on the account of the maintained up-to-date
status.

5) Monitoring programmability: An autonomic monitoring
approach is expected to dynamically modify its operation as
needed, hence, requiring a degree of self-programmability.
The simplest way to achieve this property is through the
dynamic adjustment of a set of parameters. For example, it can
dynamically adapt the rate granularity of a monitor component
according to current network loads. Advanced approaches can
dynamically modify entire monitoring functionalities such as
switching between passive and active modes and installing
new monitors.

B. Approaches to autonomic network monitoring

In this section, we limit our review to monitoring ap-
proaches that exhibit some degree of self-programmability.
These approaches represent a first step towards the realization
of a fully autonomic monitoring functionality.

An earlier approach to monitoring autonomy is introduced
in Ganglia [32] where a node monitors its local resources and
sends multicast packets containing monitoring data whenever
significant updates occur. Using a set of programmable in-
terfaces, applications are allowed to request from different
nodes to perform different monitoring functionalities using
application-specific metrics. Ganglia follows a passive dis-
tributed monitoring approach where monitoring programma-
bility is left to the applications.

Other approaches rely on a set of predefined policies to
achieve monitoring programmability. For example a set of
policies are used to control the creation and configuration
of monitoring channels that allow the dynamic configurations
of various monitoring parameters and monitoring granularity
is presented in QMON [33]. A more advanced approach is
described by Han et al. [34] in which policies are used to

control monitoring functionalities based on the network status
and that of the running applications. For example, policies are
activated at run-time to adjust the sampling rate of certain
parameters according the network overload. In a similar man-
ner, another policy selects an appropriate monitoring algorithm
based on the type of the running application (e.g., with or
without timeliness requirements). Although in this approach
monitoring functionalities are changed at run time, the creation
of the policies that control this change is static. A distributed
peer-to-peer monitoring paradigm has been introduced in the
DYSWIS architecture [35]. In DYWIS, each node follows a
set of predefined rules to decide whether to trigger a query to
its peers to further investigate an incurred problem according
to its own observations. Here, programmability is pre-coded
as a set of distributed monitoring rules embedded in the nodes.

Adaptive sampling and dynamic placement of monitors are
also extensively addressed in the literature. For example, in
[36], using a centralized monitoring control methodology, the
authors dynamically calculate the appropriate sampling rate
based on the severity of the network problems and the avail-
ability of resources. Similarly, Cantieni et al. [37] reformulate
the monitors placement problem as an optimization problem
and solve it using Lagrange multipliers. The A-Gap system
[38] applies stochastic modeling to find the optimal state
updates versus the state accuracy. A self-stabilizing spanning
tree which maintains different monitoring filters is created
using the solution to the problem to provide different views
of the monitored system. A main limitation of modeling
monitoring programmability as optimization problems is the
implicit static representation of the problem constraints and
objectives.

Sterrit et al. [39] present an event-based distributed moni-
toring mechanism for speeding up the propagation of network
data through the use of heartbeats with dynamic rates. The
approach is inspired by animal reflex reactions where heart-
beats transmitted to managers by network components contain
health indicator summaries that can assist in fault isolation
and recovery. One limitation of this approach is the resulting
excess of messages which are responsible for changing the
monitoring granularity during the increase in the transmission
rate of heartbeats. These messages may further contribute to
decreasing the performance of the network. An interesting
approach for centralized monitoring self-programmability is
presented in NetQuest [40]. In this project, the problem of
selecting appropriate monitoring functionalities is modeled as
a design problem and Bayesian experimental design concepts
are applied to determine various parameters of the solution
such as the selection of a set of active measurements that
maximize the amount of information obtained about the net-
work.

Distributed peer-to-peer based approaches for network mon-
itoring have also been investigated. For example, the AutoMon
project [41] uses a distributed overlay of distributed network
agent, acting as peers and hosted on various nodes, to perform
distributed tests as well as distributed monitoring for fault
and performance management. AutoMon applies both passive
and active monitoring techniques and provides users with
interfaces to define monitoring requirements.
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VI. AUTONOMIC ANALYSIS

The second functionality in an ANMS is the analysis of the
monitoring information. In traditional management systems,
analysis is mainly limited to interpreting the collected data into
a state description of the managed network and is performed
alongside the monitoring functionality. This step is referred
to as network diagnosis and is carried out with the help
of pre-existing rules or heuristics. In ANMSs, autonomic
diagnosis differs from traditional diagnosis systems in its
ability to self-learn (e.g., newer states such as the detection
of new types of anomalies or security attacks or means to
enhance the analysis mechanism) without the reliance on pre-
embedded rules. Furthermore, analysis also includes a second
functionality, namely, network anticipation; this functionality
relates to the utilization of the system knowledge to further
anticipate the future state of the network. State anticipation
is necessary to achieve the self-CHOP functionalities as it is
needed to avoid either reaching non-optimal or failing states
(i.e., failing to achieve self-optimization and self-healing).

A. Approaches to autonomic diagnosis

Network diagnosis, and in particular the problems of de-
termining fault root-causes, network anomalies and security
threats, has been the focus of extensive research efforts.
In some of these efforts, self-learning has been achieved
using various techniques such as the use of expert systems,
probability models and Bayesian networks [42]. For a detailed
comparison of these techniques the reader is referred to [42]

Recently, diagnosis of other aspects of the managed net-
work has also been addressed in the literature. For example,
an interesting approach is presented by Zhang et al. [43]
to diagnose causes of violation of service-level objectives
(e.g., service response time and request throughput). Pattern
recognition and probability modeling techniques were used to
identify which low-level system properties are related to such
violations. Hariri et al. [44] investigated the development of
abnormality metrics that can be used to analyze and diagnose
the behavior of different network flows. The developed metrics
use indications of flows characteristics such as packet rate and
successful sessions rate to classify traffic into normal, probable
normal, probable abnormal, and abnormal.

B. Classification of autonomic anticipation

In contrast to network diagnosis, the problem of network
anticipation1 represents a recent research area. Traditional ap-
proaches for management are reactive in nature and are mostly
limited to applying a feedback loop in which they rely on
current system diagnosis while making management decisions.
A main limitation with approaches following this trend is their
costly performance and, in some cases, their inability to avoid
performance degradation and system failures. ANMSs are
expected to be anticipatory [45], i.e., management decisions
are made based on information pertaining to present as well as
future internal state of the system (e.g., the queue length within
a few minutes) and that of the external environment (e.g.,

1The terms anticipatory, proactive, predictive, are commonly used to refer
to the same concepts of knowledge about a future state

the user’s future location). Anticipation approaches can be
classified according to their utilized knowledge, anticipation
timing and the applied anticipation mechanism.

1) Anticipation knowledge: Anticipation approaches can
be classified, based on the type of input knowledge, into
state-based and history-based approaches. The former can
be further classified into two categories: formula-based and
state-transition based. In a state-to-state transition model, the
knowledge of current system state is sufficient for prediction
[16]. On the other hand, a mathematical model in formula-
based approaches is used to derive the future state (e.g., TCP
throughput [46]).

History-based prediction techniques rely on the availability
of a performance trend or history to predict future states [47].
A major issue with history-based anticipation is an implicit
assumption that state characteristics observed in the past are
likely to prevail in the future.

2) Anticipation timing: Anticipation approaches can also
be classified as either off-line or on-line. Off-line approaches
are mostly suitable for less dynamic systems that are expected
to exhibit periodicity over time. In such cases, using a sim-
ulation model or injecting synthesized traffic into the system
off-line is sufficient to derive a model of expected future states.
Online anticipation refers to continuously anticipating the
system behavior using up-to-date knowledge about its current
status. Although online anticipation approaches provide more
accurate future states for dynamic systems (e.g., anticipating
router workload), they usually compete for the running system
resources.

3) Anticipation mechanisms: Anticipation approaches can
use different mechanisms to achieve their tasks. Examples
of such mechanisms are: probabilistic anticipation, statisti-
cal anticipation, anticipation through machine learning, and
simulation-based anticipation. A comparison of the effective-
ness of a number of traditional prediction techniques such
as time-series algorithms, rule-based techniques and Bayesian
network models in predicting network failures can be found
in [48].

C. Approaches to network state anticipation

Anticipatory management solutions have been centered
around a limited subset of network related properties, namely,
patterns of network traffic [49], host loads [50], and network
anomalies [51].

Several general purpose autonomic anticipation approaches
have also been presented recently. These approaches provide a
generic solution that can be customized to predict the behavior
of any single component of the managed system. Examples
of these approaches are the resource prediction system (RPS)
toolkit [47], IBM’s Clockwork [52] and the model-driven
hierarchy [53].

The RPS toolkit provides a formula-based solution for
online prediction of a network or resource related scalar valued
variable that can be periodically sampled using time series and
wavelet analysis. Clockwork [52] is also a general purpose
online prediction method introduced by Russell et al. It applies
feed-forward control loops to construct a predictive autonomic
system using auto-regression. The method was applied to two
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network specific prediction functionalities: forecasting cyclic
variations in system loads and tracking the response time of
the system in cases of different loads. The model-driven online
anticipation approach, presented in [53], presents different
system components as separate models. Each model represents
a management functionality (e.g., configuration) as a set of
possibly encountered problems and their candidate solutions.
A machine learning mechanism is then used to reinforce or
eliminate the stored solutions based on the system feedback.
The utilization of probabilistic models in order to predict
service-level agreements (SLA) violations, at run time, has
been introduced in [54]. A Bayesian network corresponding to
different network performance variables (e.g., CPU utilization)
is constructed using past network measurements, and conse-
quently used to predict any possible service violations in the
future.

D. Approaches to user and application anticipation

Anticipating the performance of a running application and
its resources demand is critical for an ANMS to make appro-
priate adaptation and configuration decisions that maximize
the satisfaction of current management goals. This problem
has been the focus of various research efforts. For exam-
ple, the demand behavior of applications mining histories
has been investigated in [55] while predicting the response
time of transaction-oriented applications was analyzed in
[56]. Predicting the user’s behavior for accessing services
was also proposed in [57]. In a previous work, the authors
studied the significance of predicting users’ mobility in various
management tasks, and applied concepts of Dempster-Shafer
reasoning to both the user and the environment models in order
to predict the mobile user’s traveled trajectory [26].

VII. AUTONOMIC PLANNING AND EXECUTION

The third and fourth functionalities of an autonomic man-
ager are the planning and execution of system solutions. Plan-
ning in network operations refers to the task of configuring
network topologies, operations and services and is carried out
off-line by network administrators. On the other hand, network
configuration and performance management functionalities in
the FCAPS model bear some resemblance to the planning and
execution functions of autonomic managers. As described in
Section II, in traditional NMSs, these functionalities are either
performed manually or are partially automated (e.g., using
policies or mobile agents). Recently, network adaptation has
been used to reflect the continuous fine tuning of network
components in order to meet a set of management goals,
which reflects in a more accurate manner the objectives of
the planning and execution functionalities.

In general, adaptation of an entity refers to changes that
make such entity more fit to its environment [58]. System
adaptation refers to the enforcement of one or more strategies,
algorithms, rules or configurations in order to change one or
more aspects of the system with the objective of achieving a
set of higher-level goals. Autonomic adaptation refers to the
ability of the system to perform adaptation operations using
its internal knowledge to decide why, when, where and how

adaptation is performed, without any external intervention in
the decision making process.

In the following, we derive a classification methodology for
autonomic adaptation guided by work in other domains (e.g.,
adaptive software [58]).

A. Adaptation dimensions

1) Adaptation knowledge: In order to perform adaptation,
adaptation policies or algorithms must rely on input knowl-
edge to decide why, when, how and where to perform the
adaptation operations. This knowledge can be a simple set of
measurements or a model of the entire system.

2) Adaptation strategy: Adaptation mechanisms can either
be planned or spontaneous. The goals of planned adaptations
are related to enhancing the performance of the system, for
example, by offering a new service. Spontaneous adaptations
aim at finding immediate solutions to current or anticipated
problems.

3) Adaptation purposefulness: Refers to the goal of the
adaptation process that may modify the behavior of a one or
more network components or that of the entire network.

4) Degree of adaptation autonomy: Refers to the degree
of human involvement in the adaptation process. Adaptation
may be limited to offering alternative adaptation decisions
to the administrator who is then responsible for selecting
and enforcing the necessary actions. While the other extreme
represents systems that develop and apply the most appropriate
decisions without any human support.

5) Adaptation stimuli: Refers to the conditions under which
the system undergoes adaptation. While planned adaptation
may not necessary require a stimulus to trigger adaptation,
spontaneous adaptation may be triggered in response to exter-
nal or internal events.

6) Adaptation rate: Refers to the frequency of applying
the adaptation strategies to the managed system. While a
higher rate of minor adaptation operations (e.g., parameter
tuning) may result in a better system performance, a frequent
application of exhaustive adaptation decisions my consume the
system resources and may even result in an unstable system.

Lazy adaptation refers to reactive techniques that are trig-
gered only in response to already occurring events, while op-
portunistic systems seek appropriate time windows to enhance
the performance of the managed entities. Finally, continuous
adaptation may be scheduled on equally spaced time intervals
achieving a constant adaptation rate.

7) Adaptation temporal scope: Adaptation strategies may
also be classified according to the temporal scope of their
effects. A short-term adaptation strategy is a one-time applied
technique to fix an anticipated or a sensed problem. For
example, a policy may be applied once to adapt the behavior of
a router (e.g., clearing a buffer contents). Long-term strategies
are applied to achieve a desired long-term goal. A typical
example of a long-term adaptation strategy is the addition of
a new resource or service. A short-term adaptation solution
achieves an instantaneous goal while a long-term strategy
cumulatively achieves a goal over a longer period.
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TABLE II
THE BASE FOR ADAPTATION CLASSIFICATION WITHIN AN ANMS.

Classification types
Dimension and description
Knowledge complete/partial

self-aware
environment-aware

Purposefulness local/global goals
Strategy spontaneous/planned

Degree of autonomy human-in-the-loop/
autonomic

Stimuli None/
internal /external

Rate opportunistic/lazy/continuous
Temporal scope short-term/long-term
Spatial scope local-effects/global-effects
Open vs. closed static strategies/learning
Vulnerability smaller/wider coping range

8) Adaptation spatial scope: Refers to the spread of the
adaptation effects. Adaptation may be limited to affecting
the local internal state (i.e., the structure, control or behavior
properties) of a single component, or may affect the behavior
of the entire network.

9) Open- versus closed- adaptation: An ANMS is closed-
adaptive [58] if the same adaptation strategy is applied repet-
itively in the same context regardless of whether the strategy
was successful or not. A closed-adaptive system maintains a
predefined number of adaptation strategies (e.g., predefined set
of configuration policies for a router). Open adaptive schemes
continuously evolve and enhance their applied adaptation
strategies.

10) Vulnerability of adaptation: Refers to the ability to
adapt in response to different levels of variations ranging from
a small change from the expected normal system conditions
(e.g., a small change in server workload) up to extreme
cases of change (e.g., simultaneous failure of a number of
components in a network due to a malicious attack). The term
coping range refers to the range of acceptable variations within
which the system can adapt its behavior and outside which it
may collapse.

A summary of the bases for classification of adaptation
approaches within an ANMS is presented in Table II.

B. Autonomic adaptation approaches

Current network adaptation approaches mainly utilize con-
figuration policies or rules. Nonetheless, static policy config-
urations built a-priori into network devices lack the flexibility
and may not be sufficient to handle different changes in
these underlying environments. Various research trends ( e.g.,
[59]) have highlighted the notion of policy adaptation and
the central role that it can play in achieving autonomic
adaptation in policy-enabled networks. In [60], Granville et
al. proposed an architecture to support standard policy re-
placement strategies. Closed-adaptation is performed through
meta-policies that control management policies. In [61], open-
adaptation is achieved via a genetic algorithm which ex-
ports policies that improve the system performance while
de-activating policies that degrade its performance. A major
limitation of policy-based autonomic adaptation is that the
hard-wired control makes no use of any experiences gained

from previous adaptation actions. If the system internal or
external context changes in a way that is not suitable for
the pre-programmed adaptation, external control is required to
adjust the existing policies. In general, utilized knowledge in
policy-based adaptation approaches is limited the hard-coded
conditions using state variables. These approaches follow a
planned adaptation strategy with a very limited coping range
where the long-term behavior of the managed components is
controlled by the a-priori defined policies.

Within the Unity project [62], utility functions are used
to arbitrate resource allocation among different application
environments where a resource usage is expressed by individ-
ual application environments through utility functions. This
approach was extended in [63] by the introduction of utility
policies that define the desired performance goals in terms of
utility functions. Autonomic adaptation is then achieved by
selecting the best system configurations as a result of solving
an optimization problem. The optimization problem aims at
maximizing the resources utilization given these functions.
In a similar manner, forecasting functions were used [26]
to adapt the network configurations. In this approach, the
most appropriate policy actions for the current context of the
network are selected from a predefined pool of all possible
actions to be applied at the network-levels based on their
forecasted behavior. Optimization is also used to compose
and update the end-to-end communication paths [64] with the
highest service quality. The optimization engine takes, as an
input, a set of route requirements in terms of service quality,
and a weighted graph representing the current capabilities
and constraints of each participating network domain and
finds the optimal paths by solving a multi-constrained optimal
path problem. One problem in viewing adaptation of ANMSs
as an optimization problem or a utility function is that, in
general, most mathematical programming approaches deal
with static, non-changing, and well defined problems and lack
the ability to continuously adapt the problem formulation to
represent the changing environment. Furthermore, knowledge
in such approaches is limited to either current configurations
or time series of one or more variables. These approaches
are limited in their coping range where sudden changes in
any network component can cause the failure of the applied
adaptation strategy. They are also limited to targeting short-
term adaptation goals.

Recently, a goal-based approach to policy refinement has
been introduced in [65] where low-level actions are selected
to satisfy a high-level goal using inference and concepts of
the event-calculus theory. This approach takes advantage of
availability of previous experience gained from already applied
policies and their behavior to make decisions concerning
the creation of future policies. Another approach has been
presented in [66] which attaches a description of the system
behavior, in terms of resource utilization, such as network
bandwidth and response time, to each specified rule and uses
behavior implications to derive new adaptations.

An open-adaptation approach is introduced by Dowling et
al. [67] where concepts of collaborative reinforcement learning
are used to allow a set of agents to collaboratively adapt
their system behavior at run-time. Reinforcement learning is
achieved through simple positive and negative feedback among
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agents and is used to learn optimal routing policies. An agent’s
experience with a non-optimal routing (e.g., congested route)
results in exchanging negative feedback messages and vice
versa, a good connection is reflected by an increase in the
reward messages. One limitation of reinforcement learning
approaches is the need to maintain a precise model of all
exhaustive system states.

Spontaneous adaptation strategies can be achieved through
the use of biologically inspired solutions. Swarm intelligence
concepts are applied to automate the control of network
management problems such as load balancing [68] and route
construction and maintenance [69]. These approaches exhibit
high resemblance to the well established multi-agent systems
[1], and can even be regarded as an extension of such systems
in which agents are much simpler in their functionalities.
The main advantage to such approaches is their extended
temporal and spatial scopes and the flexibility in modifying
their purposefulness and strategies. However, they rely on the
use of random generators and incur higher computational costs
[70].

Autonomic adaptation approaches using evolutionary com-
puting aim at moving or expanding the coping range of the
adaptation operations by learning new or modified adaptations.
For example, in [71], proxy servers or routers are modeled as
bacteria and service requests as food, where each bacterium
has an amount of genetic material that codes for the rule set by
which it lives. The system then evolves its adaptation through
gene migration and random mutation within each server.

VIII. AUTONOMIC NETWORK MANAGEMENT

ARCHITECTURES

In addition to research focusing on the individual function-
alities of ANMSs, complete architectural solutions that can tie
together these functionalities are investigated in the literature.
In this section, we first derive the main criteria to compare
various autonomic network management architectures and
apply them to compare main contributions in this area.

A. Classification of autonomic architectures

Figure 2 depicts six axes representing the various properties
of an autonomic system, namely its degree of activity, degree
of adaptability, degree of intelligence, degree of awareness,
memory strength, and degree of autonomy.

1) Degree of activity: An autonomic system can satisfy
the self-CHOP properties through a reactive or a proactive
behavior. A reactive autonomic system attempts to identify
significant events or problems that resulted in impairing its
performance and then finds an appropriate action or solution
after the problem has been already detected. On the other hand,
proactive autonomicity [72] promotes the use of preventive
measures to maintain the system performance based on the
analysis of the current state, anticipated events and the pre-
dicted system reaction to them. It is also opportunistic in tak-
ing actions to optimize the overall performance (e.g., moving
data files near users as their movements are anticipated). As
described earlier, proactivity is critical in computing systems
where consequences of slight performance degradation or
sudden failures are at higher costs than that of computing
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Fig. 2. Classification dimensions of autonomic systems.

future states (e.g., space missions [73] and network failures
due to anomalies [51]).

2) Degree of adaptability: Similar to all software archi-
tectures [58], an autonomic system can be closed-adaptive,
open-adaptive or somewhere in between these two extremes.
As discussed earlier, closed adaptation refers to the inability
to learn new behaviors, while open-adaptability allows the
autonomic system to evolve its functionalities either through
components interactions [28] or through gained experience
[12], [19].

3) Degree of intelligence: In dynamic environments, as the
case for network management, an autonomic system must
exhibit some intelligence in performing each of the MAPE
functions. In this context, intelligence refers to the ability to
learn (e.g., from past experiences) in order to enhance its
operations. One solution is to limit intelligence to a centralized
autonomic manager [63] that controls all other components
in the system. The other extreme of distributed intelligence
across the managed system may be achieved though the use
of swarms or other biologically inspired solutions where intel-
ligence emerges from the collective behavior of (un)intelligent
small entities (e.g., [73]).

4) Degree of awareness: A certain degree of self- and
environment- awareness is necessary in performing any au-
tonomic functionality. As stated earlier, self-awareness is
realized through an efficient KBS. A KBS may maintain a
small set of operational parameters and may be extended to
the ability of precisely describing the overall system state and
behavior.

5) Memory strength: This criterion refers to the ability of
the system to remember past behaviors, or problems and their
solutions and utilize them in its management decisions. In
some autonomic systems, the knowledge of the current system
state is sufficient to perform the self-CHOP functionalities
(e.g., management of data servers [63]), whereas, in highly
dynamic environments, knowledge of behavior trends and
histories of past actions can dramatically enhance the system
performance (e.g., resource allocation in mobile environments
[20]). This knowledge is typically stored as a behavior or
control structure in the NKBS.
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6) Degree of autonomy and autonomicity: An automated
system is one that uses a closed-control loop; the heart of
this loop is a manager where the performance of various
components in the system is monitored and compared to some
pre-specified or desired value. The manager may trigger one
or more pre-specified actions if necessary. A human operator
specifies, in advance, the desired system performance and the
solution of every possible management problem which the
system should apply once the problem is encountered.

Autonomy and autonomicity move humans from the control
to supervision [72]. Autonomous computing [73] introduces
some degree of independence in sensing and reacting to
stimuli in the environment. For example, the decisions of when
and why to execute (or not) a given function (e.g., system
backup) is based on internal system calculations rather than
explicit commands or execution programs.

An Autonomic system performs operations on itself to guar-
antee continuity and efficiency of its expected functionality.
Autonomicity mandates self-CHOP properties while hiding
details of operations from operators. In contrast to autonomous
systems, autonomicity mandates the ability to learn and
integrate new types of knowledge and new functionalities.
Since achieving the self-properties requires the system to act
independently, it is clear that autonomicity implies autonomy
[73].

As a typical AC system, one can measure the efficiency of
an ANMS using the classification presented in Figure 2. The
higher the value of one property on an axis the more advanced
it is. For example, a favorable ANMS is highly proactive
rather than reactive. Similarly, an open-adaptive ANMS with a
high-degree of distributed intelligence is expected to perform
better in highly dynamic environments (e.g., wireless and
moving networks) where new learnt behaviors are needed
to face changes in the environment. Likewise, the more the
system is self- and environment- aware the more accurate the
management decisions are.

B. Architectural approaches to ANMSs

In this section, we discuss some of the major research
projects targeting the development of autonomic network
management architectures. Due to space constraints, we limit
our discussion to five prominent research projects.

One of the earliest research efforts towards the realization
of autonomic management is Unity [74]. Unity is a multi-
agent architecture in which agents rely on utility functions
to achieve self-optimization, and hence, closed-adaptation of
system resources. Monitoring operations are performed via
sentinel elements, while application resource demands predic-
tion are calculated by autonomic elements within the applica-
tion environments. Closed-adaptation of managed resources is
realized through a resource arbiter element which computes a
globally optimal allocation of servers across the applications
based on their forecasted demands. Hard-coded policies are
placed into replicated repositories to specify high-level system
objectives.

The IST funded autonomic network architecture project,
DASADA [75], includes a reference architecture that was
developed by a consortium of researchers. The architecture

provides the means for automating the management of legacy
systems. It is comprised of four types of components, namely,
sensors, gauges, controllers, and effectors. Sensors and effec-
tors functionalities are similar to the monitoring and execution
functionalities within the MAPE loop. On the other hand,
gauges can be regarded as special types of correlation engines
that can, based on data supplied from sensors, generate alarms
or detect events that necessitate system adaptation which is
carried out by controllers. Adaptation is performed in DASDA
through the use of mobile codes.

Autonomia [76] is also a multi-agent based system, de-
veloped at the University of Arizona, that aims at achieving
the self-CHOP properties through the automated deployment
and migration of agents. Autonomia is built on top of legacy
networks using two software modules: the component manage-
ment interface and the component runtime manger. The former
provides interfaces to define system behavior and interaction
rules, while the latter manages the component operations
following the MAPE loop.

The ACCORD project [77] defines an autonomic architec-
ture as a set of autonomic elements. An autonomic element
is, in turn, defined as a self-contained modular software unit
of composition with specified interfaces and explicit context
dependencies. Context, internal and external rules are used to
guide the elements adaptive behavior and their composition.

The Autonomic Network Architecture (ANA) project [78]
targets the development of a new ANMS that solves the
non-scalability problem of network functionalities within the
traditional Internet and the OSI models. The concept of
functional compartments is introduced to encapsulate one or
more network functionality rather than using the traditional
layering approach.

Table III provides a detailed comparison of the aforemen-
tioned projects with respect to the developed classification
criteria.

IX. SUMMARY AND ANALYSIS OF FUTURE RESEARCH

DIRECTIONS

Having discussed the main contributions towards building
ANMSs in the literature, this section is dedicated to analyzing
the main challenges facing further research advancements.

Based on the surveyed literature, it is the authors’ opin-
ion that the autonomic network management concept does
not constitute an explicit new alternative for communication
management but is rather a new concept which presents a
unification of recent advancements and trends in various areas
of network research. Based on this premise, ANMSs can only
be realized by addressing two issues. The first issue relates to
identifying and solving the various challenges in each of these
research areas. The second issue addresses the development
of architectures that can host these solutions and coordinate
their interactions. With respect to the second issue, generic
autonomic computing architectures fail to give insights on
the needed building blocks specific to ANMSs. On the other
hand, current network-specific autonomic architectures are not
usually developed with the purpose of hosting a set of external
functionalities.

To this end, we propose a reference framework for ANMSs
that serves two goals. The first goal is to provide a holistic
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TABLE III
A COMPARISON OF DIFFERENT ANMS ARCHITECTURES.

Dimension Unity DASADA Autonomia ACCORD ANA
Activity Proactive optimization

actions based on fore-
casted service demands

Reactive responses to
guages and probes

Reactive responses to
events detected through
the component manage-
ment interface

An elements within
ACCORD acts
reactively according to
its sensors

Dependent on the
hosted mechanism
within a network
compartment (external
to the architecture)

Adaptability closed-adaptability
through the use of
static policies

Partial open-
adaptability through the
use of Worklets (mobile
code for software
reconfigurability)

closed-adaptability
though the use of static
policies and utility
functions

closed-adaptability
though the use of
static policies but
global intelligence
is attained through
element composition

closed-adaptability
though the dynamic
composition of
compartments and
the compartment stored
policies

Intelligence Policy-based
and utility-based
management via
centralized resource
arbitrator

Limited distributed in-
telligence in controllers
that instantiates and co-
ordinates processes

Limited central intelli-
gence in the component
runtime manager

Limited distributed
intelligence in elements
that encapsulate
rules, constraints
and mechanism for
self-management

Dependent on the
hosted mechanism
within a network
compartment (external
to the architecture)

Awareness Partial self-awareness
of resources and partial
environment awareness
(application resource
demands)

A structural and behav-
ior knowledge models

Problem and solution
knowledge represented
in behavior and interac-
tion rules

elements maintain self-
knowledge about own
functionalities as well
as behavior and interac-
tion Rules

Self-awareness
is distributed in
compartments monitors
and exchanged through
the use of content
networks

Memory Trends of resource us-
age and demands mod-
eled as utility functions
and control knowledge
as policies

Short memory of
probes and guages

no memory of previous
behavior but a behavior
model is pre-built

no memory of previous
behavior but behavior
rules are pre-built

no memory of previous
behavior but behavior
rules are stored in com-
partments

Autonomy Autonomous (utility
functions must be built
externally)

Autonomous
management using
mobile codes

Automated
management (policies
must be defined
externally)

Autonomous manage-
ment is achieved via
the dynamic composi-
tion of autonomic ele-
ments

The level of autonomy
is dependent on the de-
veloped functional
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Fig. 3. A general reference framework for ANMSs

view of the diversified research efforts in the literature and,
in turn, it can be used to identify future research directions
towards the realization of ANMSs. Secondly, it provides the
guidelines for the building blocks of ANMS that are needed
for the development of future ANMS architectures.

Figure 3 depicts a schematic representation for the reference
framework proposed to realize the concepts of AC in network
management systems. The framework may be viewed as a
realization of the MAPE operations but tailored, as discussed
in earlier sections, to the specific network management func-
tionalities.

Similar to generic AC systems, the framework maintains a
NKBS that stores a model of the environment of the managed
domain, and is accessible to all other components of the
system. The NKBS will host various autonomic entities that
represent knowledge about users, devices, running applications
and the network itself.

We have shown that a major problem of building NKBSs is
the development of an expressive network model that can be
adopted by different network hardware and software vendors.
Current network administrators are more accustomed to the
utilization of plain and simple data models and are reluctant
to learn newer models. On the other hand, introducing more
advanced network models relies heavily on their cooperation
in transferring their experience into a structured behavior and
control models.

The second component of the ANMS corresponds to the
monitoring component of the MAPE operations. In ANMSs,
entities within this autonomic monitoring layer will be tasked
with observing the behavior of the network, system, running
applications, and serviced users. This step typically involves
monitoring a large number of performance metrics with a
typically high volume. A major problem with current monitor-
ing approaches is their limited applicability to network-level
fault management using a limited set of network performance
measurement variables and the lack of techniques for efficient
monitoring programmability. A major research challenge in
this area is to investigate the use of different types of available
knowledge (e.g., context of users and applications) and to
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broaden the scope of diagnosis to the detection of even the
slight change in the underlying network.

The autonomic diagnosis/anticipation layer is mainly re-
sponsible for analyzing the current system state and predicting
future events. It may also be responsible for projecting pre-
dictions that might affect the smoothness of network service
delivery to the adaptation layer. Most of the current approaches
for management are limited to responding to effects rather
than anticipating and proactively managing the actual events
that caused such effects. The move from reactive to proactive
management is still faced with many challenges such as
developing algorithms that can identify such events and deal
with the variations in certainties in the anticipated data.

The entities within the autonomic adaptation layer, in
Figure 3, continuously adapt the behavior of the various
components of the managed network to optimize the network
performance. Autonomic adaptation has been the focus of
intensive research efforts lately, and current literature has
investigated the utilization of different theories coming from
different disciplines towards the realization of this function-
ality. This includes the utilization of concepts of the control
theory, evolutionary computing and artificial intelligence. Yet,
more advances in this area will further contribute to adding
more autonomy to the management systems.

A final interesting point that has not been investigated in
the literature is the issue of communication and coordination
among various autonomic entities in future management sys-
tems.

In addition to the aforementioned challenges, other limiting
factors to advancing research in this area include the readiness
of users of current traditional management systems to accept
a transitional period and the difficulty in modifying traditional
management thinking with respect to, for example, the long-
standing communication protocol stack.

X. CONCLUSIONS

While the vision of autonomic computing has attracted
considerable attention from research communities in both
industry and academia, realizing autonomicity in current net-
work management systems remains a challenging task. This
article aspired to help advancing current research efforts in
this area by surveying current approaches and putting them
into perspective deriving a more holistic view. A coherent
classification methodology for approaches to achieve each of
the management functionalities is presented and utilized to
classify existing research efforts. A reference framework for
future management systems was also proposed and applied to
identify future research directions and open issues.

A final note is that the authors by no means claim that the
survey within this article is exhaustive. Autonomic communi-
cation is an emerging field of research that is attracting lots of
attention of a large number of researchers and describing all
relevant approaches in this area can never be achieved within
a single article. Rather, the authors mainly aimed at providing
a valid taxonomy that can be used to put current and emerging
approaches into perspective.
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