
1 (23)

OPENING THE NETWORKS WITH PARLAY / OSA APIS: STANDARDS
AND ASPECTS BEHIND THE APIS

Ard-Jan Moerdijk1 and Lucas Klostermann2

Draft version, to be resubmitted to IEEE Communications Magazine.

1 Ard-Jan Moerdijk, Chairman 3GPP CN5 (Joint API Group), Ericsson Eurolab Netherlands, e-mail: Ard-
Jan.Moerdijk@eln.ericsson.se
2 Lucas Klostermann, Product Manager, Ericsson Eurolab Netherlands, e-mail:
Lucas.Klostermann@eln.ericsson.se

2 (23)

1 ABSTRACT

The past years have shown an enormous increase in efforts to open up
telecom network functionality for application development. This means that
applications can access core network functionality by means of open
standardised APIs based on open technology.

One value of opening up of the network is the emergence of new business
models where applications can be developed and provided by enterprises
outside the traditional network operator domain.

Combined with the fact that applications can be built with standard IT
technology and tools, new innovative applications will hit the market with
development cycles shorter than ever shown before.

This paper provides an overview of the Parlay / OSA initiatives on the
specification of a set of open, standardized APIs. Furthermore, the paper
outlines some architectural aspects that are implied and implicitly contained in
the Parlay / OSA specifications, but are nevertheless critical for understanding
the implications when opening up the network by means of Parlay / OSA. The
paper concludes with a characterization of applications that can be built using
Parlay / OSA.

3 (23)

2 INTRODUCTION

In today’s telecommunication networks, applications and services are a part
of the network operator’s domain and are primarily built using Intelligent
Network (IN) technology. This approach is well suited for simple mass-market
and carrier class applications. However with the emergence of mobility and
IP, easy creation and rapid deployment of innovative applications that
combine different features and critical enterprise data, become a challenge
beyond the capability of IN.

In the past initiatives like TINA (see Ref 1) tried to address this challenge, but
the results have so far largely remained at research level. Nonetheless,
inspired by the TINA work, different groups like Parlay (Ref 2) and JAIN (Ref
3) continued with efforts to develop APIs, based on open technology that
allows applications to access core network functionality. This is referred to as
the opening up of the network and will make the telecom functionality residing
in the network, accessible for a large developer community. This will lead to
fast creation of innovative applications. Also, by opening up its network, a
network operator can invite 3rd parties, operating outside their own domain, to
develop these innovative applications. This will provide the network operator
with a means to extend their service portfolio.

These APIs naturally form the interface between what is referred to as the
application layer or Service Network on one hand and the core network on the
other hand. Applications are logically positioned in the Service Network and
can be deployed independent of the core network and access network that
the end-user is using. This means that instead of the current approach where
applications are tied to one specific network (fixed, mobile, IP) applications
can be accessed and used from different types of networks or domains. This
is called the vertical approach versus the horizontal approach. The benefits
of a horizontal approach for the operators and end-users are evident.

The APIs this paper will mainly be focussing on, were originally defined within
the Parlay Group (Ref. 2) and standardized in the context of 3GPP (Ref. 4)
and ETSI (Ref. 5). Parlay is not considering any specific underlying network
technology or architecture, whereas 3GPP and ETSI focus on 3rd generation
mobile and fixed networks. The Service Network concept and the collection of
APIs are called Parlay within the Parlay group and Open Service Access
(OSA) in 3GPP and ETSI. Within the OSA concept, so-called Service
Capability Servers offer the API interface implementation and hence these
nodes can be found on the border between the Service Network and the core
network, see Figure 1. In section 4 the architecture is outlined in more detail.

4 (23)

Services/application
layer

Control layer
Service Capability Servers

Connectivity layer
Core & Radio Networks

2G 2.5G & 3G

C
or

e
ne

tw
or

k
Se

rv
ic

e
ne

tw
or

k
Parlay / OSA

Figure 1: logical network architecture showing the Parlay / OSA APIs on
the interface between the Service network and core network. The Parlay
/ OSA APIs are offered by Service Capability Servers (SCSs) and
applications access network capabilities through the APIs and get
accessed via the Parlay / OSA APIs.

In the following sections the paper gives an overview of the history and
current status of the Parlay / OSA API work. Next we look at the implied
architecture of OSA and outline some concepts that are key to OSA, but also
somewhat implicit in the specifications. Finally the application side of the
interface will be addressed and some typical example applications will be
given.

3 PARLAY / OSA API DEVELOPMENT AND STANDARDS: THE JOINT API
GROUP

In 1998, the Parlay group was established as an industry forum with initially 5
member companies. The group’s goal was to develop APIs that would allow
enterprises to access core network capabilities. The aim was that these APIs
would be network independent in order to allow the development of
applications that do not rely on minute network details and particular network
intricacies. This independence enables a smooth evolution of core network
technologies while the applications stay untouched. It also allows easy
migration and portability of applications to other network technologies. Note
that in addition to these “network agnostic” APIs there are also APIs that are
intended for a particular network technology and allow the applications to
access this network's specific functionality as well. The first release of Parlay
was realized within one year and work continued as Parlay 2.

5 (23)

Around the same time as the work on Parlay 2 commenced, 3GPP and ETSI
started working on APIs to be used for service development for 3rd generation
networks. Having a large overlap in scope, with 3GPP focussing on UMTS
and ETSI SPAN on fixed 3rd generation networks, the benefits of working
together were promptly recognized and all the work has been done jointly
between ETSI and 3GPP from the outset3. It was then realized that the Parlay
APIs can be used in the 3GPP / ETSI context as well. Therefore the relevant
Parlay APIs were brought to 3GPP and ETSI for standardization in the
context of what was called at that time Open Service Architecture (OSA).
Nowadays the OSA acronym has been re-termed Open Service Access. In
addition to the relevant Parlay APIs new ones were defined. Furthermore,
mappings from the API to specific network signaling protocols have been
produced. This latter work was primarily to show that the API could be
implemented using the 3GPP core network and is provided as informative
recommendation.

Needless to say, a lot of emphasis was placed on aligning the APIs of Parlay
and 3GPP / ETSI. To achieve one developer community Parlay, 3GPP and
ETSI decided to collaborate towards their common goal and to date the work
on the OSA/ Parlay APIs done jointly in what is called the Joint API Group. In
addition to the joint work between these three organizations, there is an
informal collaboration with the JAIN community (Ref. 3), mainly with the
purpose to align the Call Control APIs4. At this moment 3GPP has produced
Rel.4, while ETSI and Parlay have released a common draft specification
called ETSI OSA version 1 / Parlay 3.0. These three specifications are fully
aligned. One can also say that the specifications are different exposure
channels of the same work! Furthermore, within JAIN there is work ongoing to
develop Java versions of the APIs, called JAIN SPA (Service Provider
Access).

The figure below outlines the relations between the various versions and
releases of the specifications.

3 The specific working groups responsible for API development are 3GPP CN5 and ETSI SPAN12.
4 The JAIN Call control 1.0 APIs were based on the Parlay 2.0 Call control APIs but some additional modifications
were introduced. Work has been ongoing in order to align the JAIN Call Control with the Parlay / OSA Call Control.

6 (23)

20002000 20012001

1Q1Q 1Q1Q2Q2Q 3Q3Q 4Q4Q 2Q2Q 3Q3Q 4Q4Q

ParlayParlay

ETSIETSI

3GPP3GPP

Release 4Release 4

Release 99Release 99

2.1

3.0 3.1

1.0

3.0 3.1

3.2

4.0

2.0

4.0 4.1 4.2 4.3

1.1

3.3 3.4

5.0

TS 23.127 + TS 29.198 + TR 29.998 (Mapping)

TS 29.198 + TR 29.998 (Mapping)

ES 201 919 + TR 101 917 (Mapping)

Figure 2: Relation of the different specifications

For the reader of the different specifications the concepts used may still be a
bit confusing, caused by different use of terminology. In the Parlay
specifications the term Service is used for the collection of interfaces that
provide a specific function, while 3GPP and ETSI use the notation SCF
(Service Capability Feature) for the same concept. In the 3GPP context the
term service usually means an end-user service.

In the remainder of the paper the term application will be used for end-user
service and the term Service Capability Features will be used instead of the
Parlay term Service.

For Parlay version 3.0, 3GPP Release 4 and ETSI version 1, the specification
set consists of 12 parts (see Refs 6,7,8) :

part # SCF Description Comments

1 General Contains the introduction and methodology
used.

2 Common data Generic data definitions, used in other parts.

3 Framework Defines the infrastructure capabilities like
authentication, SCF discovery, SCF
registration, fault management, etc.

4 Call Control Defines the call control family with
capabilities ranging from setting up basic
calls to manipulating multimedia conference
calls.

Multi-media and
conference call
control are not
part of 3GPP
Rel.4 OSA as
this functionality
is considered to
be outside the
3GPP Rel. 4

7 (23)

network.

5 User Interaction SCF to obtain information from the end-user,
play announcements, send short text
messages, etc.

6 User location / User
status

SCF to obtain location and status
information.

7 Terminal capabilities SCF to obtain the capabilities of an end-user
terminal.

8 Data session control SCF to influence data sessions.

9 Generic Messaging SCF for access to mailboxes not part of 3GPP
OSA Rel. 4 as
this functionality
is considered to
be outside the
3GPP Rel. 4
network.

10 Connectivity
Management

SCF for provisioned QoS not part of 3GPP
OSA Rel. 4 as
this functionality
is considered to
be outside the
3GPP Rel. 4
network.

11 Account
Management

SCF to access end-user accounts

12 Content based
Charging

SCF to charge end-users for use of
applications / data.

Note that apart from the APIs within the scope of the Joint API group,
additional APIs are being developed within specific Parlay working groups.
This allows to work on a specific task with a focussed group and try out new
ideas. When work of such a group is successful, the Joint API Group will
adopt these additional APIs.

For the time period after June 2001, the focus of the joint group is on
extension of the APIs like for example multi-media aspects, the extension of
content based charging and inclusion of policy management and presence
and availability management (PAM). In addition to these functional aspects,
the joint group will work on the support for an XML version of the APIs, which
is to be published in parallel to the current IDL version.

In the next sections the paper will focus on surrounding aspects of the Parlay
/ OSA APIs.

4 BEHIND THE APIS: ARCHITECTURAL ASPECTS

8 (23)

In this section aspects of the OSA architecture are described. Firstly, the
logical entities are explained, secondly, the aspects related to deployment in
the network, and finally some key architectural aspects like security and
scalability are outlined. As this paper is intended as an overview, a
comprehensive and exhaustive look at all architectural aspects is out of the
scope.

4.1 THE LOGICAL ARCHITECTURE

Figure 3 shows the logical architecture behind OSA. The logical entities to be
distinguished are: Applications, Application Servers, Service Capability
Servers (SCSs), the Parlay / OSA Framework and core network elements.

Applications, deployed on Application Servers, which can be any standard IT
platform, use the capabilities defined in Parlay / OSA, provided by Service
Capability Servers and offered to applications through the APIs: the SCS
implements the server side and the application the client side of the API.
Communication between the application and the SCS is done using standard
IT middleware infrastructure. Service Capability Servers (SCSs) are thus
logical entities that implement the API (that is, the interface classes of the
Service Capability Features) and potentially interact with core network
elements. These may include Home Location Registry (HLR), Mobile
Switching Center (MSC), Service Switching Point, etc. As such, an SCS
serves as a proxy or gateway to the core network. Application Servers could
be either in the same business domain as the Service Capability Servers or in
a different domain.

framework User location Call Control

HLR MSC SSP Servers

E.g. billing servers

Application Server

Application

OSA / Parlay interface

Service Capability Server(s)

SCF

Interface class

Figure 3: Overview of the logical entities involved with Parlay / OSA

A Service Capability Server may implement multiple SCFs, although one
usually talks about a specific SCS per SCF, e.g. the Call Control SCS.

As an SCS is a logical entity it does not need to be implemented as a
separate box. For instance the Content Based Charging SCF might very well
be directly offered by the charging and billing server itself. This is further
detailed in section 4.2.

9 (23)

The Parlay / OSA Framework, which is also shown in Figure 3 offers the
Framework capabilities to applications. This entity is the essential part in
enabling openness, and making it possible to go beyond traditional IN when it
comes to openness, discovery and integration of new features, as described
below. The following section explains this crucial part of Parlay / OSA on a
high level.

4.1.1 The role of the Parlay / OSA Framework

The Parlay / OSA Framework builds upon ideas from TINA (Ref 1) and
provides controlled access to the Service Capability Features (SCFs), which
in combination with distributed technology supports flexibility in application
location and business scenarios. Furthermore the Framework allows multi-
vendorship and even the inclusion of non-standardized SCFs, which is crucial
for innovation and service differentiation.

The Parlay / OSA Framework consists of a family of interfaces with the core
part consisting of:

• Trust and Security Management: authentication of domains.

• SCF Registration: registration of new SCF to the Framework.

• SCF Factory: creation of new SCF instance.

• SCF Discovery: discovery of SCFs provided by the operator

In addition there are also Framework interfacess for:

• Integrity Management: load balancing, fault management, heart beat

• Event notification: notifications for specific events (e.g. registration of new
SCS).

• Contract management: management of contracts between different
domains (e.g. between application provider and network operator).

To explain the core part of the Framework it is beneficial to look at a complete
business process where a new SCS is installed and an application starts
using the capabilities offered by this SCS. The scenario is outlined in Figure
4. Suppose that the SCS implements the Multi-Party Call Control SCF. Three
different stages can then be distinguished:

1. Registration

During this stage a new SCF is added.

10 (23)

First the SCS contacts the Framework and requests its the Registration
interface. The Framework then returns a reference to it. These are steps 1-2
in Figure 4. Next, the Multi-Party Call Control SCS uses this interface to
publish its SCF type, in this case Multi-Party Call Control and its capabilities,
for example how many parties per call this specific implementation is able to
handle. Furthermore, the SCS will supply the Framework with its own
reference (called Service factory5) via the Registration interface. This is step 3
in Figure 4. At this point in time the Framework and the SCS know each
other6.

2. Setup of Service Agreement

In this phase the conditions under which an application is allowed to use the
SCS are established.

From this point on, the Framework operator is able to enter the conditions
under which an application is allowed to use the SCS. One of these
conditions could be that application X is only allowed to use a maximum of 4
parties per call. All of this information is captured in what is called a Service
Agreement and the information is entered via a management system.

3. Run-time communication establishment.

At this stage the run-time communication between the application and the
SCS is established.

5 The factory pattern is a general design pattern and allows the Framework to request the SCS to create an SCF
instance for each application.
6 It is important to outline that the framework will also allow registration of non-standardised SCFs: in principle one
can thus publish any API that is useful for applications using the above mechanism.

11 (23)

The final step occurs when an application contacts the Framework and uses
the Discovery interface to find out what SCFs are supported (steps 4-6).
Suppose that the application wants to use the Multi-Party Call Control SCF
and it wants to be able to control calls with a maximum of 4 parties per call.
The application will therefore ask the Framework via the Discovery interface,
to return all SCF implementations that fulfill this request of 4 parties per call.
The Framework then checks the Service Agreement to find out whether the
application is indeed allowed to use the Multi-Party Call Control SCF. If this is
the case, it will return a list of implementations of Multi-Party Call Control that
are able to handle at least a maximum of 4 parties per call. For instance it
might be that there are two Multi-Party Call Control SCSs, where one is able
to handle 8 parties per call and another one 6 parties per call. As the
information about the capabilities of the SCS is also provided to the
application, it can then select one from the list (Step 7 in Figure 4). In this
case it is most likely that the second SCS might be cheaper to use. Next, the
Framework will request the specific SCS (via the Service Factory interface) to
create an SCF instance that is to be used by this application. The Framework
will also send the information about the conditions under which the application
may use this SCF, for example, the maximum of 4 allowed parties per call
(Step 8). The SCS will now create the SCF instance and return a reference to
the Framework (Step 9). The Framework will then return it to the application
(Step 10). From this moment on, the application is able to use the Multi-Party
Call Control SCF.

Application

Framework Service /
SCF

1: authentication

2: request Registration interface

3: register factory

4: authentication
5: request Discovery interface

6: discover Service

7: Select Service + sign SLA

8: create Service Manager

9: return Service Manager

10: return Service Manager
11: Use service

Figure 4: Service registration and discovery

Steps 6 – 10 are to be repeated for each SCF the application wants to use.

Also note that Parlay / OSA supports the authentication steps (1 and 4) to be
skipped for entities within the same domain, for example, the case where an
operator adds a new SCS to its Framework or in case the application is in the
same domain as the Framework and SCSs. It is a general misconception that
Parlay / OSA is focussing only on 3rd party applications.

4.2 PHYSICAL ARCHITECTURE

12 (23)

There can be numerous physical entities offering the functionality that the API
provides the open access to: switches, Interactive Voice Response systems
(IVRs), Home Location Registries (HLRs), mobile positioning systems, GPRS
Support Nodes (GSSN), billing servers, etc. As indicated, Service Capability
Servers are logical entities and the specifications do not prescribe whether
SCSs should be separate boxes in the network. In principle an SCS can be
deployed as a stand-alone node in the network or it can be deployed as a
core network node. For example the user status SCS could be deployed
directly on the HLR or it could be deployed on a separate stand-alone node
that uses the CAMEL protocol for communicating with the Home Location
Register (HLR).

In the case where the SCSs are really deployed on separate stand-alone
nodes, one does distinguish a physical Service Enabler sub-layer in the core
network, see Figure 5. One solution here is to provide all API implementations
within one physical node. Usually this is referred to as the physical OSA
gateway. This gateway has protocols / interfaces to all the various core
network entities. The other approach is a distributed approach. In this case
the OSA gateway node contains the Framework and maybe a few Service
Capability Server components, but the rest of the Service Capability Servers
run on different nodes. This means that the OSA gateway is a logical gateway
and API implementations can run on distributed nodes, i.e. the different
network entities provide their own APIs. This alternative can of course also
be a mix of SCSs as separate nodes and core network nodes providing the
SCF implementations.

HLRgsmSSF

SCS SCSFW

Service Enabler sub-layer

Network Control layer

Figure 5: One specific network configuration where all Service
Capability Servers are deployed on separate nodes. In this configuration
one can distinguish a Physical Service Enabler sub-layer in the network
architecture.

13 (23)

All deployments are in principle possible, provided the appropriate
middleware infrastructure between different nodes is in place. However, there
are cases where it is not desirable to deploy SCS software directly on a core
network node. It is especially in cases where end-user triggers are stored
dynamically based on e.g. location of the user or the signaling or processing
load. In these cases it would mean that all possible nodes in the network
where the user trigger might be located, must be able to setup communication
with the application, in order to be triggered when the user initiates an event
of interest. For example, a mobile subscriber can be attached to any serving
switch in a mobile network, based on location of the subscriber. Setting up a
call origination trigger for example, would require updating all SCSs deployed
on the switches or it would mandate communication between one switch and
any other switch to which the mobile subscriber can possibly connect and
originate calls from.

One can conclude that in practice there will be a mixture of all indicated
deployment scenarios. There will most likely be a gateway node offering the
Parlay / OSA Framework that includes the SCF registration interface and
some core SCSs. Additional SCSs can then run on separate nodes, and be
registered to the Framework in the gateway node. This also allows phased
introduction of SCSs. Furthermore, as the Framework is a critical entity, it
should be deployed on a node that provides the usual telecom carrier class
characteristics like 99.999 % availability.

4.3 SECURITY CONSIDERATIONS

In order to allow applications from other domains to use the SCSs in the
network, it must be ensured that the communication between the Application
Server and the SCSs is secure. As mentioned in Section 4.1.1, Parlay / OSA
includes authentication between domains on API level. This means that there
are mechanisms defined for authentication between domains on application
level. Furthermore, these mechanisms rely on well-known encryption
techniques and are also extendable with new techniques. However, apart
from authentication on the application level, one also has to ensure that the
underlying communication is secure and that access to capabilities is
controlled. These two topics will be addressed below.

4.3.1 Secure communication

Secure communication can be realized with standard IT technology, firewalls,
SSL, IPSec, etc. It is also not expected that Application Servers will
communicate directly over the internet with the SCSs, mainly for security and
performance reasons.

A more likely scenario is that dedicated connections are to be used. Thus it
should be ensured that only Parlay communication is allowed over the
dedicated link and also that the applications can be reassured that nobody
else is able to address the application peer objects present at the gateway.
This can be achieved by introducing a firewall that only allows the specific
communication protocol (e.g. CORBA) to pass and, by using SSL to prevent
other Applications from “stealing” object references.

14 (23)

Another security issue is how the integrity of Service Agreement can be
guaranteed. For this we have to focus on the service properties and the
Service Agreements.

4.3.2 Controlled access: Service Agreements and service properties

In Section 4.1.1 it was briefly outlined that during registration an SCS
publishes its capabilities. Based on these capabilities, the Framework
operator is able to enter the conditions under which an application is allowed
to use the SCS. The example we looked at was that the Multi-Party Call
Control SCS was able to support a maximum of 8 parties per call, while the
application was allowed to use only a maximum of 4 parties per call. The
capabilities of an SCS are described by the Service Properties in Parlay /
OSA. In the following discussion we will briefly outline this concept and show
how this is used to control access to the capabilities offered by an SCS.

Service Property Type

Service Type
Service Capability

Feature
is of type

Service Property
is of type

1..n1..n

described by

Service Property Value

can have value of

SCF implemantation
Instance

supports

Service AgreementApplication

1

1

1

1
uses

Service Capability Feature
Implementation

supports

Subscription Assignment Group

belongs to

Service Profile

describes restrictions for SAG to 1..n1..n

has

Figure 6: Model showing the concepts related to Service Agreements.

15 (23)

In Figure 6 a UML model outlines the concepts related to the Service
Properties and the so-called Service Agreement. The model shows that an
SCF is of a certain type (e.g. Call Control, User Interaction, etc.) and is
described by a set of Service Properties. Service Properties are of a certain
type (e.g. String) and can have a certain value. General properties include the
name of the SCF, version, name of the SCF implementation, version of the
SCF implementation, etc. Furthermore, each SCF has it’s own properties like
for instance Call Control has a property to indicate the maximum number of
parties in one call session.

For a specific SCF implementation the properties are assigned values and
this allows the SCS to promote its capabilities and restrictions. It also allows
applications to know about these, without knowing the exact underlying
technology that supports these capabilities or leading to certain restrictions.

The concept of a Service Profile is used to specify what values within the
range of supported service property values, applications are allowed to use.
For example it might be that although the SCF implementation supports up to
8 parties per call, the application is allowed to use only up to 4. A run-time
instantiation of a Service Profile is called a Service Agreement.

The final concept shown in the UML model, is the Subscription Assignment
Group. The Subscription Assignment Group contains Service Profiles for all
the SCFs needed by the applications within such a group.

In Section 4.1.1 it was shown how SCF implementations are registered to the
Framework, how they can be discovered by applications and how the SCF
implementation instance is created in case the application decides to use the
SCF. At registration the Framework thus receives all the supported property
values of the SCS. The Framework should then store these values in some
kind of database. Each time a new application is introduced, it should be
assigned to a Subscription Assignment Group. After the discovery procedure,
when the application selects the SCF instance to use and signs the Service
Agreement, the Framework propagates the values of the service properties
the application is allowed to use, to the SCS. The SCS then creates an SCF
instance that is one-to-one related to the application and it should also check
the application does not violate the Service Agreement.

This clarifies the power of the Service properties and Service Agreement
when it comes to security. One can easily indicate what applications are
allowed to do, e.g by creating the Profile in such a way that the application is
e.g. not allowed to use certain methods or to alter certain parameters. At this
moment the Service Property related data-types are somewhat complex.
Work is ongoing to allow for specification of the Service Properties in XML.

4.4 QUALITY OF SERVICE

Service Agreements can also be used for QoS aspects. Service Properties
for e.g. guaranteeing a minimum number of sessions per second or
maximum number of allowed sessions per second, will soon be introduced.

4.5 SCALABILITY

16 (23)

Another major non-functional architectural aspect is scalability. Parlay / OSA
allows for scalability on different levels.

First of all, it is possible to add more SCSs and distribute the load from
different applications over multiple SCSs. The way this works is that at the
Service selection phase, the Framework diverts one application to one SCS
and another application to another one. Of course in the case where the
specific SCS depends on network entities, this scalability is limited by the
capacity of the core network.

Furthermore, with underlying middleware like CORBA it is possible to
distribute load on session basis without the application being aware that
different sessions run on different processors.

Finally, in some of the APIs it is possible to add multiple application call-backs
to the SCS, which allows the SCS to distribute the load of different sessions
over different application instances that could run on different servers.
However, there are at present no means for applications to indicate a
distribution policy.

4.6 PERFORMANCE, AVAILABILITY, ROBUSTNESS, REDUNDANCY

 As the interface between the telecom networks and the datacom networks,
the SCS of course has to provide the usual telecom characteristics like
99.999 % availability. The main challenge will therefore be to provide
applications with the same characteristics.

5 THE APPLICATION LAYER

5.1 APPLICATION SERVERS.

Besides the Service Capability Servers much is also expected for ease of
application development from the Application Servers themselves. From the
previous sections it is clear that some kind of distribution of SCSs is very
likely and therefore middle-ware like CORBA is needed. However, application
servers allow the hiding of the distributional aspects and offer application
developers a standard programming environment in a favorite language.
Application Servers are also the most suited environments for the work done
in the JAIN community. Here one focuses on the specification of the APIs in
Java. At this moment most of the Parlay APIs are thus specified in Java.7

7 One exception is Call Control, here JAIN has a version of its own, called JCC/JCAT. Much effort has been spent
to align the JCC and Parlay / OSA Call Control and it is to be expected that a fully aligned API will become soon
available.

17 (23)

SCF functionality on Application Servers may even be captured in
development components (e.g. Java Beans) that allow application developers
to link in and tune the needed components. It is foreseen that these Service
Development Kits (SDKs) further speed the application development process.
One crucial aspect of these development kits is that it should be easy to link
in new components that implement the APIs in the target language, and also
communicate with the specific SCS.

5.2 SAMPLE OSA APPLICATIONS

OSA allows applications to combine capabilities (SCFs) that were not easy to
combine with technologies like IN. Setting up calls can be easily combined by
requesting the status of a user, and requesting a reservation for charging
purposes. The first type of OSA application that one can distinguish is thus an
application that combines different SCFs. A typical scenario is shown in
Figure 7. The example is an application that the subscriber can use to
compile a list of people (buddy list) and request to be notified when these
people are available or e.g. when they get in the neighborhood. Once
everyone is available, the application could set up a multi party call, for
example, within a given time frame, or at a certain time connect all parties
who are available.

The required OSA interactions would look like the following:

1. The non-traffic part: the application contacts the Framework, gets
authenticated depending on whether it is in a different domain and then
requests for access to the user location /user status SCS and the call
control SCS. The Framework will check that the application is allowed to
use the requested SCSs and if so will request the different SCSs to create
an SCF instance that is to be used by the application. The references of
the SCF instances will be returned to the application.

2. An end-user is now able to access the application, e.g via the internet or
WAP and set-up the buddy lists.

3. When this list is complete, the application contacts the user location / user
status SCS and requests to be notified when the people within the list
become available (turn their mobile on).

4. The SCS will initiate installation of triggers in the network in order to be
notified when people from the buddy list switch on their mobile.

5. Each time one of the people from the list turns his/her mobile on the User
location/ user status SCS is informed.

6. The User location / user status SCS notifies the application.

7. In case the application finds out that enough people are available, it
informs the user, either by popping up a window, or by using the call
control SCS to place a call with an announcement or by using the user
interaction SCS to send an SMS message.

18 (23)

8. The user decides to request the application to set-up a conference call
with all parties available.

9. The application could check whether the end-user still has enough credits
by contacting the Charging SCS.

10. The application contacts the call control SCS to initiate the conference
call.

PLMN
(GSM/UMTS CS)

PSTN/ISDN (CS) IP Multi-Media (PS)

Application

Application Server

User Status / User
Location SCS

CC/UI
SCS

FW Charging
SCS

Figure 7: application combining different capabilities

OSA also allows a combination of capabilities with data not traditionally found
in the network. The second type of application is then one that combines
network capabilities with enterprise data. One characteristic of OSA
applications is thus the data-owner. A typical example would be an application
that can direct the end-user to the location of e.g. the nearest ATM machine.
The location of the ATM machines is usually data that is not found in the
traditional telecom network and also often “belongs” to the enterprise in
question, e.g. the bank.

19 (23)

With the network convergence achieved by means of OSA, it is also possible
to deploy SCSs in the enterprise domain, e.g PBX with Call Control API, etc.
Enterprise applications can thus be located in the enterprise domain and the
end-users can then access these applications when they are within the
corporate network and also, even when they are outside the enterprise
network, e.g. when they are travelling. To set this up would require an
agreement between the application provider (enterprise) and the network
operator. In this case the application is not part of the standard application
portfolio of a certain operator, but is only accessible to the group of corporate
users. We will refer to these types of applications as corporate applications.
Of course, it might also be the case that when present inside the corporate
domain, the corporate application is accessed by means of other mechanisms
than OSA, outside the corporate environment however, OSA is used to
access the application. A typical example would be the enterprise mail
system, accessible also by dialing into an application that is able to send the
mail messages to a text2speech engine via the OSA SCFs.

One extreme case here is the mission critical application that uses some
SCSs of the network operator, and is used only by a very limited set of
corporate users. A typical example would be an application that can inform a
worker in the field closest to the location of a certain event. What would be
needed here is an application that is able to access the user location SCF to
track the mobile stations of the workers and is also able to access e.g. the
Call control SCF to place a call or the User Interaction SCF to send an SMS
message.

6 FUTURE AND EVOLUTION OF PARLAY / OSA

The set of APIs developed within Parlay / OSA has grown substantially within
a few years. This comes with a drawback and in this case the accessibility to
the specifications has suffered somewhat. Therefore, the Parlay / OSA
specifications should be made more readable and more simplified. A high-
level description is needed and the Parlay / OSA data-types are especially
rather complex. There is also the lack of a clear model that describes the
relations of the different data-types related to registration and discovery.
However, this has been recognized and is under further development.

A next item that is under development is the further integration of Parlay /
OSA with IP-Multi media (e.g. the 3GPP all-IP based core network, see Ref 9)
and the possibility to link in with other SIP based networks. At this moment
the Joint API group is working on these aspects and it is foreseen that some
specific APIs like multi-media call control will need some evolution. One
important aspect to consider here is that Parlay / OSA and SIP based
approaches (e.g. SIP servlets) are not competing with each other, but rather
complementary, see also Refs 10 and 11.

Work is also in progress in the area of policies. The central idea here is to
define policies that can be checked by the different SCSs and define a way to
introduce and manage these policies. This work might influence the definition
of the Service Agreement and Service properties.

20 (23)

Finally, Parlay / OSA will also soon support XML / Webservice based
versions of the APIs in order to allow the webservice developer community to
use services offered by the capabilities in the network. This work might have
some impact on the Parlay / OSA architecture in general as mechanisms like
Service Discovery are already supported with webservice technology.
However, it would open up the networks to a new developer community and
allow for multiple implementation options. Nonetheless real time applications
for session control are better off using CORBA based technology, but the rest
of the applications could be based on webservice or CORBA technology.

7 CONCLUSION

Parlay / OSA is becoming a powerful toolbox that provides the necessary
openness and flexibility for fast application development. By means of the
joint API standardization working group, one standard is achieved and one
common developer community is addressed.

Parlay / OSA is flexible when it comes to actual deployment in the network.
For instance it allows the introduction of new SCFs on the fly, even ones that
are not standardized. We have also shown there are several options to
implement SCSs and deploy them in the network. Furthermore, Parlay / OSA
provides the necessary security for the core network to be opened-up for 3rd

party application providers.

We have outlined some typical OSA applications. Today there are already
SCS products and applications that prove the OSA concept and show the
integration between telecom and datacom, without the end-user being aware
of this.

In order to become really accessible for the common IT development
community, the Parlay / OSA specifications should, in certain areas, be
simplified and made more readable. Also it is important to link up with XML
based initiatives (Webservices, SOAP).

8 ACKNOWLEDGMENT

The authors gratefully acknowledge Erik van der Velden, Christophe
Gourraud, Jörgen Dyst and Chelo Abarca for input and helpful discussions.
Furthermore we would like to thank Musa Unmehopa, Andy Bennett and
Paulus Karremans for reviewing the paper and finally Kimberleigh Anderson
for a grammar review.

9 TERMINOLOGY

3GPP 3rd Generation Partnership Project, body
responsbile for UMTS standards.

CAMEL Customized Applications for Mobile network
Enhanced Logic, IN standard for mobile networks.

21 (23)

CAP CAMEL Application Part, protocol in the CAMEL
standard between Service Control Point and
Mobile Switching Center.

CORBA
Common Object Broker Architecture, specification
defined by the Object Management Group (OMG)
for application interoperability independent of
platform, operating system, programming
language.

ETSI European Telecommunications Standards
Institute, body responsible for (European)
telecommunication standards.

GPRS General Packed Radio System, mechanism for
packed switched communication in mobile
networks.

HLR Home Location Register, database for permanent
storage of subscriber data. The HLR keeps track
of the locations and status of the subscribers.

IDL Interface Definition Language, technology
independent language for specifying interfaces.

MAP Mobile Application Part, protocol for signaling and
database communication in mobile networks.

MSC Mobile Switching Centre, node responsible for
switching in 2nd generation mobile networks.

OSA Open Service Access, term use in 3GPP and ETSI
for APIs that open up the network.

SCF Service Capability Feature, OSA API standardized
in 3GPP.

SCS Service Capability Server, server implementing
one or more Service Capability Features.

SMS
Short Message Service, allows mobile subscribers
to send and receive short text messages.

SSL
Secure Socket Layer, security protocol defined by
the Internet Engineering Task Force (IETF) that
provides communications privacy over the Internet

UML
Unified Modeling Language, technology
independent language for specifying, visualizing,
constructing, and documenting the artifacts of
software systems.

UMTS Universal Mobile Telecommunications System,
successor to GSM.

22 (23)

WAP Wireless Application Protocol, enabler for web like
applications on mobile terminals.

XML
Extensible Markup Language, universal format,
defined by W3C, for structured documents and
data

23 (23)

10 REFERENCES

1 See for instance: TINA-Consortium, TINA Service Architecture Version
5.0, 1997, available at http://www.tinac.com/

2 Parlay Group, http://www.parlay.org/.

3 JAIN, http://java.sun.com/products/jain/index.html

4 3GPP, http://www.3gpp.org/.

5 ETSI, http://www.etsi.org/.

6 The Parlay Group, “Parlay specifications 3.0”, http://www.parlay.org/specs/

7 3GPP “Open Service Access”, Application Programming Interface, 3G TS
29.198 + 29.998: http://www.3gpp.org/ftp/TSG_CN/WG5_osa/Specs/

8 ETSI “Open Service Access”, Application Programming Interface, ES 201
915 + TR 101 917: http://docbox.etsi.org/tech-
org/span/Open/Span12/osa.html

9 Lieve Bos and Suresh Leroy, Towards an all-IP-UMTS based system
architecture, IEEE network, January /February 2001.

10 Pailer R., Stadler J., A Service Framework for Carrier Grade Multimedia
Services using PARLAY APIs over a SIP System, ACM Wireless Mobile
Internet Workshop WMI2001, Rome, Italy, July 2001.

11 Stephane Desrochers, Roch H. Glitho, Kindy Sylla, Roch Glitho et al,
“Experimenting with PARLAY in a SIP Environment: Early Results”, IP
Telecom Services Workshop 2000 (IPTS 2000) Atlanta, September 2000.

