
� Session Initiation Protocol
Services Architecture
Janet R. Dianda, Vijay K. Gurbani, and Mark H. Jones

given below:

• Interface to SIP-enabled endpoints, such as SIP hard

phones, SIP softphones, personal data assistants

(PDAs), and wireless phones.

• Call/session control, for example, interface to media

gateway controllers, softswitches, proxies.

• Media service control, for example, interface to

media gateways and media servers.

• Service control, for example, interface to applica-

tion servers and services mediation functions.

• Service creation/authoring, for example, support of

call processing language (CPL), common gateway

interface (CGI), and servlets [16, 26].

• Intelligent network/Internet protocol (IN/IP) internet-

working, for example, the SIP-based Services

in the PSTN/IN Requesting Internet Services

The session initiation protocol (SIP) is a unifying protocol for providing
integrated telephony and Internet types of services, such as Web, presence,
instant messaging, and chat. To provide for the integration of these disparate
types of services, considerations must be given from a network point of view.
However, little attention has been given in the literature to identify the
network elements required to provide these services or the mechanisms for
integrating these different types of services for end users. This paper
describes a network-level services architecture for SIP, including network
functions and entities needed to support the services integration. We will
discuss how services can be incorporated at different levels in the network,
and the types of services typically created at each of these levels. We will also
describe a service access and mediation function, which blends disparate
types of services in creating a seamless and rewarding user experience.
© 2002 Lucent Technologies Inc.

Introduction
The session initiation protocol (SIP) is a standard

protocol for enabling the integration of telephony and

Internet services in a converged wireline, wireless,

and Internet network. The basic SIP protocol is spec-

ified as a signaling protocol for establishing, modify-

ing, and terminating multimedia sessions, ranging

from multimedia conferences to simple point-to-point

voice calls [10]. Since SIP itself is based heavily on

the Internet Web and e-mail protocols [6, 7], it is eas-

ily extensible to provide Internet-type services such as

Web, e-mail, chat, instant messaging, and presence.

The registration capability of SIP is a natural vehicle

for providing mobility and location functions.

Furthermore, the SIP protocol and its extensions

are being used in the network at different levels to

support a variety of functions. Some examples are

Bell Labs Technical Journal 7(1), 3–23 (2002) © 2002 Lucent Technologies Inc. Published by Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/bltj.14



4 Bell Labs Technical Journal

(SPIRITS)/PSTN/Internet Internetworking (PINT)

standards [11].

• General event subscription/notification mechanism,

being standardized in the Internet Engineering

Task Force (IETF) SIP working group [13].

• SIP-enabled instant messaging and presence, being

standardized in the IETF SIP for instant messag-

ing and presence leveraging (SIMPLE) working

group [12].

• Wireless multimedia protocol, being standardized

in the Third-Generation Partnership Project

(3GPP) [27].

To provide for the integration of these disparate

types of services using SIP as the unifying protocol,

we must consider the service architecture from an

end-to-end network point of view, specifically, iden-

tifying the network elements required to provide

these services and the mechanisms for integrating

these different types of services for end users. Figure 1
describes a functional services architecture at network

level, including network functions and entities needed

to support the services integration. This paper will dis-

cuss how services may be incorporated at different

levels in the network and the types of services typi-

cally created in each of these levels. Then we will de-

scribe a service “blending” mechanism via the service

access, mediation, and management (SAMM) func-

tion, which integrates disparate types of services in

creating a seamless and rewarding experience for the

subscribers.

Intelligence Everywhere
A user, deploying a SIP-enabled endpoint, has

many options as to where he or she can access serv-

Panel 1. Abbreviations, Acronyms, and Terms

3GPP—Third-Generation Partnership Project
AINAP—advanced intelligent network

application protocol
API—application programming interface
BCSM—basic call state model
CGI—common gateway interface
CORBA*—Common Object Request Broker

Architecture
CPL—call processing language
FSM—finite state machine
HTTP—hypertext transfer protocol
ICW—Internet call waiting
IETF—Internet Engineering Task Force
IM—instant messaging
IN—intelligent network
INAP—intelligent network application protocol
IP—Internet protocol
ISDN—integrated services digital network
ITU-T—International Telecommunications

Union, Telecommunications
Standardization Sector

JAIN*—Java* APIs for Integrated Networks
JCC—JAIN call control
JTAPI—Java Telephony API
MGCP—media gateway control protocol
OAM&P—operations, administration,

maintenance, and provisioning
OSA—open services architecture

PC—personal computer
PDA—personal data assistant
PINT—PSTN/Internet Internetworking
PSTN—public switched telephone 

network
SAMM—service access, mediation,

and management
SCF—service control function
SCP—service control point
SDP—session description protocol
SIM—SIP/IN Internetworking
SIMPLE—SIP for instant messaging and

presence leveraging
SIN—SIP/IN Internetworking
SIP—session initiation protocol
SIPPING—session initiation protocol project

investigation
SLEE—service logic execution environment
SMTP—simple mail transport protocol
SN—service node
SPIRITS—Services in the PSTN/IN Requesting

Internet Services
SS7—Signaling System 7
SSP—service switching point
TCAP—transaction capability application part
UAS—user agent server
URL—uniform resource locator
VoIP—voice over IP



Bell Labs Technical Journal 5

ices. The placement of services in a converged services

network is dependent on the requirements of the

service and the needs of the user. Services in different

parts of a converged services network have different

capabilities and needs, which must be addressed when

determining the best place to implement and deploy

a service.

The user may access services from a SIP-enabled

endpoint that are developed and deployed in a variety

of ways:

• SIP CPL, CGI or servlets,

• Parlay [18]/open services architecture (OSA), or

JAIN2* [25], and

• Advanced intelligent network application protocol

(AINAP), intelligent network application proto-

col (INAP), PINT, and SPIRITS services.

SIP service logic may reside on a variety of enter-

prise and network elements, including endpoints, SIP

proxies, application servers, Parlay/OSA gateways,

service control points (SCPs), and softswitches. The

debate over services in the endpoint versus services in

the network may be missing the point. Intelligent de-

vices will have intelligence. Each device may make

decisions based on the scope of service logic available

to it. It can then signal requests to other devices

using industry standards’ protocols. Signaled devices

may, in turn, make decisions based on the scope of

service logic available to them. Some services will fit

well on end devices; others will require the scope of

distribution, reliability, and availability across a wide

network.

For example, services that relate directly to the

end user manipulating a particular endpoint sit well

on an end device. These services might include

multimedia-enabled versions of the services provided

on wireless phones or integrated services digital

network (ISDN) handsets, such as re-dial, speed call

lists, hold, custom alert patterns and preferences

Service
Authoring

Application
Server

3rd Party
Application

Service
Control Point

Access
Session

Service
Session

Service
Mediation

Unified
Database

Wireless
Switch Softswitch SIP

Proxy

Media
Gateway

Media
Server

Wireless
Access

Wireless
Phone

POTS/ISDN
Phones

H.323
Phone

SIP
Phone

Soft
Phone PDA

PSTN
Access

ADSL
Access

Cable
Access

IP
Access Backbone

Applications

Services

Control

Media

Transport

End User

PSTN
ADSL
IP

-
-
-

Public Switched Telephone Network
Asynchronous Digital Subscriber Line
Internet Protocol

POTS
ISDN
PDA

-
-
-

“Plain Old Telephone Service”
Integrated Services Data Network
Personal Data Assistant

M
an

ag
em

en
t

Figure 1.
Functional entities for a converged services network.



6 Bell Labs Technical Journal

(“ringing” or “instant messaging pop-ups”). Services

provided to the user as an entity that spans multiple

endpoints may be best provided on a network device

that can be accessed by any endpoint. These services

might include multimedia, multiparty conference

calls, involving multiple endpoints for the user in a

single call, or allowing a user to access personal serv-

ices regardless of whether the user is using a wireless

handset on the road, an analog phone in a hotel, or a

personal computer (PC) in the office. Many services

could reside on a local endpoint, such as calendars,

address books, call screening, and speed call lists.

However, since a user may have multiple endpoints

(and endpoints can crash!), it is annoying to have to

reprogram each endpoint with the same information.

It would be nice to have a network service that could

upload and store personal service information, and

make it available to the user on any endpoint.

Authorization and authentication of end users can be

performed in the network, so that end users can

communicate with each other with confidence that

they know whom the far party really is. Otherwise,

each endpoint would have to have the ability to detect

spoofers itself.

The following subsections will describe the most

common places services accessible from a SIP-enabled

endpoint will be deployed and contrast the advan-

tages and disadvantages of deploying services in the

given area.

SIP-Enabled Endpoint Services
Intelligent endpoints are not a new concept. The

use of intelligent endpoints to provide services has

had numerous implementations. Many existing ISDN,

wireless, and analog phones are available today that

have embedded services. Most of these services can be

categorized as data storage and retrieval. The ability to

store frequently used phone numbers or to recall pre-

viously received phone numbers and names is inte-

grated into a majority of the phones sold. Some

wireless and wireline phones even have the ability to

access and retrieve e-mail and Web content. What all

of these phones have not had the ability to do until

recently was to have control over the actual call. In

the past the phone acted as little more than a dumb

call peripheral with little understanding of the state of

the connections on a call. Any connection service re-

quired the phone to request the service from the net-

work via keying actions with little feedback to the

endpoint other than audio tones to inform the user or

endpoint of the status or state of the call. The request

was sent to the network and processed there, if the

user had subscribed and paid for the service. Only

services offered by the local exchange carrier were

easily available. Access to new services had to wait

until the services were offered by the local exchange

carrier or on occasion could be accessed in a degraded

fashion through clumsy access numbers and keying

actions from a third-party vendor.

SIP changes everything by no longer requiring

the use of the local exchange carrier for access to all

services. From a SIP-enabled endpoint, a user can di-

rectly request a connection to another endpoint, to

modify an existing connection, or to access directly a

service anywhere on the network. All of this is done

through direct communication with the other end-

point or via data network proxies. There is no longer

a need to have a centralized switch to handle the call

or provide services. Because SIP is a peer-to-peer pro-

tocol, an endpoint can have considerable under-

standing of the current state of a call and use this state

to provide many services at the endpoint.

Many of the features currently implemented on

centralized telephony switches such as hold, transfer,

and call screening are easily implemented at a SIP-

enabled endpoint. Because they are resident in the

endpoint, there is no long-term subscription cost to

provide the service. The user is free to select the serv-

ices they wish to have resident and active on their

endpoint. These services can either be embedded in

the endpoint firmware or downloaded from the net-

work upon user request.

SIP-enabled endpoints are available in many

different varieties with capabilities and program-

mability varying considerably depending on the

endpoint.

Hard SIP-enabled endpoints. Hard SIP-enabled end-

points are typically always powered up and network

connected, which allows for continuous services.

Because of dedicated operation and hardware assisted



Bell Labs Technical Journal 7

voice processing, voice quality is typically superior to

other types of endpoints.

• Traditional hard SIP-enabled endpoints. Many of the

first-generation SIP hard endpoints are little more

than existing ISDN and analog phones modified

to use the SIP protocol with no new service

capabilities. SIP service enhancements and pro-

grammability are limited or non-existent in many

of these phones.

• Advanced hard SIP-enabled endpoints. Many vendors

are now supplying SIP hard phones with ad-

vanced SIP capabilities. These capabilities typi-

cally include advanced programmability,

integration with the Web, and large user-friendly

screen displays.

SIP soft endpoints. Softphones resident on PCs

have the most rich programmability capabilities with

the ability to take advantage of all of the PCs re-

sources, that is, nonvolatile storage, rich graphical in-

terface, and multiple user input devices. Because these

endpoints can be powered down, service interrup-

tions are possible. Because these SIP-enabled end-

points run as applications on the PC, they must

contend for resources with the other applications. In

the past, voice quality and stability have adversely af-

fected voice quality for software-based SIP-enabled

endpoints. Microsoft’s* recent developments in inte-

grating SIP into the Windows XP* operating system

have not only provided end users with instant access

to a quality SIP-enabled endpoint, but have also pro-

vided improved quality and a standard component

object model based application programming inter-

face (API) for developing endpoint services.

Wireless and mobile SIP-enabled endpoints. The

Third-Generation Partnership Project (3GPP) is in

the process of standardizing SIP as the protocol of

choice in the wireless infrastructure. Devices included

in this area include the next generation Web-

connected wireless phones with enhanced program-

mability and wireless network-connected PDAs. In

the ideal conditions, voice quality in these types of

endpoints is typically on par with dedicated hard end-

points. Because these types of devices can easily be

powered down, the ability to provide continuous

services from them is affected.

Network appliances. This type of SIP-enabled end-

point is not a general purpose SIP-enabled endpoint,

but is typically developed to provide a specific service.

These devices are typically developed as custom stand-

alone hardware devices. Very little programmability is

provided with this device with ease of installation and

use taking precedence. Typical examples include

weather monitors, reminder services, and instant

messaging.

The use of intelligent SIP-enabled endpoints

opens the capability for end users to easily configure

the services implemented on the endpoint either

through a graphical user friendly interface on the

SIP-enabled endpoint or through Web browser ac-

cess. Most new SIP-enabled endpoints, whether

implemented on custom hardware or implemented as

software on a PC or PC-like device, provide for a

much richer user interface than a traditional teleph-

ony endpoint. This allows the user to easily imple-

ment complex services and service interactions with

little user effort required. For example, many central

office switches currently provide call screening serv-

ices, which either restrict or allow calls to a given

end user. End-user programmability of these services

is either through complex keying actions or confus-

ing multilevel voice menu systems. Because of the

complexity of configuring these types of services,

many users either do not subscribe to these types

of service or do not fully take advantage of their

capabilities.

SIP Network Services
Although it is possible to implement a large num-

ber of the existing class 5 features at the endpoint, it

does not always make sense. Services such as hold,

transfer, caller ID, and call screening make sense to

implement at the endpoint because they are services

that are user action oriented. They are invoked in re-

sponse to a user action, or are setup specifically to a

given phone.

Services can be accessed in a SIP network in sev-

eral ways.

1. By requesting from a SIP-enabled endpoint to be

connected to a specific server that provides a

service,



8 Bell Labs Technical Journal

2. By having a SIP proxy intercept an incoming or

outgoing request and rerouting it to an applica-

tion server, and

3. Requesting through standard Internet data pro-

tocols (hypertext transfer protocol [HTTP], sim-

ple mail transport protocol [SMTP]) for a server to

create, via third-party call control, a SIP call, and

optionally provide addition services.

SIP Network Components
In a typical SIP network, proxies are configured in

a hierarchical architecture in order to provide SIP-

converged services. A SIP proxy is much like a Web

proxy in that its responsibility is to proxy a request to

the requested destination. Because all requests into

or out of a particular segment of the network must

traverse the proxy server, it has the ability to provide

a number of useful services. These services can be

grouped as follows:

• Security: A proxy can provide security services at

the edge of a network. To do this, it must work

closely with a firewall to provide SIP access to

the network both at the signaling and bearer

level. Work is currently being done in the IETF

to standardize this mechanism.

• Accounting: A proxy can provide an access point

for network-level services related to authen-

tication, authorization, and accounting.

• Routing: A proxy can provide a valued-added

routing service based on user preferences or

net-work activity and resources. This allows a

SIP network to recreate traditional telephony

services, for example, toll tandem, 800 service.

• Application Access: A proxy can act as an intercept or

final destination for accessing applications servers.

Because SIP is heavily based on Web technolo-

gies, it is easy to develop and integrate converged

services based on SIP and other Web technologies,

such as SMTP, HTTP, and instant messaging (IM)/pres-

ence. For example, providing a multiparty conference

services could involve the following scenario:

1. A user wishes to conference with several other

people on a problem.

2. From a Web browser, the user specifies all of the

call participants through a Web page form.

3. The Web server sends the request to the schedul-

ing server.

4. The scheduling server subscribes to the presence

server to be notified of all conference participants’

status.

5. The scheduling server is informed when the pres-

ence of a call participant changes.

6. When all call participants are available, the sched-

uling server notifies the original requester that

the conference can now take place and requests

confirmation.

7. The person requesting the conference confirms.

8. The scheduling server through third-party call

control calls each participant and connects them

to a conference server.

The conference server bridges the connection and the

call begins.

Candidate Network Services via SIP
There are several classes of services that are not

good candidates for implementation on an endpoint.

Multi-endpoint interaction services. Most users have

multiple phones and require services that are designed

to terminate incoming connections to a specific end-

point based on specific criteria such as user presence,

time-of-day, or caller. Terminating a call to a specific

phone and then providing the service, which may in-

clude a transfer, is not as efficient or practical as pro-

viding the service in the network.

Continuous services. SIP-enabled endpoints, such

as wireless phones or PC soft phones are not guaran-

teed to be active at all times. Services resident on a

SIP-enabled endpoint will only work properly if the

endpoint is powered up and actively connected to the

network. For example, a call forwarding service em-

bedded in a phone will not be able to operate on in-

coming calls if the phone is not powered up and

connected to the network.

High resource services. Many services have re-

source requirements, which exceed the capabilities of

the endpoint. For example, providing enough pro-

cessing power at all endpoints in order to allow a

complex multiparty conference or voice recognition is

not practical or an efficient use of resources.

Service configuration. Even with more user-friendly

interfaces, significant effort can be involved in config-



Bell Labs Technical Journal 9

uring a soft endpoint to provide all of the services and

service interactions required by a specific user. Different

phones will typically have different input capabilities

and have varying degrees of programmability. End users

with multiple phones, who wish to provide consistent

services on each phone, will be required to program

each phone individually with the same configuration,

for example, adding a new restricted number.

Duplication of services. SIP-enabled endpoints will

typically have widely varying capabilities and degrees

of programmability. Typical service providers will not

want to implement the same service multiple times

for each of the endpoints. By putting the service in the

network, a service developer is able to provide the

service to multiple heterogeneous endpoints using

the common SIP protocol.

Service interaction and mediation. As more services

become available for use on endpoints, interactions

will inevitably occur and limit a user’s ability to pick

and choose service from multiple sources. These in-

teractions can become very complex and often require

significant understanding of the internals of a service

along with telephony and networking concepts.

Unless a vendor has provided the ability to interact

with other services, interactions may be impossible.

Expecting an untrained end user to be able to install

and configure multi-vendor services is probably not

feasible at this time. Interaction and mediation frame-

works are being designed to provide multi-vendor in-

teroperability, but they are currently in their infancy,

and currently only available at the network server

level. A candidate framework for this purpose is de-

scribed in “Service Session, Access, Mediation, and

Management for an SIP Services Architecture” below.

Microsoft’s recent integration of a SIP-enabled

endpoint into every new version of its operating system

has solved the current problem of getting quality and

usable SIP-enabled endpoints distributed and available

on the desktop. Demand now is moving toward build-

ing services at the endpoints, deploying a SIP network

infrastructure, and developing SIP application servers,

which provide services in the network.

SIP Telephony Integration
Internetworking of the public switched telephone

network (PSTN) and Internet is of extreme impor-

tance for services. Instead of replicating PSTN-like

services in the Internet, it is desirable for the Internet

to leverage as many services as possible from the

legacy PSTN. There are three efforts within the IETF to

realize hybrid services: PINT, SPIRITS, and SIP/IN

Internetworking (SIN). PINT and SPIRITS are IETF

working groups and SIN is an IETF design team. The

working group for PINT is currently dissolved, having

met its deliverables. SPIRITS and SIN are currently

active in the IETF. This section presents an overview

of PINT, SPIRITS, and SIN from a service perspective.

Underlying PINT, SPIRITS, and SIN is the use of the IN

to realize hybrid services. IN has already been estab-

lished as the key technology of choice for providing

such hybrid services [15]. PINT, SPIRITS, and SIN

focus on the building blocks from which a broad range

of IN services can be constructed. The remaining of

this discussion will assume that the reader is familiar

with the IN and its accompanying protocols (INAP,

transaction capability application part [TCAP]) and

network entities (SCPs, service nodes [SNs], IP).

Uninitiated readers are referred to [4] for the IN stan-

dard and [14] and [15] for the application of IN in

converged networks.

PINT
PINT is designed to combine Internet applications

and PSTN telecommunication services in a way that

enables Internet applications to request PSTN tele-

communication services. The Internet is used for sig-

naling interactions, while the media portions are

carried entirely over the PSTN. The service aspects of

PINT as they apply to the PSTN are discussed in detail

in [14]. Here we simply discuss the PINT architecture

and the benchmark PINT services for the sake of com-

pleteness.

The PINT functional architecture is depicted in

Figure 2. It is worth noting that PINT chose SIP as

the enabling protocol, and in fact PINT defined ex-

tensions to SIP and session description protocol (SDP)

[19] to name and describe the converged services.

PINT clients and servers are SIP clients and servers.

SIP is used to carry the request from the PINT client

over the IP network to the correct PINT server. A PINT

system uses the SIP entities, such as proxy and redi-

rect servers for their usual purpose, but at some point,



10 Bell Labs Technical Journal

there must be a PINT server with the means to relay

received requests into a telephone system and to re-

ceive acknowledgment of these relayed requests. A

PINT server with this capability is called a PINT gate-

way. Such a gateway will terminate the PINT signal-

ing and interface with the PSTN to provide a set of

telephone network services. The PINT gateway may

be directly connected to the PSTN through a tele-

phone network interface, or it may be connected

through some other protocol or API to an executive

system, which in turn is capable of invoking services

within the PSTN. An executive system could be an IN

component, such as an SCP or an IP private branch

exchange system.

A PINT gateway and the executive system with

which the gateway is associated exist to provide

services to PINT requestors. A PINT requestor initi-

ates a request from the Internet, using a PINT client.

One of the benchmark PINT services is click-to-

dial-back. With this service, a user can make a request

through an IP host to establish a PSTN call with an-

other party. The requestor of the PINT service must

have voice access to the PSTN (via the telephone) and

Internet access (via a PC). The called party must be on

the PSTN and need not have Internet connectivity. A

typical example of this service is on-line shopping,

where a user, browsing through an on-line catalog,

needs to talk to a customer sales representative. The

user, acting as the PINT requestor, clicks on a button,

thus inviting a call from a sales representative. As in

all-PSTN toll-free service, flexible billing arrangements

can be made on behalf of the service provider. In

addition, the PSTN can route the call, depending on

factors, such as the time of day, day of week, and

availability of agents in different locations.

SPIRITS
SPIRITS is a mirror image of PINT. Whereas in

the latter the requests for service initiate in the

Internet domain and terminate in the PSTN domain,

SPIRITS concerns itself with requests for services that

originate in the PSTN domain and necessitate a ter-

mination in the Internet domain. SPIRITS is an IETF

working group that addresses how services supported

by IP network entities can be started from IN requests,

as well as the protocol arrangements through which

PSTN can request actions to be carried out in the IP

network in response to events (IN triggers) occurring

within the PSTN/IN.

The SPIRITS architecture consists of three poten-

tially independent entities: the SPIRITS client, the

SPIRITS server, and the PSTN/IN requesting system.

The SPIRITS server resides in the Internet domain,

and receives service notifications from the PSTN/IN

and sends optional responses back. The SPIRITS client

Pint Client

Internet

PSTN

PINT protocol
(extended SIP)

PSTN Network Interface
(or API or some protocol)

PSTN
PINT
API

Public Switched Telephone Network
PSTN and Internet Interworking
Application Programming Interface

-
-
-

Pint Gateway Executive System

Figure 2.
PINT services architecture.



Bell Labs Technical Journal 11

PINT
Client

SPIRITS
Server

PINT
Server/Gateway

SPIRITS
Gateway

Service
Switching
Function

SPIRITS Client

SIP

SIP

SIPInternet Domain

PSTN Domain

PSTN Network
Interface

(or some other
protocol/API)

INAP/SS7

Subscriber's
Telephone

PINT
SPIRITS
SIP
PSTN
INAP
SS7
API

-
-
-
-
-
-
-

PSTN and Internet Interworking
Services in the PSTN/IN Requesting InTernet Services
Session Initiation Protocol
Public Switched Telephone Network
Intelligent Network Application Protocol
Signaling System 7
Application Programming Interface

Service Control
Function

Figure 3.
SPIRITS architecture.

is located in the PSTN domain and initiates a request

to the SPIRITS server for some action to be performed

in the Internet domain. The PSTN/IN requesting sys-

tem is realized by a SPIRITS gateway, which serves as

an intermediary between the SPIRITS server and the

SPIRITS client. The overall SPIRITS architecture is

depicted in Figure 3 [24].

Figure 3 includes many other entities in the

SPIRITS architecture, besides the three mentioned

above. It also shows a PINT client and a PINT

server/gateway. While PINT is not absolutely essential

for SPIRITS services, it does serve two critical func-

tions in the architecture, namely, it allows for a

SPIRITS host to register itself, and allows the SPIRITS

host to avail itself of the SUBSCRIBE/NOTIFY PINT

extensions for service subscription. Entities in the

PSTN domain include the service switching point

(SSP) and a service control function (SCF). An SSP is

a switch in the telephone network, and an SCF is an

adjunct that executes the service logic for a phone

call. During the execution of the call logic, if certain

criteria are met, the SPIRITS client, which may be co-

located with the SCF, notifies the SPIRITS gateway of

the events that need to be propagated to the SPIRITS

server in the Internet domain. In this manner, PSTN

events are exported to the Internet domain, and en-

able services to be executed there.

One of the benchmark SPIRITS services is

Internet call waiting (ICW) [17]. ICW enables a sub-

scriber engaged in an Internet dial-up session to be

notified of an incoming call to his/her phone line. The

notification may result in the subscriber tearing down

his/her Internet session to accept the call, or it may re-

sult in accepting the call using voice over IP (VoIP), or

forwarding it to some other number (a cell phone,

or a second home line, for instance). Following the

SPIRITS model, the notification of ICW originates in

the PSTN domain. The SCF recognizes that the called



12 Bell Labs Technical Journal

IP-Capable
Switch

SCP

SIN
SIP

Proxy
Server

INAP

SIP

SIP
INAP
IP
SIN

Session Initiation Protocol
Intelligent Network Application Protocol
Internet Protocol
SIP/IN Interworking

-
-
-
-

Figure 4.
SIN architecture.

subscriber is currently on-line. It subsequently re-

quests the SPIRITS client to notify the SPIRITS server

of the pending call, and waits for the disposition of

the call from the subscriber. The service to be invoked,

in this case, displaying a pop-up dialog on the sub-

scriber’s IP host, occurs in the IP domain.

Based on the success of extending SIP for PINT

and the use of SIP in pre-SPIRITS implementations

[17], SIP has been chosen as the transport protocol

for SPIRITS [5].

SIP/IN Internetworking (SIN)
As SIP becomes an important protocol for IP

telephony, there is a growing need to support existing

IN-based applications in a SIP-based IP telephony

environment, particularly for IP host to PSTN phone

calls. In the fall of 2000, the IETF formed a design

team called SIN to handle this work. Specifically, SIN

was chartered to solve the problem of accessing IN

services residing in the PSTN domain from IP end-

points running SIP. The benchmark SIN service is

Internet-originated 800 PC-to-phone calls, possibly

involving other PSTN/IN entities, such as voice recog-

nition peripheral and media servers for playing an-

nouncements and collecting digits.

In order to discuss the work being done in SIN, it is

necessary to outline how IN services are accessed from

PSTN. An SSP processing a call can temporarily sus-

pend the call processing and request instructions from

a service logic entity, called an SCP, on how to further

proceed with the call. The points where a call can be in-

terrupted are standardized within the basic call state

model (BCSM). The BCSM model contains two

processes, one each for the originating and terminating

part of a call. When the SCP gets an request for in-

structions, it can reply with a single response, such as a

simple number translation augmented by criteria, such

as time of day or day of week, or, in turn, get into a

complex dialog with the switch. The situation is fur-

ther complicated by the necessity to engage other spe-

cialized devices, which collect digits, play recorded

announcements, and perform text-to-speech or speech-

to-text conversion. The related protocol, as well as the

BCSM, is standardized by the International Tele-

communications Union, Telecommunications Stan-

dardization Sector (ITU-T), and known as the INAP.

The SIN architecture is described in Figure 4
[22]. The architecture depicts a SIN-enabled SIP

proxy that interacts with the SCP to provide services

to the SIP-enabled endpoints. In case of the 800

translation service, the proxy can interact with the

SCP through the SIN layer, translate the 800 number

to a valid routing number, and forward the call to

an Internet telephony switch for delivery to the

PSTN. Note that the IP switch will straddle the PSTN

and Internet domains.

Three levels of internetworking come into play

in SIN: mapping the SIP protocol state machine to

the IN BCSM call model, INAP/SIP message sequence

mapping, and INAP/SIP parameter translation. The

mapping of call models between SIP and IN [8, 9]

demonstrates the services that are possible within the

framework of SIN. Current work in SIN is focused on

the INAP/SIP message sequence mapping and

INAP/SIP parameter translation.

SIP Internet Integration
A presence and instant messaging system allows

users to subscribe to each other and be notified of

changes in state, and for users to send each other

short (usually text) instant messages [1]. Although

IM and presence are often coupled together, they are

in reality two separate applications. Coupling them

together provides an integrated manner of commu-

nications, wherein presence implies the ability to send

an instant message to the recipient (if the recipient is



Bell Labs Technical Journal 13

Presence
Server

WatcherPresentity

Figure 5.
Overview of presence service.

present, the sender can send an instant message to

the recipient. However, note that presence does not

imply availability; a recipient may be present, but un-

available, that is, busy).

SIP is a natural protocol to leverage IM and pres-

ence. The mechanisms needed in an IM protocol are

very similar to those required for establishment of

an interactive session, that is rapid delivery of small

content to a user at their current location, which may

be changing as the user moves [20]. Likewise, a pres-

ence system can avail itself of the SIP infrastructure of

registrars and location servers. After all, the presence

of a SIP subscriber is already known to a registrar

through the SIP REGISTER method [21].

SIP and IM
An IM service has two entities: senders and in-

stant inboxes [1]. Senders construct and dispatch in-

stant messages, and an instant inbox is a receptacle for

an IM. Note that the recipient does not have to be

present in order for an IM system to deliver an IM

message. The IM will be stored in the recipient’s in-

stant inbox until he/she becomes available, where-

upon it will be presented to him/her.

The MESSAGE extension enables IM in SIP [20].

When a user wishes to send an IM to another, the

sender formats and issues a SIP MESSAGE request.

The body of this request contains the message to be

delivered. The request may traverse the SIP network,

passing through SIP proxies to arrive at the destina-

tion user agent server (UAS). The proxies may fork

MESSAGE requests, much as they do with INVITE re-

quests. Provisional and final responses will be re-

turned to the sender, as is the case with any other SIP

request. Normally, a 200 OK final response will be

generated by the UAS of the request’s final recipient.

The 200 OK implies that the IM was delivered at the

final destination, not that the user has actually seen it.

SIP and Presence
The presence service has two distinct set of clients:

presentities and watchers [1] (see Figure 5).

Presentities provide presence information to a

presence service for storage and distribution. The pres-

ence service informs watchers of the change in pres-

ence information of presentity. Watchers are further

divided into fetchers and subscribers. Fetchers simply

request the current value of some presentity’s

presence information from a presence service.

Subscribers, on the other hand, request notification

from the presence service of future change in some

presentity’s presence information.

When a subscriber wishes to learn about the

presence information of some user, it creates a SIP

SUBSCRIBE request [21]. This request identifies

the desired presentity in the request uniform re-

source identifier (URI). This request is routed

through the SIP network and finally arrives at the

presentity. The presentity authenticates and author-

izes the request and sends a “202 Accepted” response

to the subscriber. It also sends an immediate NOTIFY

message to the subscriber, informing it of the present

state of the presentity. As the state of the presentity

changes over time, it generates NOTIFYs for all sub-

scribers interested in that presentity. Figure 6 de-

picts a simple time line diagram outlining the flow of

messages between presentity and a watcher. Note

that in Figure 6, the presence server and presentity

are co-located. Nothing prevents them from being

distinct SIP entities; the call flow depicted in the fig-

ure does not change.

Service Session Access, Mediation, and
Management for a SIP Services Architecture

This section discusses a candidate framework for

a SIP services architecture in a converged network,

which enables multi-vendor service interoperability

through service interaction mediation. It also provides

service sessions that coordinate multimedia and mul-

tiple parties, service access, and service management.



14 Bell Labs Technical Journal

The following terminology will be used in this

section.

• Application. An application means software that

provides a service or part of a service; it may re-

side locally or on a remote application server.

• Service. User visible behavior that adds value to

the communication experience.

• Service Blending. Service blending enables multi-

ple applications that provide services, written by

multiple third parties, to register to act on the

same event, for the same user, according to roles

and precedence, in order to provide coherent

service offerings to subscribers.

• Service Mediation. The runtime software mecha-

nism that supports service blending.

SAMM Capabilities for SIP Services
SAMM provides a framework for service session

access, mediation, and management for multimedia-

enabled, next-generation services offered over IP net-

works to SIP-enabled endpoints (see Figure 7). SAMM

service mediation enables services created by third par-

ties, service providers, and equipment vendors to work

together in a service logic execution environment

(SLEE) [2] expanding on the service architecture con-

cepts specified by JAIN SLEE. SAMM will support a

third-party programmable service authoring environ-

ment that enables deployment of multimedia-enabled

services, while resolving feature interactions and inte-

gration into existing operations, administration, main-

tenance, and provisioning (OAM&P) elements [3]. The

applications will be written to industry standard APIs,

including Parlay/OSA, JAIN, and SIP. Intelligent end-

points may access the services through multimedia-

enabled access sessions via HTTP or through direct

service signaling via a SIP proxy. When the user se-

lects a network communications service, the access

sessions or signaling from a proxy will start up service

sessions software that provides a shared context for

the services and the finite state machines (FSMs) that

drive the session. SAMM is designed to interface by

selection to any underlying call model through proto-

cols, such as JAIN call control (JCC) and Java

Telephony API (JTAPI). It may reside on SIP-enabled

endpoints, SIP proxies, Parlay/OSA gateways, appli-

cation servers, or softswitches.

Service Sessions
Service sessions manage the multimedia, multi-

party context for a communications session, in order

to facilitate intelligent service actions on behalf of the

user, and track media resource usage by the user (see

Figure 8).

A service session serves as the hub of a wheel,

coordinating the components that together provide

the service. At the application layer, a user agent com-

ponent represents a user who can span multiple dif-

ferent endpoints (analog, softphones, and wireless

phones) and take on many different personae (roles).

A service session component is initiated when the first

service signaling request is received through the access

session. It invokes service mediation to enable multi-

ple service logic components (applications) to respond

to a service-affecting event. It invokes the appropriate

endpoint agent components to communicate service

information back to the user. The core service logic

components that receive the events are designed to be

endpoint and transport neutral. They are designed to

provide any where, any media services to the user. It

is therefore the endpoint agent’s responsibility to

translate the service logic components’ results into

endpoint specific behaviors, and to interact appropri-

ately with the endpoints.

Watcher Presentity

SUBSCRIBE

200 OK

202 Accepted

NOTIFY

200 OK

NOTIFY

Figure 6.
SIP presence call flow.



Bell Labs Technical Journal 15

Service
Authoring

3rd Party
Application

Access
Session

Service
Session

Service
Mediation

Softswitch

Media Gateway Media Server

SIP Proxy Wireless Switch

Applications
• Service authoring
• Service creation
• 3rd party provided applications

Services
• Service intelligence
• Service control
• Service mediation
• Programmability

Control
• Call setup
• Call control
• Media gateway control
• Signaling

Media
• ATM and/or IP
• Media gateway to PSTN
• Media (bearer resources) servers

SAMM

Parlay/OSA, JAIN, SIP, …

JCC, JTAPI, SIP, …

H.248, MGCP, …

SAMM
OSA
JAIN
SIP
JCC

Service Access, Mediation, and Management
Open Service Architecture
Java APIs for Integrated Network
Session Initiation Protocol
JAIN Call Control

-
-
-
-
-

JTAPI
MGCP
ATM
PSTN
IP

Java Telephony API
Media gateway Control Protocol
Asynchronous Transport Protocol
Public Switched Telephone Network
Internet Protocol

-
-
-
-
-

Figure 7.
SAMM functional entities and interfaces.

Possible endpoint directives may be transported as

data from the service logic components to the end-

point agent. The endpoint agent then selects the rel-

evant directives, given the actual endpoint’s

multimedia capabilities, or translates the directives to

be compatible with the endpoint’s multimedia capa-

bilities. For example, the service logic components

may convey to the endpoint agent, in a generic fash-

ion, the need for a dialog with the end user. The end-

point agent customizes service presentation on the

terminal based on user’s current endpoint capabilities

and preferences (voice only, voice/data, voice/data/

video). The service session sends any resulting net-

work requests to a connection manager component,

which communicates with the call control/media

gateway controller on a softswitch (if the communi-

cations session involves the PSTN), using protocols

such as JCC or JTAPI, or it may communicate to a SIP

proxy via SIP, for end-to-end SIP communications.

The media gateway controller makes requests of a

switch or gateway according to standard protocols

such as H.248 or media gateway control protocol

(MGCP). The service session may also send requests to

resource manager components, which communicate

with media servers using H.248 or MGCP. Responses

from the switch, gateway, or media servers are sent

back to the corresponding service session. Service ses-

sions may reside on SIP proxies, application servers, or

Parlay/OSA gateways.

Service Access
Service access receives service signaling from

the user, authenticates the user, and invokes the

appropriate service. Access sessions may be provided

as user servlets that run on a Web server, and

communicate with the service sessions using commu-



16 Bell Labs Technical Journal

nications mechanisms such as Java remote method in-

vocation, simple object access protocol, or CORBA*.

Access sessions provide “multimedia dial tone” for in-

telligent endpoints. For example, the subscriber may se-

lect services using touchtones, visual mechanisms, such

as clicking on a Web page that translates the request into

IP data, or by using a speech recognition system.

Service Signaling from SIP-Enabled Endpoints
SIP methods currently operate at the call/session

control level. Service signaling is being considered by

the session initiation protocol project investigation

(SIPPING) working group [23]. This working group is

chartered to document the use of SIP for several ap-

plications related to telephony and multimedia, and

to develop requirements for any extensions to SIP

needed for those applications. The challenge is de-

termining how to unambiguously articulate services

among endpoints across the network. Using the

current SIP protocol, there is a limited vocabulary for

articulating service behaviors. In traditional analog

telephony, service signaling was done by entering

touchtone codes in-band. The service provider who

received the tones must then map them to a 

pre-determined service. This required agreements

by multiple parties concerning how to signal the

service.

Service Signaling Through Portals and Web Browsers
Service signaling could be done through portals

to service servers, using visual or audio human lan-

guage, through Web pages, speech recognition sys-

tems, or combinations of the two. Intelligent

endpoints with Web browsers have the ability to do

service signaling using HTTP. The Web browsers can

present Web pages from various uniform resource lo-

Policy

Mtce Prov

Bill

User
Agent

Policy

Mtce Prov

Bill

Endpoint
Agent

Policy

Mtce Prov

Bill

Access
Session

Policy

Mtce Prov

Bill

Connection
Manager

Policy

Mtce Prov

Bill

Resource
Manager

Policy

Mtce Prov

Bill

Service
Session

Service Mediation

Policy

Mice Prov

Bill

User
Agent

Policy

Mice Prov

Bill

User
Agent

Policy

Mice Prov

Bill

User
Agent

Policy

Mtce Prov

Bill

Service
Logic

Po
lic

y
M

an
ag

er
M

ai
n

te
n

an
ce

M
an

ag
er

Pr
o

vi
si

o
n

in
g

M
an

ag
er

B
ill

in
g

M
an

ag
er

Figure 8.
The service session coordinates SAMM components to provide services.



Bell Labs Technical Journal 17

cators (URLs). The user may select a service through

clicking on a Web page, and/or through filling out a

service description menu with scroll down bars for

choosing options. The service selection is contextual

and unambiguous, presented to the user through

human language. It is not necessary to get agreement

concerning special codes. Instead, the Web browser

may invoke the appropriate services programmati-

cally, through an API. The SIP protocol could then be

used to actually set up the calls among multiple users,

through third-party call control.

Service Mediation
SAMM enables service blending of independently

developed third-party applications for a given sub-

scriber. Service blending enables multiple applications

(service logic components), written by multiple third

parties, to register to act on the same service-affecting

event, for the same user, according to roles and prece-

dence. It provides service mediation for service-

affecting events. Users will want to access new

third-party services, written across multiple standards,

as well as legacy services. It is relatively straightfor-

ward to interwork the first set of services offered or

envisioned in a hard-coded, monolithic way. It be-

comes increasingly difficult, time-consuming, and ex-

pensive to integrate the nth service (which was not

envisioned when the original set of services was cre-

ated), with the n � 1 services that came before it, un-

less all the services adhere to a generic and extensible

set of rules concerning how they will respond to

service-affecting events.

Service Blending for SIP with Industry Standard APIs
SAMM service blending is designed to work with

third-party applications written across a set of indus-

try standards, and with underlying network protocols

that allow use of network resources. It provides an

open architecture that is extensible by the service

providers. SAMM software is designed to act as a

proxy between applications and call control. It does

not change the industry standard application and call

control APIs in proprietary ways. It just provides an

additional set of plugs and adapters that allow appli-

cations written for different (or the same) APIs to be

integrated together by the service integrator.

The service integrator is defined as a person or

software entity that builds coherent service offerings,

gathering together third-party applications, and spec-

ifying how those applications will plug into the service

mediation capabilities. Third-party applications may

be written without service mediation, and later be

plugged in to work with service mediation, without

modification to the applications themselves. The serv-

ice integrator generates a thin client stub to send and

receive messages from that application. Note that the

service integrator is taking responsibility for the se-

mantics of the service blending, to ensure that the re-

sulting service offering makes sense. Over time, the

service integrator may become automated and dy-

namic, as service descriptions and rules are adopted by

industry standards. The service mediation capabilities

of SAMM themselves can evolve, and will take ad-

vantage of the automated and dynamic algorithms as

they become available. Knowing where to put an ap-

plication in reference to other applications for han-

dling events is a natural requirement, if you want the

services to play well together on your behalf. In other

words, it gives you the power to coordinate services

rather than rewrite or duplicate services that are al-

ready available and written by someone else. The ad-

vantage of SAMM service mediation is that only the

integrator must figure out how to combine the serv-

ices, based on semantic needs. The third-party appli-

cation developers do not have to know or understand

the other parties’ applications.

The SAMM components that provide service me-

diation are designed to be adaptable to be compatible

with service mediation standards, as they continue to

be defined by Parlay/OSA and JAIN SLEE. Standards

that do not include explicit APIs for service media-

tion can be plugged in via adapters. Since different

standards may develop different APIs for basically the

same set of events, the SAMM adapters will map

events between external APIs, and the common in-

ternal ones.

The Location of SAMM in the SIP Network
Service blending may occur independently in var-

ious network elements owned by different stake-

holders, at various layers, since it is hidden behind

standard APIs among the network elements.



18 Bell Labs Technical Journal

SIP Soft
Phone

SIP Hard
Phone

SIP - Session Initiation Protocol

Wireless PDA
or Phone

Parlay/OSA
App Server

Parlay/OSA
Gateway

PSTN
Gateway

App
Server

SIP
Proxy

Service
Mediation

Service
Mediation

Service
Mediation

Parlay/OSA

SIP

SIP

SIP

SIP

Service
Mediation

Service
Mediation

Service
Mediation

Service
Mediation

Figure 9.
Possible locations for service mediation in a SIP network.

SAMM could reside on a Parlay/OSA gateway. A

Parlay/OSA gateway resides in the network, and re-

ceives Parlay/OSA requests from third parties. An ap-

plication on an application server would communicate

through its normal Parlay/OSA API to the Parlay/OSA

adapter of SAMM, which plugs the application into

service mediation. It would shield multiple applica-

tions from the lower level call control gateway. The

service session could take resulting network requests,

and convey them via SIP to a SIP proxy server. SAMM

could reside on an application server to provide serv-

ice mediation of events among multiple internal serv-

ices, for example, and then make the resulting request

through a Parlay/OSA API to a Parlay/OSA gateway.

Refer to Figure 9.

SAMM could also provide service mediation di-

rectly on a SIP proxy server, or on an intelligent end-

point, such as a softphone, a Java-enabled wireless

phone, or a PDA. It can provide a disciplined and

generic approach to service mediation wherever it is

needed, and it can provide service mediation on mul-

tiple network elements. As long as the network ele-

ments communicate via standard APIs, the service

mediation occurring on one element is hidden from

the service mediation occurring on another element.

The key element is the semantics. The services must

combine in ways that make sense to the subscriber.

Principles for Service Blending
Ordinary tools may detect for which events serv-

ices are registered to respond—but not know how

they should be combined to provide meaningful serv-

ice offerings. SAMM provides development tools and

a runtime environment to enable service integrators

to combine the services together, to form coherent

service offerings for subscribers, based on:

• Preferences. Understanding how the subscribers

want their service to work (does the subscriber

first want to forward a call, or try call waiting).

• Roles. Understanding what the services can do,

and the context in which each service can sanely



Bell Labs Technical Journal 19

execute; understanding the semantics of the

services.

Applications written by equipment vendors, by

service providers, and by third-party developers will

all be integrated into service blending using the same

service mediation mechanisms. This ensures total

compatibility and extensibility among the applica-

tions, and avoids the possibility of equipment vendor

applications somehow becoming incompatible with

third-party applications.

The articulation of how the services may be com-

bined to provide coherent and comprehensible serv-

ice offerings embody the rules that drive the service

sessions of the subscriber through its FSM, and allows

the services to respond to the events that comprise

the FSM in a disciplined fashion.

The service logic components themselves are de-

signed independently, and may be loosely coupled

to other services by plugging into the service medi-

ation components. If two services are highly de-

pendent on each other, and cannot behave in a

sequential fashion by plugging into generic service

mediation mechanisms, then from the point of view

of service mediation, they truly are one service.

These highly dependent services should be repre-

sented by a single service component, which has the

application-dependent code to decide how the two

services will behave, given specific circumstances.

The cause of these circumstances may be having a

large number of variables that must be examined

and compared, in order to determine what course

of action to take. These variables may also be able to

take on a large number of values. If each unique

combination of values across the variables were to be

treated by the service mediation as a discrete event,

then the number of events could grow to be very

large.

Time-of-day routing is an example of a service

that may decide to take different actions based on pre-

cise values of date and time. If each unique combina-

tion of year, month, day, day of the week, hour of the

day, minutes in the hour was considered to be a sep-

arate event handled by the service mediation of the

service session, then the complexity of registering for

events would be greatly increased. Services that did

not care about these variables would be unduly bur-

dened to take them into account, in order to register

for large numbers of events based upon values that

the service itself does not distinguish as separate

events. A time-of-day service component could there-

fore plug into the service mediation, and would in-

voke time-sensitive service logic according to its

application-dependent discriminator (namely, the

time).

Therefore the selection of a practical set of medi-

ated events is critical to developing a service media-

tion capability that will ease the burden of integrating

third-party applications, instead of increasing the bur-

den. These events should reflect the semantics of the

FSM of the service session, which in turn may often

reflect the superset of underlying call models and

generic user actions. SAMM supports service media-

tion for call control events and activity events. Activity

events do not come from call control, and they may or

may not result in call control requests. The set of me-

diated events is a finite, published set of APIs that can

be extended as needed.

It should also be noted that not all messages sent

between objects need to be mediated events. Many

notifications and transactions may occur between ob-

jects in the normal course of providing services. Only

events that exhibit the following characteristics should

be considered for inclusion as mediated events:

• Precedence must be established in processing the

event in a sequential order (synchronous pro-

cessing semantics) among at least some of the

applications.

• An exclusive decision on what to do with the

event must be determined according to the

semantics of the service session FSM.

Service Mediation for SIP Service APIs
Services could be provided solely through SIP

service APIs, SIP CPL, SIP CGI, and SIP servlets. The

SIP services could be invoked by a SIP proxy server.

When it receives a request for a particular address

(subscriber), it could run the appropriate script. The

difficulty with providing services solely via CPL is the

limitations in combining a set of services, each cre-

ated with a CPL script, with its own flowchart-style



20 Bell Labs Technical Journal

logic. Combinations of the conditions expressed in

nested flowcharts may become difficult to manage. A

SIP servlet could invoke CPL scripts according to a

precedence order specified using SAMM mediation.

The precedence ordering could be provisioned, or

could be determined according to a set of rules. The

rules-based mechanism could require extensions to

SIP.

SIP and Parlay/OSA
Parlay/OSA provides a network independent

model. Parlay/OSA application servers may operate

across wireless and wire-line networks. Parlay/OSA

allows the customers to control network requests, and

to request third-party call control. SIP and Parlay/OSA

may be used to play complementary roles in provid-

ing services, with Parlay/OSA providing applications

and call control, and SIP providing call/session sig-

naling. Parlay/OSA provides a level of security, au-

thorization, and authentication. The Parlay/OSA

gateway may receive service requests through the

Parlay/OSA API, and may signal the end users to set

up communications, through the SIP proxy server.

Distributed Services and Service Mediation Example
1. A SIP INVITE is sent from user A toward user B

through an outbound SIP proxy server.

2. The SIP proxy server runs a CPL script that gives

possible endpoints for user B based on time of

day.

3. The SIP INVITE routes through the network to-

ward the first endpoint indicated for user B, a SIP

softphone.

4. The inbound SIP proxy server that serves the SIP

softphone runs a servlet that checks user B’s pres-

ence through a presence server. The presence

server indicates that user B is present on a PDA at

this time, not on the SIP softphone.

5. The inbound SIP proxy server’s servlet for user B

forwards the SIP INVITE to an application server,

which spawns a service session for user B. Refer

to Figure 10.

6. The SIP INVITE message is translated into a trans-

port neutral event of “incoming call,” and then it

is distributed by SAMM service mediation to a set

of personalized call management services for

which user B has registered.

7. The first service is a client stub for a privacy man-

ager, which ensures that the calling party is prop-

erly identified. The client may send a message to

the service, which runs on an SCP, across a

Signaling System 7 (SS7) network. Since the

calling party is properly identified, the privacy

manager stub returns a value of “continue” to

SAMM service mediation.

8. It passes the “incoming call” event to a screen list

client stub, which runs a SIP CPL call screening

script. The calling screening service determines

that the calling party is allowed to alert user B, so

the client stub returns a value of “continue” to

SAMM service mediation.

9. It passes the “incoming call” event to the

Parlay/OSA call control stub. The stub converts

the event into a Parlay/OSA specific event, and

notifies the appropriate Parlay/OSA application

for user B. The Parlay/OSA application stub re-

turns a value of “determined response,” with a

directive to alert user B.

10. A post-processing service, “custom alerting,” im-

plemented in JAIN, receives the event, and se-

lects an image of user A from a database, to send

to user B’s PDA.

User B receives the image of user A along with alert-

ing, and accepts the call.

Service Management
SAMM service management provides OAM&P

capabilities for third-party programmable services,

including life cycle management, measurements,

billing, provisioning, and maintenance. Life cycle

management deals with installing and activating

new services, taking the services out of service, and

de-installing them when they are no longer wanted.

Refer to JAIN SLEE [25] for more discussions on

service life-cycle management. SAMM is designed

to allow plug in/plug out of services without impact

on other services. SAMM also allows services to

work with back office systems, to provision service

data, to take measurements and generate billing, and

to be managed by the maintenance system. For



Bell Labs Technical Journal 21

Privacy
Manager

Screen
List
Stub

Parlay/OSA
Call Control

Service

Privacy
Service

Stub

TCAP
Adapter

SIP
Adapter

Parlay/OSA
Adapter

JAVA
RMI

Custom
Alerting

SIP CPL
Screening

Parlay/OSA
Applications Applications

Incoming Call Event

SIP INVITE API - Application Programming Interface
CPL - Call Processing Language
JAIN - Java APIs for Integrated Networks
OSA - Open Services Architecture
RMI - Remote Method Invocation
SAMM - Service Access, Mediation, and Management
SIP - Session Initiation Protocol
TCAP - Transaction Capability Application Part

Service Session

SAMM Service Mediation

TCAP SIP Parlay/OSA APIs JAIN APIs

Figure 10.
Service mediation across multiple APIs.

more details on SAMM service management, refer to

[2] and [3].

Conclusions
The development of a complete network-level

services architecture requires a complete understand-

ing of the types of services that are to be delivered, the

best location in the network to deploy the services,

and the network elements that are required to per-

form the services.

Acknowledgments
This paper is the product of the hard work and

dedication of many people. We want to specifically

acknowledge Bin-wen Ho and Troy Echols.

*Trademarks
CORBA is a trademark of Object Management Group,

Inc.

JAIN and Java are trademarks of Sun Microsystems

Inc.

Microsoft and Windows XP are registered trademarks

of Microsoft Corporation.

References
[1] M. Day, J. Rosenberg, and H. Sugano, “A Model

for Presence and Instant Messaging,” IETF RFC
2778, Internet Engineering Task Force, Feb.
2000, <http://www.ietf.org/rfc/rfc2778.txt>.

[2] J. R. Dianda, R. O. Colbert, P. J. L. Herve, and
T. Yang, “Programmable Service Platforms for
Converged Voice/Data Services,” Bell Labs Tech.
J., 5:3 (2000), 43–58.

[3] J. R. Dianda, S. C. Darity, B.-W. Ho, and K. J.
Scott, “Service Authoring for Third Party
Programmable, Service Mediation Enabled
Feature Servers in the Multiservice Core,” Bell
Labs Tech. J., 6:1 (2001), 192–210.

[4] I. Faynberg, L. R. Gabuzda, M. P. Kaplan,
and N. J. Shah, The Intelligent Network



Standards—Their Application to Services,
McGraw Hill, New York, 1997.

[5] I. Faynberg (ed.), J. Gato, H. Lu, and
L. Slutsman, “SPIRITS Protocol Requirements,”
IETF Internet-Draft, Work in Progress,
<http://www.ietf.org/internet-drafts/draft-ietf-
spirits-reqs-04.txt>.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext Transfer Protocol—HTTP/1.1,” RFC
2616, June 1999.

[7] N. Freed and N. Borensten, “Multipurpose
Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies,” RFC 2045,
Nov. 1996.

[8] V. Gurbani, “SIP-enabled IN Services: An
Implementation Report,” IETF Internet-Draft,
Work in Progress, expired May 2001,
<http://www.bell-labs.com/mailing-lists/ietf-
sin/draft-gurbani-iptel-sip-in-imp-01.txt>.

[9] V. Gurbani and V. Rastogi, “Accessing IN
Services from SIP Networks,” IETF Internet-
Draft, Work in Progress, expired Feb. 2002,
http://www.bell-labs.com/mailing-lists/ietf-
sin/draft-gurbani-iptel-sip-to-in-05.txt.

[10] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg, “SIP: Session Initiation Protocol,”
RFC 2543, Mar. 1999.

[11] Internet Engineering Task Force (IETF) Service
in the PSTN/IN Requesting InTernet Service
(SPIRITS) Working Group,
<http://www.ietf.org/html.charters/spirits-
charter.html>.

[12] Internet Engineering Task Force (IETF) SIP for
Instant Messaging and Presence Leveraging
(SIMPLE) Working Group,
<http://www.ietf.org/html.charters/simple-
charter.html>.

[13] Internet Engineering Task Force (IETF) SIP
Working Group,
<http://www.ietf.org/html.charters/sip-
charter.html>.

[14] J. Kozik, I. Faynberg, and H. Lu, “On Opening
PSTN to Enhanced Voice/Data Services—The
PINT Protocol and Solution,” Bell Labs Tech. J.,
5:3 (2000), 153–165.

[15] J. Kozik, W. A. Montgomery, and J. J.
Stanaway, Jr., “Voice Services in the Next-
Generation Networks: The Evolution of the
Intelligent Network and Its Role in Generating
New Revenue Opportunities,” Bell Labs Tech. J.,
3:4 (1998), 124–143.

[16] J. Lennox and H. Schulzrinne, “Call Processing
Language Framework and Requirements,” RFC
2842, May 2000.

[17] H. Lu (ed.), I. Faynberg, J. Voelker, M.
Weissman, W. Zhang, S. Rhim, J. Hwang, S.
Ago, S. Moeenuddin, S. Hadvani, S. Nyckelgard,
J. Yoakum, and L. Robart, “Pre-SPIRITS
Implementation of PSTN-Initiated Services,”
IETF RFC 2995, Internet Engineering Task
Force, Nov. 2000,
<http://www.ietf.org/rfc/rfc2995.txt>.

[18] The PARLAY Group, Specifications,
<http://www.parlay.org>.

[19] S. Petrack and L. Conroy, “The PINT Service
Protocol: Extensions to SIP and SDP for IP
Access to Telephone Call Services,” IETF RFC
2848, Internet Engineering Task Force, June
2000, <http://www.ietf.org/rfc/rfc2848.txt>.

[20] J. Rosenberg, D. Willis, R. Sparks, B. Campbell,
H. Schulzrinne, J. Lennox, C. Huitema, B.
Aboba, D. Gurle, and D. Oran, “SIP Extensions
for Instant Messaging,” IETF Internet-Draft,
Work in Progress,
<http://www.ietf.org/internet-drafts/draft-ietf-
simple-im-01.txt>.

[21] J. Rosenberg, D. Willis, R. Sparks, B. Campbell,
H. Schulzrinne, J. Lennox, C. Huitema, B.
Aboba, D. Gurle, and D. Oran, “SIP Extensions
for Presence,” IETF Internet-Draft, Work in
Progress, <http://www.ietf.org/ internet-
drafts/draft-ietf-simple-presence-04.txt>.

[22] H. Schulzrinne, L. Slutsman, and I. Faynberg,
“Interworking between SIP and INAP,” IETF
Internet-Draft, Work in Progress,
<http://www.bell-labs.com/mailing-lists/ietf-
sin/draft-schulzrinne-sin-01.txt>.

[23] Session Initiation Proposal Investigation
(SIPPING), IETF Working Group, <http://www.
ietf.org/html. charters/sipping-charter.html>.

[24] L. Slutsman (ed.), I. Faynberg, H.-L. Lu, and M.
Weissman, “The SPIRITS Architecture,” IETF
RFC 3136, Internet Engineering Task Force,
June 2001, <http://www.ietf.org/rfc/
rfc3136.txt?number=3136>.

[25] Sun Microsystems, Inc., “Java™ APIs for
Integrated Networks,” <http://java.sun.com/
products/jain/index.html>.

[26] Sun Microsystems, Inc., “Java™ Servlet 2.3
Specification,” Sept. 2001.

[27] Third Generation Partnership Project (3GPP),
<http://www.3gpp.org/>.

(Manuscript approved April 2002)

22 Bell Labs Technical Journal



JANET R. DIANDA is a distinguished member of
technical staff in Lucent Field Solutions in
Overland Park, Kansas. She provides
technical consultation in the areas of SIP
and services architecture to the Sprint
customer team. She authored and

presented a paper, “A Multimedia Services Architecture
for Converged Voice and Data Services,” to the World
Telecommunications Conference/International
Switching Consortium. She has filed a United States
patent for “Apparatus and Method to Manage the
Invocation of Feature Service.” Ms. Dianda holds an
M.S. degree in computer science from the Illinois
Institute of Technology in Chicago.

VIJAY K. GURBANI is a distinguished member of
technical staff in the Architecture and Next-
Generation Evolution Department in
Mobility Solutions at Lucent Technologies in
Naperville, Illinois. He has been involved in
Lucent’s Internet Call Waiting offer and also

in creating services on the Lucent Softswitch, mapping
the IN Call Model to SIP, using SIP as an enabler for IN
services, and implementing a SIP proxy server for
demonstrating converged services. He has a B.Sc. and
an M.Sc. in computer science from Bradley University,
Peoria, Illinois, and is currently completing his Ph.D.
research in the same field at the Illinois Institute of
Technology, Chicago. His thesis is entitled “Enabling
Services Through Protocol Interworking.”

MARK H. JONES is a distinguished member of technical
staff in the Lucent Softswitch Architecture
Department of Lucent’s OPENet
organization in Naperville, Illinois, where
he is currently responsible for developing
architectural visions for Lucent’s next-

generation converged voice/data networks. Dr. Jones
holds a B.S. in electrical engineering from Michigan
State University in East Lansing and M.S. and Ph.D.
degrees in electrical engineering from the University of
Illinois at Urbana-Champaign. �

Bell Labs Technical Journal 23


